ON THE CESÅRO SUMMABILITY OF FOURIER SERIES (III)

Kôsi Kanno

(Received September 7,1956)

1. Let $\varphi(t)$ be an even integrable function with period 2π and let

$$
\begin{array}{ll}
\varphi(t) \sim \sum_{n=1}^{\infty} a_{n} \cos n t, & a_{0}=0 \\
\phi_{\alpha}(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t} \varphi(u)(u-t)^{\alpha-1} d u & (\alpha>0) \tag{1.2}
\end{array}
$$

and S_{n}^{β} be the β-th Cesàro sum of the Fourier series of $\varphi(t)$ at $t=0$, that is,

$$
\begin{equation*}
S_{n}^{\beta}=\sum_{\nu=0}^{n} A_{n-\nu}^{\beta} a_{\nu} \quad(\beta>-1) \tag{1.3}
\end{equation*}
$$

C. T. Loo [7] proved the following theorem.

Theorem A. If $\alpha>0$ and

$$
\begin{equation*}
S_{n}^{\alpha}=o\left(n^{\alpha} / \log n\right) \quad \text { as } n \rightarrow \infty, \tag{1.4}
\end{equation*}
$$

then

$$
\varphi_{1+\alpha}(t)=o\left(t^{1+\alpha}\right) .
$$

This theorem is the converse type of Izumi-Sunouchi's theorem [5]. Recently, we proved the following theorem [6]:

Theorem B. If

$$
\varphi_{\beta}(t)=o\left\{t^{\beta} /\left(\log \frac{1}{t}\right)^{\frac{1}{r}}\right\} \quad(\beta, \gamma>0) \quad \text { as } t \rightarrow 0
$$

and

$$
\int_{0}^{1}\left|d\left\{\frac{t \varphi(t)}{\left(\log \frac{1}{t}\right)^{\Delta}}\right\}\right|=O(t) \quad(\Delta>0,0<t \leqq \eta)
$$

then

$$
\begin{gathered}
S_{n}^{\alpha}=o\left(n^{\alpha}\right), \\
\alpha=(\Delta \gamma \beta-1) /(1+\Delta \gamma) .
\end{gathered}
$$

where
In the present note we prove a theorem which is the converse type of theorem B.

Theorem. If

$$
\begin{equation*}
a_{n}>-K(\log n)^{\alpha} / n \quad(\alpha>0) \quad \text { as } n \rightarrow \infty \tag{1.5}
\end{equation*}
$$

where K is a constant and
(1.6)

$$
S_{n}^{\beta}=o\left\{n^{\beta} /(\log n)^{\gamma}\right\}
$$

$$
(\beta, \gamma>0) \quad \text { as } \quad n \rightarrow \infty \text {, }
$$

then

$$
\left.\varphi_{\mu}(t)=o_{1}^{\prime} t^{\mu}\right) \quad \text { as } t \rightarrow 0
$$

where

$$
\mu=\alpha(1+\beta) /(\gamma+\alpha) .
$$

This theorem is also related to G. Sunouchi's theorem [8].
2. For the proof of theorem, we use the Bessel summability. Let $J_{\mu}(t)$ be the Bessel function of order μ and put

$$
\begin{equation*}
\alpha_{\mu}(t)=2^{\mu} \Gamma(\mu+1) J_{\mu}(t) i t^{\mu} \tag{2.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\Delta^{\rho} \alpha_{\mu}(n t)=O\left(t^{\rho}\right) \quad \text { for } 0<n t \leqq 1 \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta^{\prime} \alpha_{\mu}(n t)=O\left(t^{\rho-\mu-1 / 2} n^{-\mu-1 / 2}\right) \quad \text { for } n t>1 \tag{2.3}
\end{equation*}
$$

where $\Delta^{\rho}(\rho=0,1,2, \ldots)$ are the repeated differences of ρ-times. This properties are shown in the theorem 2 of K. Chandrasekharan and O. Szász [3]. If the series

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n}\left\{\alpha_{\mu}\left(\lambda_{n} t\right)\right\}^{k}=\varphi_{\mu}^{k}(t) \tag{2.4}
\end{equation*}
$$

converges for some interval $0<t<t_{0}$ and

$$
\begin{equation*}
\varphi_{\mu}^{k}(t)=o(1) \quad \text { as } t \rightarrow 0, \tag{2.5}
\end{equation*}
$$

then the series $\sum a_{n}$ is said to be summable $\left(J_{\mu}, k, \lambda\right)$ to 0 .
Lemma 1. If the series $\sum a_{n}$ is summable ($J_{\mu}, 1, n$), that is J_{μ}-summable, to s, then $t^{-(\mu+1 / 2)} \varphi_{\mu+1 / 2}(t)$ tends to s as $t \rightarrow 0$, and vice versa, where $\mu>-\frac{1}{2}$.

