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1. Introduction. E.Hopf [6] has established a pointwise ergodic theorem
n-1
which asserts the convergence almost everywhere of averages —“2 T
J=0
where T is an operator defined by a Markov process with an invariant
distribution and where f is an integrable function. Recently this theorem
has been extended to one for more general operator by N.Dunford and

J. T.Schwartz [4]. We shall here observe the convergence almost everywhere
n-1 n-1

of averages 2 Tf / 2 Tig where T is a linear positive operator with some
J=0 o j=0

restrictions and where f and ¢ are integrable and ¢ is positive almost

everywhere.

2. Notations and preliminaries. Let (X, %, w) be a finite measure
space such that X is a set and § a o-field consisting of subsets of X and x a
non-negative countably additive set function defined on & and u(X) < --oo.

Throughout this papsr, “measurable”, “almost all (almost everywhere)”
and “integrable” mean “-measurable”, “u-almost all (u-almost everywhere)”
and “u-integrable”, respectively, and every function under consideration is
real-valued.

We denote by L,;(A) the Lebesgue space of measurable integrable funct-
ions f defined on A € &, the norm being

s = f %) (i),

and by L.(A) the Lebesgue space of measurable essentially bounded functions
f defined on A € &, the norm being

fle = ess sup (A=)l

If A=X, we drop “X” in L)(X) and L.(X) and write Z;, and L.

Let f and g be measurable and A € . If f(x) = g(x) for almost all x € A,
we write “/=g in A”. Further, ‘/ >g in A” and /=g in A” are defined
in like manner. If A = X, we drop the term “in X”.

Let T be a linear operator of L, into itself where p =1lor c. If T isa
continuous operator, the operator norm of 7' is defined as usual and denoted
by |T|». The operator T is called positive provided that Tf =0 for every
fe L, with f=0. A set A€ ¥ is called T-invariant provided that

T(f-eq) =Tf in A
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for every f € L,, where e, denotes the charactaristic function of A.

For a set A we consider now the contraction of T related to A. The
contraction T4 is defined by

Taf = esTif+e4)

for f € L,. Then, for every T-invariant set A, it is a simple matter to show
that

T'f =T in A

for every f € L, and for 7=10,1,2,.... This means that every T-invariant

set can be considered as a new whole space as far as the operator T is
concerned.

We denote by Tf(x) a value of Tf at a place x € X and by T the sum
n-1
of opzrators 2 T, that is,
Jj=0
n-1
Tof = 2 TS
=0
for every f € L,.
We shall then state the maximal ergodic theorem which plays a fun-
damental role to prove the ergodic theorem.

THEOREM 2.1. Let T be a linear positive operator of L, into itself with

| T\ =1. For any funrctions f< L, and g € L, with g >0 and for any real
numbers o and 3, let

Tuf(x)
*, — . >
A¥a) = {x,] Snlig Tog(x) =

1
S

L Tatm
A*(B) - {xiél'r?(fm Tng(x) = B}

Then

a f (%) wldx) < f f(x) p(dx),
A¥ (@) A¥(a)

2.1)

B f 9(x) p(@x) = f S(x) w(dx).
Ax(B) A%(B)

If a set A is T-invariant, the sets A*(a) and A4(B) win (2.1) are replaced by
the sets AN A*(«) and A A«(B), respectively.

The assumption for T in Theorem 2.1 is somewhat weaker than that in
the maximal ergodic theorem in [6]. The first part of Theorem 2.1 is im-
mediately deduced from Lemma 3.2 in [4] which is a slight generalisation of
Theorem 7.1 in [6]V. The second part is easily seen from the fact that every

1) See Appendix.
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T-invariant set can be considered as a whole space as far as T is concerned.
We shall next state the decomposition theorem.

LEMMA 2.2. Let T be a linear positive operator of L, into itself with
|T|.=1. Then the space X splits into two disjoint measurable sets C and D
with the properties :

2.2) 2 Tf=+0inC  for every f € L, with f>0;
Jj=0
(2.3) S Tf< 40 in D for every f € L, with f =0,

i=0
Further the set D is T-invariant.

The sets C and D are called the conservative and dissipative part of X,
respectively. The assumption for T in Lemma 2.2 is somewhat weaker than
that in [6]. The decomposition of X into C and D is proved from Theorem
2.1 by the same way as in the proof of Theorem 8.1 in [6]. Further we can
prove, by the same way as in the proof of Lemma 8.2 in [6], that 7/ = 0 in
D for every f&€ L, such that f=0in D. Hence T(f—fep)= 0 in D for
every f € L, where ep denotes the characteristic function of D, so that D is
a T-invariant set.