This is given in [3].
Let h denote a positive integer, and we write

$$
\Delta_{-n} s_{n}=\Delta_{h}^{1} s_{n}=s_{n+h}-s_{n}
$$

and $\Delta_{h}^{p}=\Delta_{l} \Delta_{h}^{p-1}$ for $p=1,2, \ldots$, where $\Delta_{h}^{0} s_{n}=s_{n}$. Similarlyl we write

$$
\Delta_{-l} s_{n}=\Delta_{-h}^{1} s_{n}=s_{n}-s_{n-h}
$$

and $\Delta_{-h}^{p}=\Delta_{-h} \Delta_{-h}^{p-1}$, where $\Delta_{-h}^{0} s_{n}=s_{n}$.
Lemma 2. If h and p are non-negative intgers and $0<\delta \leqq 1$, then

$$
\begin{equation*}
\frac{\Gamma(h+\delta)}{\Gamma(h)} h^{p_{n}} \tag{2.6}
\end{equation*}
$$

$$
=\Delta_{h}^{p+\delta} S_{n}^{p+\delta}-\delta \sum_{\nu_{0}=1}^{n} \frac{\Gamma\left(h-\nu_{0}+\delta\right)}{\Gamma\left(h-\nu_{0}+1\right)} \sum_{\nu_{1}=1}^{h} \cdots \sum_{\nu_{p}=1}^{h}\left(s_{n+\nu_{0}+\ldots+\nu_{p}}-s_{n}\right)
$$

and, if $n>(p+1) h$,

$$
\begin{align*}
& \frac{\Gamma(h+\delta)}{\Gamma(h)} h^{p_{S}}{ }^{\prime} \tag{2.7}\\
& \quad=\Delta_{h}^{p+\delta} S_{n}^{p+\delta}+\delta \sum_{\nu_{0}=1}^{n} \frac{\Gamma\left(h-\nu_{0}+\delta\right)}{\Gamma\left(h-\nu_{0}+1\right)} \sum_{\nu_{1}=1}^{n} \ldots \sum_{\nu_{r}=1}^{n}\left(s_{n}-s_{n+p+1-\nu_{0}-\ldots-\nu_{p}}\right) .
\end{align*}
$$

This is proved in Bosanquet's paper [2].
Lemma 3. If $0<m<n, 0<\delta \leqq 1$, then

$$
\left|\sum_{\nu=0}^{m} A_{n-\nu}^{\delta-1} s_{\nu}\right| \leqq \max _{0 \leqq \mu \leqq n}\left|S_{\mu}^{\delta}\right| .
$$

This is proved by Bosanquet [1].
Lemma 4. If $r>0, \beta>0, h>0$ and
$S_{n}^{r}=o\left(n^{\beta} W(n)\right)$ as $n \rightarrow \infty$, then $\Delta_{h}^{r} S_{n}^{r}=o\left(n^{\beta} W(n)\right)$ and $\Delta_{-h}^{r} S_{n}^{r}=o\left(n^{\beta} W(n)\right)$ as $n \rightarrow \infty$, where $W(n)$ is positive non-decreasing function of n.

Using Lemma 3, the proof is done analogous by that of Lemma 7 of Bosanquet's paper [2].

Lemma 5. If $V(n)$ and $W(n)$ are positive increasing for n, and

$$
s_{n}=S_{n}^{0}=O(V(n)), \quad S_{n}^{r}=o(W(n)) \quad(r>0),
$$

then

$$
S_{n}^{\alpha}=o\left(\left(V(n)^{1-\frac{\alpha}{r}}(W(n))^{\frac{\alpha}{r}}\right) \quad(0<\alpha<r)\right.
$$

This is the Dixon and Ferrer theorem [4].
Lemma 6. Let $V(n)$ and $W(n)$ are positive and satisfy the following conditions:
(i) there exists a real number $d>0$ such that $n^{a} V(n)$ is non-decreasing;
(2.8) (ii) $W(n)$ is non-decreasing;
(iii) $W(n)=O(V(n))$ as $n \rightarrow \infty$.

And if

$$
\begin{array}{lll}
\text { (1) } s_{n}=O\left(n^{b} V(n)\right) \text { and } & \text { (2) } S_{n}^{a}=o\left(n^{c} W(n)\right) \quad \text { as } n \rightarrow \infty \text {, }
\end{array}
$$

where $a+b \geqq c>-1$, then

$$
\begin{equation*}
S_{n}^{\nu^{\prime}}=o\left(n^{\left.\left(a-a^{\prime}\right)\right\rangle / a+a^{\prime} c^{\prime} a}(V(n))^{1-\frac{a^{\prime}}{a}}(W(n))^{\frac{x^{\prime}}{a}}\right) \tag{2.9}
\end{equation*}
$$

Proof. We can prove this easily by the simple modification of Bosanquet's paper, but for the sake of completeness we prove the lemma.

Suppose that b is any real number and assume the theorem with b, c replaced by $b+1, c+1$. Then, by (ii) of (2.8), $c>-1$ and (2),

$$
S_{n}^{\imath+1}=\sum_{\nu=0}^{n} S_{\nu}^{a}=o\left\{\sum_{\nu=0}^{n} \nu^{c} W(\nu)\right\}=o\left(n^{c+1} W(n)\right)
$$

If we put $T_{n}^{\alpha}=\sum_{\nu=0}^{n} A_{n-\nu}^{\alpha-1} \nu s_{\nu}$, then we get

$$
\begin{equation*}
T_{n}^{\imath}=(a+n) S_{n}^{\imath}-(a+1) S_{n}^{\tau+1}=o\left(n^{c} W(n)\right) . \tag{2.10}
\end{equation*}
$$

From (2.10) and $n s_{n}=O\left(n^{b+1} V(n)\right)$, the hypotheses of the theorem are satisfied, with s_{n} replaced by $n s_{n}, b$ by $a+1, c$ by $c+1$. It follows from the case assumed that

$$
T_{n}^{L^{\prime}}=o\left(n^{(b+1)\left(a-a^{\prime}\right) \mid a+a^{\prime}(c+1) / a}(V(u))^{1-n^{\prime} \mid a}(W(n))^{n^{\prime} / a}\right) \quad\left(0<a^{\prime}<a\right) .
$$

Now suppose that $a^{\prime} \geqq 0$ and $a-1 \leqq a^{\prime}<a$, then by (2)

$$
S_{n}^{\gamma^{\prime}+1}=\sum_{\nu=0}^{n} A_{n-\nu}^{v^{\prime}-a} S_{\nu}^{\imath}=o\left\{\sum_{\nu=1}^{n}(n-\nu)^{a^{\prime}-a} \nu^{c} W(\nu)\right\}=o\left(n^{c+a^{\prime}-a+1} W(n)\right)
$$

and so by (2.10)

$$
S_{n}^{\nu^{\prime}}=o\left(n^{\left(a-a^{\prime}\right) b / a+a^{\prime} c / a}(V(n))^{1-n^{\prime} \mid a}(W(n))^{x^{\prime} / a}\left(1+n^{-\left(a-a^{\prime}\right)(b-c+a) / a}(W(n) / V(n))^{1-a^{\prime} \mid a}\right)\right)
$$

Since $a+b \geqq c>-1$ and (iii) of (2.8), we obtain

$$
S_{n}^{\prime \prime}=o\left(n^{\left.\left(a-a^{\prime}\right)\right) / a+a^{\prime} c / a}\left(V(n)^{1-a^{\prime} / a}(W(n))^{z^{\prime} / a}\right) .\right.
$$

Thus, if $0<a \leqq 1$, the result follows by induction from Lemma 5 . If $a>1$, we suppose $0 \leqq a^{\prime}<a-1$, and sssume the result with a^{\prime} replaced by $a^{\prime}+1$. Then

$$
\begin{aligned}
S_{n}^{\nu^{\prime}} & =\left(a^{\prime}+1+n\right)^{-1}\left\{\boldsymbol{T}_{n}^{\nu^{\prime}}+\left(a^{\prime}+1\right) S_{n}^{\gamma^{\prime}+1}\right\} \\
& =o\left(n^{(a-a) b / a+a^{\prime} c / a}(V(n))^{1-a^{\prime} \mid a}(W(n))^{a^{\prime} / a}\right) .
\end{aligned}
$$

Thus our result may be proved by induction.
Lemma 7. If (2.8),
and
(2.12)

$$
\begin{equation*}
S_{n}^{a}=o\left(n^{c} W(n)\right) \tag{2.11}
\end{equation*}
$$

$$
\text { as } n \rightarrow \infty \text {, }
$$

where $a>0$ and $-1<c \leqq a+b+1$, we have

$$
\begin{equation*}
S_{n}^{\prime \prime}=o\left(n^{\left.(b)\left(t-n^{\prime}\right)+c\left(l^{\prime}+1\right)\right)((a+1)}(V(n))^{1-\left(z^{\prime}+1\right) \cdot\left(\eta^{\prime}+1\right)}(W(n))^{\left(l^{\prime}+1\right) /(1+1)}\right) \tag{2.13}
\end{equation*}
$$

for $0 \leqq a^{\prime} \leqq a$.
Proof. First suppose that $b \geqq 0, c>0$. Let a small positive ε be given, and let $a=p+\delta$, where $0<\delta \leqq 1$ and p is a non-negative integer. Then, for all sufficiently large n, by (2.6)