3. Ergodic theorem. Let T be an operator with the properties :

@) T is a linear positive operator of L, into itself;
(i) [ThL=1;
(iii) T1>0.
If we set here
_ 1
Ur= 1

for every f € L,, then U is a linear positive operator such that U maps the
functions in L, to the measurable functions and maps L. into itself and
Ul=1.

Further, assume that U satisfies the properties:
(iv) Uf=f for every f € L.. such that Uf =f;
(v) U(f-T'1) = UfUT’1 for every f € L. and 7=0,1,2, ....

The assumptions (iv) and (v) for T are artificial in view of operator
theory, but they are of some significance in connection to a Markov process
and to a measurable point transformation. Hopf [6] formulated the ergodic
theorem for a Markov process with an invariant distribution wx in terms of
the operator 7° with the properties:

3.1) T is a linear positive operator of L, into itself;

3.2) f TA(x) u(dx) = f S(x) u(dx) for every f € L;;
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(3.3) T1=1.

Then (i), (ii) and (iii) follow from (3.1), (3.2) and (3. 3), respectively. Further,
U = T by virtue of (3.3), so that (iv) and (v) are shown by (3.2) and (3.3),
respectively.

We shall next consider the case of a measurable incompressible point
transformation. Let @ be a single-valued point transformation of X into itself.
The transformation @ is called measurable if @ and its inverse @~! send the
sets in ¢ to the sets in {§ and the sets of measure zero to the sets of measure
zero. Then the set function w(pA’) of a variable A’ is a measure as long
as A€~ = {@p'A; A € ¥}, and w(@A’) is absolutely continuous with respect
to p on @~1%y and conversely. Hence by the Radon-Nikodym theorem there
exists a @ 1¥-measurable function w > 0 such that

plpA’) = f w(x)p (dx)

~

for every A’ € ¢1§. Then it is a simple matter to show that

(3.4) f Apxw(x) w(dx) = f S%) pldx)

for every f € L,. Now we define the operator T induced by @ upon setting
Tfx) = fipxiw(x)

for every f€ L;. Then T1=w >0, and Uf(x) = fipx) for every f € L;, and
further U(f-g) = Uf- Uy for every f& L. and every g € L,. From this and
(3.4) it is shown that T satisfies (i), (ii), (iii) and (v). Further, let @ be now
incompressible, that is, if A€ and @ 'ADA then w@ A — A)=0 or,
equivalently, if A € & and ANT"A =0 for n = =1, =2, .... then u(A) = 0.
Then we shall prove that (iv) holds. Suppose now that Uf=/f. Then, for
every real «, it holds that @~{x; f(x) > a} = {x; Uflx) > a} D {x; f(x) > a}.
Hence, by the incompressibility of ¢, it follows that {x; Uf(x) > a} = {x; f(x)
> a} execept a set of measure zero. From this we can easily show that
Uf =f. Thus T satisfies (iv).

Under these considerations we state an ergodic theorem which contains
the Hopf ergodic theorem for a Markov process with an invariant distribution
and the Hurewicz ergodic theorem without invariant measure [2] (cf. [7], [5],

[9D.

TueoReM 3.1. Let T be an operator with the properties (i) ~(v). Then,
Jor every f &€ L, and every g € L, with g >0, the sequence of averages
Tufl%)
Twy(x)
converges for almost all x&€ X. For the limit function h it holds that

(3.5) R(x)g(x) u(dx) = | f(x) u(dx)
/ /
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for every T-invariant subset A of C where C denotes the conservative part of
X with respect to T.»

4. Proof of Theorem 83.1. Throughout this section let T° be an
operator with the properties in Theorem 3.1, that is, 7 satisfies (i) ~ (v).
From the definition (in Lemma 2.2) of the dissipative part D of X it

follows that > 77|f] < +co in D for every f € L, and that > T’y < 4o in
J=0 j=0
D for every g € L, with g >0. Hence the sequence of averages Tnf|Tng
converges almost everywhere in D. The conservative part C is the vital part
as far as the ergodic theory is concerned, and the essential part of the
proof of Theorem 3.1 is to prove the convergence in C of averages Tuf/Tng
and to prove (3.5).
We note a fact which will be used often in the sequel without references.
“If a sequence of functions fn € L, is monotone increasing or decreasing
and tends to a function f €L, almost everywhere, then lilm Tf(x) = Tf(x)

almost everywhere and, a fortiori, lim Ufu(x) = Uf(x) almost everywhere.”
n

LEmMA 4.1. A set A is T-invariant if and only if Ue. = e..