$$
\frac{\Gamma(h+\delta)}{\Gamma(h)} h^{p} s_{n}=\Delta_{t}^{p+\delta} S_{n}^{p+\delta}-\delta \sum_{\nu_{0}=1}^{h} \frac{\Gamma\left(h-\nu_{n}+\delta\right)}{\Gamma\left(h-\nu_{0}+1\right)} \sum_{\nu=1}^{n} \ldots \sum_{\nu_{p}=1}^{n}\left(s_{n+\nu_{0}+\ldots+\nu_{p}}-s_{n}\right)
$$

$$
\begin{aligned}
& <\varepsilon^{p+\delta+1} n^{c} W(n)+K \delta \sum_{\nu_{0}=1}^{n} \Gamma\left(\frac{\left.\Gamma-\nu_{0}+\delta\right)}{\Gamma\left(h-\nu_{0}+1\right)} \sum_{\nu_{1}=1}^{n} \ldots \sum_{\nu_{p}=1}^{n} n^{b} V(n)\left(\nu_{0}+\ldots+\nu_{p}\right)\right. \\
& <\varepsilon^{p+\delta+1} n^{c} W(n)+(p+1) K h^{p+\delta+1} n^{\prime} V(n),
\end{aligned}
$$

provided that $(\boldsymbol{p}+1) \boldsymbol{h}<H n$ and $K^{\prime}>K$. Also, by (2.7), for all sufficiently large n,

$$
\frac{\Gamma(h+\delta)}{\Gamma(h)} h^{p} s_{n}>-\varepsilon^{p+\delta+1} n^{c} W(n)-(p+1) K^{\prime} h^{p+\delta+1} n^{\prime} V(n)
$$

for $(p+1) h<(1+H)^{-1} H n$.
Taking $h=\varepsilon\left(n^{c} W(n) / n^{b} V(n)\right)^{1 /(p+\delta+1)}$ we get, for sufficiently large n,

$$
\left|S_{n}\right|<\left(1+(p+1) K^{\prime}\right) \varepsilon\left(n^{c-(p+\delta)(c-b) /(p+\delta+1)}(W(n))^{1-\frac{a^{\prime}}{a+1}}(V(n))^{\frac{a}{a+1}}\right)
$$

that is,

$$
\begin{equation*}
s_{n}=o\left(n^{\frac{c+a b}{a+1}}(V(n))^{1-\frac{1}{\alpha+1}}(W(n))^{\frac{1}{\alpha+1}}\right) \quad \text { as } n \rightarrow \infty \tag{2.14}
\end{equation*}
$$

From (i) and (ii) of (2.8), there exists a number $d^{\prime}>0$ such that $n^{a^{\prime}}(V(n))^{1 \frac{1}{a+1}}(W(n))^{\frac{1}{a^{+1}}}=n^{\prime^{\prime}} V(n)(W(n) / V(n))^{\frac{1}{a+1}}$ is non-decreasing for sufficiently large n. Hence, using Lemma 7, we have

$$
\begin{aligned}
S_{n}^{\lambda^{\prime}} & \left.=o\left(n^{\left(a-a^{\prime}\right)(c+a b) \mid a(a+1)+a^{\prime} c / a}(V(n))^{1-\frac{1}{a+1}}(W(n))^{1-\frac{a^{\prime}}{a}}\right)^{1-\frac{n^{\prime}}{a}}(W(n))^{\frac{a^{\prime}}{a}}\right) \\
& =o\left(n^{\left(\left(1-a^{\prime}\right) b+\left(a^{\prime}+1\right) c\right)((\tau+1)}(V(n))^{1-\frac{n^{\prime}+1}{a+1}}(W(n))^{\frac{\gamma^{\prime}+1}{a+1}}\right),
\end{aligned}
$$

for $0<a^{\prime}<a$, by (2.12) and (2.14).
The rest of the proof is analogous to that of Lemma 7.
3. Proof of the Theorem. By lemma 1, it is sufficient to prove that the series $\sum a_{n}$ is $J_{\mu-\frac{1}{2}}$ summable to 0 , where $\mu=\alpha(\beta+1) /(\gamma+\alpha)$.

First we shall prove that

$$
\begin{equation*}
\sum_{\nu=n}^{\infty} \frac{\left|a_{\nu}\right|}{\nu}=O\left((\log n)^{\alpha} / n\right) . \tag{3.1}
\end{equation*}
$$

Under the assumption (1.5)

$$
\left|a_{n}\right|-a_{n}<2 K \frac{(\log n)^{\alpha}}{n}
$$

thus we have

$$
\sum_{\nu=n}^{2 n}\left(\left|a_{\nu}\right|-a_{\nu}\right)=O\left\{(\log n)^{\alpha}\right\}
$$

On the other hand, since we may put in lemma $2 V(n)=n^{e}(\log n)^{\alpha}$ and $W(n)=n^{\epsilon} /(\log n)^{\gamma}$, where ε is any positive number, by (1.5) and (1.6),

$$
\begin{equation*}
S_{n}^{i}=o\left(n^{h}(\log n)^{\{(\beta-h) \alpha-(h+1) \gamma\} /(\beta+1)}\right) . \quad \text { for } h=0,1,2, \ldots . k-1 . \tag{3.2}
\end{equation*}
$$

Especially,

$$
S_{n}^{0}=s_{n}=o\left\{(\log n)^{(\beta \alpha+\gamma) /(\beta+1)}\right\}=o\left((\log n)^{\alpha}\right)
$$

for

$$
\alpha-(\beta \alpha+\gamma) /(\beta+1)=(\alpha+\gamma) /(\beta+1)>0
$$

Thus, we have

$$
\sum_{\nu=n}^{: n}\left|a_{\nu}\right|=\sum_{\nu=n}^{2 n}\left(\left|a_{\nu}\right|-a_{\nu}\right)+s_{2 n}-s_{n-1}=O\left((\log n)^{\alpha}\right)
$$

Hence

$$
\begin{aligned}
& \sum_{\nu=n}^{2 n} \nu^{-1}\left|a_{\nu}\right| \leqq n^{-1} \sum_{\nu=n}^{2 n}\left|a_{\nu}\right|=O\left\{(\log n)^{\alpha} / n\right\} \\
& \sum_{\nu=2 k}^{2^{k+1}-1} \nu^{-1}\left|a_{\nu}\right|=O\left\{\left(\log 2^{k}\right)^{\alpha} / 2^{k}\right\}
\end{aligned}
$$

and

$$
\sum_{\nu=1}^{2^{l}} \nu^{-1}\left|a_{\nu}\right|=O\left\{\sum_{k=0}^{\prime} \frac{\left(\log 2^{k}\right)^{x}}{2^{k}}\right\}=O(1)
$$

Consequently

$$
\begin{aligned}
\sum_{\nu=n}^{\infty} \nu^{-1}\left|a_{\nu}\right| & =\sum_{k=0}^{\infty} \sum_{n \cdot 2 k}^{n \cdot 2^{k+1}-1} \nu^{-1}\left|a_{\nu}\right|=O\left\{\sum_{k=0}^{\infty} \frac{\left(\log n 2^{k}\right)^{\alpha}}{n \cdot 2^{k}}\right\} \\
& =O\left\{\frac{(\log n)^{\alpha}}{n} \sum_{k=0}^{\infty} \frac{\left(\log 2^{k}\right)^{\alpha}}{2^{k}}\right\}=O\left\{(\log n)^{\alpha} / n\right\}
\end{aligned}
$$

which is the desired inequality (3.1).
Let

$$
\begin{equation*}
\psi_{\mu}(t)=\sum_{n=0}^{\infty} a_{n} \alpha_{\mu-\frac{1}{2}}(n t)=\left(\sum_{n=0}^{\nu}+\sum_{n=\nu+1}^{\infty}\right) a_{n} \alpha_{\mu-\frac{1}{2}}(n t)=\psi_{1}(t)+\psi_{2}(t) \tag{3.3}
\end{equation*}
$$

say, where ν is to be chosen presently.
Using the inequality (3.1)

$$
\begin{equation*}
\psi_{22}(t)=O\left\{\sum_{n=\nu+1}^{\infty} n^{-1}\left|a_{n}\right|(n t)^{-\mu} n\right\}=O\left(t^{-\mu} \nu^{1-\mu} \nu^{-1}(\log \nu)^{\alpha}\right) \tag{3.4}
\end{equation*}
$$

This shows that the series $\sum_{n=0}^{\infty} a_{\imath} \alpha_{\mu-\frac{1}{2}}(n t)$ converges for fixed $t>0$.
For a given positive number C, we put

$$
\begin{equation*}
\nu=\rho(t)=\left[C\left(\log \frac{1}{t}\right)^{\alpha / \mu} t^{-1}\right] \tag{3.5}
\end{equation*}
$$

Then from (3.4), we obtain

$$
\psi_{2}(t)=O\left\{C^{-\mu}\left(\log \frac{1}{t}\right)^{-\alpha}\left(\log \frac{C\left(\log \frac{1}{t}\right)^{\alpha / \mu}}{t}\right)^{\alpha}\right\}=O\left(C^{-\mu}\right)
$$

Thus if we take C sufficiently large, we get
$\psi_{2}(t)=o(1)$
as $t \rightarrow 0$.
Now there is an integer $k \geqq 1$ such that $k-1<\beta \leqq k$. We suppose that $k-1<\beta<k$, for the case $\beta=k$ can be easily deduced by the following argument.