Proor. Assume that Ues = e4. In order to show the T-invariance of A
it suffices to prove that Tf = T(f-e4) in A for every f with 0 =<f=<1. Since
0<f—fes=<e, where A°¢ denotes the complement of A, 0 S U(f —fees) <
Uese =Ul —Ues=1—e4=eq, so that Uf—f-es)=0in A. Hence Tf =
T(f+-es) in A.

ext assume that A is T-invariant. Then Te = T1 in A. Hence Ue4
=1in A, so that Ue;=e,. Thus, by the property (iv) of T, Ue. = e..
g.e.d.

It is easily seen, directly from the definition of T-invariance or by use
of Lemma 4.1, that the intersection, the union, the complement and the limit
of T-invariant sets are all T-invariant. This result will be used in the sequel
without references.

LeEMmMA 4.2. The conservative part C of X is a T-invariant set.
Proor. By Lemma 2.2, the dissipative part D is a T-invariant set.
Since C is the complement of D, C is T-invariant. g.e.d.

Hence the conservative part C can be considered as a whole space.
Especially we note here that the properties (i) ~ (v) remain true even if X
T, U, L, and L.. in the descriptions of the properties are replaced by C, T,
Us, Li(C) and L..(C), respectively. Then such properties contracted to C will

2) It will be shown in Lemma 4.2 that Cis a T:invariant set. We note here
that if 7" is the operator induced by a measurable, incompressible, one-to-one point
transformation then C=X except a set of meaure zero [7], [5], but in general it is
not true [10].
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be referred by the same numbers (i)~ (v), and T and U will be used instead
of T¢ and Uy without confusion.

A function f &€ L.(C) is called U-invariant provided that Uf =fin C.
Then we may state the analogue to Theorem 9.1 in [6].

LeMMA 4.3. If a function h € L(C) is U-invariant, then, for every real
a, {x € C; h(x) > a} is T-invariant.®

Proor. If f€ L.(C)is U-invariant, |f| = |Uf| £ U|f| in C. Then, by
(iv), If] = Ulf] in C and hence f* = Uf* in C¥.

Suppose now that # € L.(C) is U-invariant. Let A = {x € C; h(x) > a}.
[#(k — «)]* and [#(h — a) —1]* are U-invariant, and the sequence {[n(h(x)
— a)]* — [n(h(x) — a) — 1]*} is monotone increasing and tends Then the
functions to e«(x) for almost all x € C as n— + o, so that Ues = e in C.
Hence, by Lemma 4.1, the set A is T-invariant. g.e.d.

LEMMA 4.4 For every f &€ L.(C) and for every real o and (3, the sets

{xé C; Iimnsup ;”:ﬂl(jg > a}and { x€ C; lim ninf ?:{g; < B}are T-invariant.

Proor. If we set

Twf(x) . Tuf(%)
Tl(xy 9= S8R Ty

for f € L.(C), then he L.(C) and k. € L.(C), so that Uk and Uh.,’s are well
defined. By repeated uses of (v) and by (iii) we have

h(x) = lim sup

=12 ....

n-1
ury
b > U(;T,.f > _ UT _ Ef
"= Tn]- UTn]. T n-1
> UT1
j=0
n~1
T1.UTY
. § _ Tn+],f _—f in C
T T Tanl—1 '
> T1-UT1
Jj=0

Since 7Za(x) is monotone decreasing and tends to &(x) for almost all x € C

and > 71 = +co in C, it follows that

J=0
Uh(x) = lim Uhu(x) = lim sup %—1’2{)"{(1"—)
n n n+1 e
= lim sup %:]1(82 =hx inC.

3) The converse of Lemma 4.3 is also valid, that is, if every {zx€C; h(x)>«}
is T*invariant, 2 is a U-invariant function. However this fact is not used in this paper.
4) The symbol f+ denotes the positive part of f, that is, f+=max (f,0).
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Hence, by the property (iv), % is a U-invariant function, so that, for every
real a, {x € C; h(x) > a} is T-invariant by virtue of Lemma 4.3.
Twf(x)

Since {xe C; lim ”inf T.100 < ,8} {x € C; lim sup T";, I(J;))(x) >(— B)},

the T-invariance of{ x € C; lim inf ;"{g)) < ,8} follows from the fact proved

above. q.e.d

It is convenient in the sequel to prove here Theorem 3.1 assuming the

T-invariance of sets {x € C; lim sup T"j}réz)) > a} and { xe C; hm inf ;"f({’g

<s)
LEMMA 4.5. Let f€ L(C), g € L(C) and g >0 in C. Assume that, for

every real a and B, the setls {x € C; limsup Tfx) > a} and { x € C; liminf

T'ay(x)
g:';(&)) < /3} are T-invariant. Then the sequence of averages Tuf(x)]Tng(x)

converges for almost all x € C. For the limit function h it holds that

4.1) f M x)g(x) p(dx) = f S(x) u(@x)
4 A

Jor every T-invariant subset A of C.