Now

$$
\begin{equation*}
S_{n}^{k}=\sum_{\nu=0}^{n} A_{n-\nu}^{k-\beta-1} S_{\nu}^{3}=o\left\{\sum_{\nu=2}^{n}(n-\nu)^{k-\rho-1} \nu^{\alpha}(\log \nu)^{-\gamma}\right\}=o\left\{n^{k}(\log n)^{-\gamma}\right\} \tag{3.7}
\end{equation*}
$$

Concerning $\psi_{1}(t)$, by Abel's lemma on partial summation k-times we have

$$
\begin{aligned}
\psi_{1}(t) & =\sum_{n=0}^{\nu} a_{n} \alpha_{\mu-\frac{1}{2}}(n t)=\sum_{n=0}^{\nu-(k+1)} S_{n}^{k} \Delta^{k+1} \alpha_{\mu-\frac{1}{2}}(n t)+\sum_{n=0}^{k-1} S_{\nu-n}^{i} \Delta^{h} \alpha_{\mu-\frac{1}{2}}(\overline{\nu-h} t) \\
& \left.+S_{\nu-k}^{b} \Delta^{k} \alpha_{\mu-\frac{1}{2}} \overline{-} \overline{\nu-k} t\right)=\psi_{3}(t)+\psi_{1}(t)+\psi_{5}(t), \quad \text { say. }
\end{aligned}
$$

Using (2.3), (3.5) and (3.7), we have

$$
\begin{array}{rlr}
\psi_{5}(t) & =S_{v-k}^{k} \Delta^{k} \alpha_{\mu-2_{2}^{2}}(\overline{\nu-k} t)=o\left\{\nu^{k}(\log \nu)^{-\gamma} t^{k-\mu} \nu^{-\mu}\right\} \\
& =o\left\{t^{-(k-\mu)} t^{k-\mu}\left(\log \frac{1}{t}\right)^{\alpha(k-\mu) / \mu}\left(\log \frac{1}{t}\right)^{-\gamma}\right\} & \\
& =o\left\{\left(\log \frac{1}{t}\right)^{\alpha(k-\beta-1)^{\prime} \mu}\right\}=o(1) & \text { as } t \rightarrow 0 \tag{3.8}
\end{array}
$$

Also, by (2.3), (3.5) and (3.2)

$$
\begin{aligned}
& \left.S_{\nu-h}^{h} \Delta^{h} \alpha_{\mu-\frac{1}{2}} \overline{(\nu-h} t\right)=o\left\{\nu^{h-\mu}(\log \nu)^{[\rho \alpha-\gamma-h(\alpha+\gamma)\} /(\beta+1)} t^{h-\mu}\right\} \\
& =o\left\{t^{h-\mu} t^{-(h-\mu)}\left(\log \frac{1}{t}\right)^{\left\{\left(\gamma-\mu^{\prime} \alpha \mu+\left(\varepsilon^{\prime} \alpha-\gamma-1\right)(\alpha+\gamma)\right) /(\beta+1)\right\}}\right\} .
\end{aligned}
$$

Since the exponent of $\log \frac{1}{t}$ is
$(h-\mu) \frac{\alpha}{\mu}+\frac{\beta \alpha-\gamma-h(\alpha+\gamma)}{\beta+1}=\frac{h \alpha}{\mu}-\alpha+\frac{\beta \alpha-\underline{\gamma}}{\beta+1}-\frac{\alpha}{\mu} h=-\frac{\alpha+\gamma}{\beta+1}<0$,
we have

$$
\begin{equation*}
\psi_{4}(t)=o(1) \tag{3.9}
\end{equation*}
$$

$$
\text { as } t \rightarrow 0 \text {. }
$$

Concerning $\psi_{3}(t)$, we split up four parts

$$
\begin{gathered}
\psi_{3}(t)=\sum_{n=0}^{\nu-(k+1)} \Delta^{k+1} \alpha_{\mu-\frac{1}{2}}(n t) \sum_{m=0}^{n} A_{n-m}^{k-\beta-1} S_{m}^{\beta}=\sum_{m=0}^{\nu-(k+1)} S_{m}^{3} \sum_{n=m}^{\nu-(k+1)} A_{n-m}^{k-\beta-1} \Delta^{k+1} \alpha_{\mu-\frac{1}{2}}(n t) \\
=\sum_{m=0}^{[1 / t)} \sum_{n=m}^{m+[1 / t]}+\sum_{m=[1 / t]+1}^{\nu-(k+1)} \sum_{n=m}^{m+[1 / t]}+\sum_{m=0}^{\nu-(k+1)-[1 / t]-1} \sum_{n=m+[1 / t]+1}^{\nu-(k+1)}-\sum_{m=\nu-(k+1)-[1 / t]}^{\nu-(k+1)} \sum_{n=\nu-(k+1)+1}^{m+[1 / t]} \\
(3.10)
\end{gathered}
$$

From (1.6) and (2.2), we get

$$
\psi_{6}(t)=\sum_{m=0}^{[1 / t]} S_{m}^{s} \sum_{n=m}^{m+[1 / t]} A_{n-m}^{k-\beta-1} \Delta^{k+1} \alpha_{\mu-\frac{1}{2}}(n t)
$$

$$
\begin{aligned}
& =O\left\{\sum_{m=0}^{[1 / t]} S_{m}^{3} \sum_{n=m}^{m+[1 / t]}(n-m)^{k-\beta-1} t^{k+1}\right\}=o\left\{t^{k+1} \sum_{m=2}^{[1 / t]} m^{\beta}(\log m)^{-\gamma} t^{-(k-\beta)}\right\} \\
& =o\left(\left(\log \frac{1}{t}\right)^{-\gamma}\right)=o(1) \quad \text { as } t \rightarrow 0
\end{aligned}
$$

From (1.6) and (2.3), we also get

$$
\begin{aligned}
\psi_{7}(t) & =\sum_{m=[1 / t]+1}^{\nu-(k+1)} S_{m}^{3} \sum_{n=m}^{m+[1 / t]} A_{m-n}^{k-\beta-1} \alpha_{\mu-\frac{1}{2}}(n t) \\
& =o\left\{\sum_{m=[1}^{\nu-(k+1)} m^{3}(\log m)^{-\gamma} \sum_{n=m}^{\left.m+[1 /]^{\prime}\right]}(n-m)^{k-\beta-1} t^{k+1-\mu} n^{-\mu}\right\} \\
& =o\left\{\sum_{m=[1 / t]+1}^{\nu-(k+1)} m^{3}(\log m)^{-\gamma} m^{-\mu} t^{k+1-\mu} \sum_{n=m}^{m+[1 / t]}(n-m)^{k-\beta-1}\right\} \\
& =o\left\{t^{l+1-\mu} \sum_{m=[1 / t]+1}^{\nu-(k+1)} m^{3-\mu}(\log m)^{-\gamma} t^{-(k-\beta)}\right\}=o\left\{t^{\left.\beta+1-\mu(\log \nu)^{-\gamma} \nu^{\beta+1-\mu}\right\}}\right.
\end{aligned}
$$

for $\beta+1-\mu=\frac{\gamma(\beta+1)}{\gamma+\delta}>0$. Hence
(3.12) $\quad \psi_{7}(t)=o\left\{t^{\beta+1-\mu} t^{-(3+1-\mu)}\left(\log \frac{1}{t}\right)^{\frac{\alpha}{\mu}(\beta+1-\mu)-\gamma}\right\}=o(1) \quad$ as $t \rightarrow 0$,
by (3.5), fo: $\frac{\alpha}{\mu}(\beta+1-\mu)-\gamma=0$.
For the estimation of $\psi_{8}(t)$, if we use partial summation in the inner series, then

$$
\begin{aligned}
& \psi_{8}(t)=\sum_{m=0}^{\nu-(k+1)-\left[1 / t t_{i}-1\right.} S_{m}^{3} \sum_{n=m+[1 /]+1}^{\nu-(k+1)} A_{n-m}^{k-\beta-1} \Delta^{k+1} \alpha_{\mu-\frac{1}{2}}(n t) \\
& =\sum_{m=0}^{v-(k+2)-\{1 / t]} S_{m}^{3} \sum_{n=m+[1 / t]+2}^{\nu-(k+1)} A_{\imath-m}^{k-\beta-2} \Delta^{k} \alpha_{\mu-\frac{1}{2}}(n t) \\
& +\sum_{m=0}^{\nu-(k+2)-[1 / t]} S_{m}^{\beta} A_{[1 / 1]+1}^{k-\beta-1} \Delta^{k} \alpha_{\mu-\frac{1}{2}}\left(\overline{m+[t} \overline{\left.t^{-1}\right]+1} t\right) \\
& -\sum_{m=0}^{\nu-(k+2)-[1 / t]} S_{m}^{3} A_{\nu-k-1-m}^{k-\beta-1} \Delta^{k} \alpha_{\mu-\frac{1}{2}}(\overline{\nu-k} t) \\
& =\psi_{8}^{\prime}(t)+\psi_{8}^{\prime \prime}(t)+\psi_{8}^{\prime \prime \prime}(t), \text { say } . \\
& \psi_{8}^{\prime}(t)=O\left\{\sum_{m=0}^{\left.\nu-(k+2)-i l^{\prime \prime}\right]} S_{m}^{3} \sum_{n=m+[1 / t]+2}^{\nu-(k+1)}(n-m)^{k-\beta-2} n^{-\mu} t^{k-\mu}\right\} \\
& =o\left\{t^{k-\mu} \sum_{m=2}^{\nu-(k+2)-\left[1^{\prime} t\right]} m^{9}(\log m)^{-\gamma} m^{-\mu} t^{-(k-9-1)}\right\} \\
& =o\left\{\left(\log \frac{1}{t}\right)^{\alpha} \mu^{-(\rho+1-\mu)-\gamma}\right\}=o(1) \\
& \text { as } t \rightarrow 0 \text {. }
\end{aligned}
$$

$$
\psi_{8}^{\prime \prime}(t)=o\left\{\sum_{m=2}^{\left.\nu-(k+2)--i 1 /{ }^{\prime}\right]} m^{\beta}(\log m)^{-\gamma} t^{-(k-\beta-1)}\left(m+\left[t^{-1}\right]+1\right)^{-\mu} t^{k-\mu}\right\}
$$

$$
=o\left\{t^{\beta+1-\mu}(\log \nu)^{-\gamma} \nu^{\beta+1-\mu}\right\}
$$

$$
\begin{equation*}
=o\left\{\left(\log \frac{1}{t}\right)^{\frac{\alpha}{\mu}(\beta+1-\mu)-\gamma}\right\}=o(1) \quad \text { as } t \rightarrow 0 . \tag{3.15}
\end{equation*}
$$

$$
\psi_{8}^{\prime \prime \prime}(t)=o\left\{\sum_{m=2}^{\nu-(k+2)-[1 / t]} m^{\beta}(\log m)^{-\gamma}(\nu-k-1-m)^{k-\beta-1}(\nu-k)^{-\mu} t^{k-\mu}\right\}
$$

$$
=o\left\{t^{k-\mu} \nu^{-\mu+k-\beta-1}(\log \nu)^{-\gamma} \nu^{\rho+1}\right\}
$$

$$
\begin{equation*}
=o\left\{\left(\log \frac{1}{t}\right)^{\frac{\alpha}{\mu}(k-\mu)-\gamma}\right\}=o(1) \tag{3.16}
\end{equation*}
$$

as $t \rightarrow 0$
Thus, from (3.14), (3.15), (3.16) and (3.13)
(3.17)

$$
\psi_{8}(t)=o(1)
$$

as $t \rightarrow 0$.
Moreover, we get

$$
\begin{array}{rlr}
\psi_{9}(t) & =-\sum_{m=\nu-(k+1)-[1 / t]}^{\nu-k-1} S_{m}^{3} \sum_{n=\nu-k}^{m+[1 / t]} A_{n-m}^{k-\beta-1} \Delta^{k+1} \alpha_{\mu-\frac{1}{2}}(n t) \\
& =O\left\{\sum_{m=\nu-k-1-[1 / t]}^{\nu-k-1} S_{m}^{3} \sum_{n=\nu-k}^{m+\left[1 / l^{\prime}\right]}(n-m)^{k-\beta-1} n^{-\mu} t^{k+1-\mu}\right\} \\
& =o\left\{t^{k+1-\mu} \sum_{n=\nu-k-k-1}^{\nu-k ; t]} m^{\beta}(\log m)^{-\gamma} \nu^{-\mu} t^{-(k-\beta)}\right\} & \\
& =o\left\{t^{\left.\beta+1-\mu(\log \nu \nu)^{-\gamma} \nu^{\beta+1-\mu}\right\}}\right. \\
& =o\left\{\left(\log \frac{1}{t}\right)^{\frac{\alpha}{\mu}(\beta+1-\mu)-\gamma}\right\}=o(1) & \text { as } t \rightarrow 0 .
\end{array}
$$

Summing up (3.10), (3.11), (3.12), (3.17) and (3.18), we obtain

$$
\begin{equation*}
\psi_{3}(t)=o(1) \tag{3.19}
\end{equation*}
$$

as $t \rightarrow 0$.
Thus, from (3.1), (3.6), (3.8), (3.9) and (3.19), we have $\psi(t)=o(1)$
as $t \rightarrow 0$,
which is the required.

References

[1] L. S. BOSANQUET, A mean value theorem, Journ. London Math. Soc., 16(1941), 146-148.
[2] L. S. BOSANQUET, Note on convexity theorems, Journ. London Math. Soc., 18(1943), 239-248.
[3] K. Chandrasekharan and O. Szász, On Bessel summation, Amer. Journ. Math., 70(1948), 709-729.
[4] A. L. Dixson and W.L. Ferrer, On Cesàro sums, Journ. London Math. Soc., 7(1932), 87-93.
[5] S. Jzumi and G. Sunouchi, Theorems concerning Cesàro summability, Tôhoku Math. Journ., 1(1951), 313-326.
[6] K. Kanno, On the Cesàro summability of Fourier series(II), Tôhoku Math. Journ., 7(1955), 265-278.
[7] C. T. Loo, Two Tauberian theorems in the theory of Fourier series, Trans. Arner. Math. Soc., 56(1944), 508-518.
[8] G. Sunouchi, Cesàro summability of Fourier series, Tôhoku Math. Journ., 5 (1953), 198-210.

Department of Mathematics, Faculty of Liberal Arts and Science, Yamagata University.