Proor. For every real « and 8 with ¢ > 3 we set

Ay = {xé C; hmsup ;% >a>B> “rr},inf 5258}’

then every Aag is T-invariant. Hence we can take Aqp as a T-invariant set

in Theorem 2.1 and AgsN\A*() = Aup, Aas\Ax(B) = Aap, so that by Theo-
rem 2.1 we obtain that

a f g(%) w(dx) = f flx) pdx) = B f g(x) p(dx).
dag

Agp Aag

Since a > G, f g(%) w(dx) = 0, and then since g >0, u(Aaup) =
4gg
On the other hand we set

Twf(x)
A(+ ) = {" € Ciéi‘iﬁTn];((x) = +°°}'

Then, for every positive &, A(+ )< CNA*«), so that by Theorem 2.1
we obtain that

f 9(%) p(dx) < f 9(%) pldx) = — f (%) ldx) = — f 1/1)] p(d).

A(+e0) cnAaX* (@) cn4aX*(a)
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Hence we have f 9(x) w(dx) = 0 upon letting tend to + oo, and hence
A(+e0)
wA(+ o)) =0. Similarly we obtain w(A( — o)) = 0 where

_ Tnf(%) _
A(-w)={zecC; dnt 709 ~col.

Now let B denote the set where {Twf(x)/Tng(x)} diverges. Then
BcUA,,ﬂUA( + o) U A( — o).

a> B
@, B:rational
Since Aap, A(+ o) and A( — o) are all of measure zero, we have u(B) =0,
so that the sequence {Tnfix)/Trg(x)} converges for almost all x € C.

Let 7 be the limit function of the sequence {Twf(x)/Tng(x)} and A a T-
invariant subset of C. If we set

Am={x€A—<h(x)<k+1}, —nt S k< nl

then every Ay is a T-invariant szt and Ax N A*({%) = A, AmﬂA*(k j; L )

= Ai. Thus by Theorem 2.1 we have that

n2-1

fm - 9(x) pldx) =

k:-—n- "

f ) pld) < f kLo udn.

k_—n2 k— n?Y
&
n2-1

Since A,’s are mutually disjoint and U Ar— A as n— + o,

k=-n2
[ s wan— [ wan) | = - L[ swuans ! [oe wan
u4k uA,c uA,c c
Thus we get (4.1) upon letting » tend to + oo. q.e.d.

Let M(A) denote the space consisting of all measurable functions f/ defined
on the set A € &%, the quasi-norm being

o = f Vol ),

I+ fml "
LEmMA 4.6. Let every Sp (n=1,2,....) be a linear continuous operator
of Li(A) into M(A). Assume that
4.2) ] <sz1(p |Swf(%)| < +o0 in A for every f € Li(A);

(4.3) for every f in a dense set of L,(A), the sequence {S.f(x)} converges for
almost all x € A.

Then, for every f € Li(A), the sequence {S.f(x)} converges for almost all x € A.
This lemma is due to S.Banach [1] (cf.[8], [3]).
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LeEmMA 4.7. For every f € L(C) the sequence of averages Tnf(x)]Tnl(x)

converges for almost all x € C. If f€ L.(C), the limit function h satisfies
that

f h(%) u(dx) = f f(x) u(dx).
4 [+

If f€ L(C) and f >0 in C, the limit function is also >0 in C.

Proor. If fe L.(C), it follows from Lemma 4.4 that, for every real a

Tfx) s Tuf(x)
Tol(2) > a} and {x € C; hmnmf Tolx) < ,G},

are T-invariant. Hence, by Lemma 4.5, the szquence {Twf(x)/Txl(x)} con-
verges for almost all x € C and the limit function % satisfies that

and B, the sets {x € C; limsup
n

fh.(x),u(dx) = fﬁx)p,(dx).
g

0
Let Sp(n = 1,2, ....) be an operator defined by

S = Tt

for £ € L)(C). Since |Saflu < |Suf|1 < nlf]: for every f € Li(C), Sy is a linear
continuous operator of L, (C) into M(C). It was already proved that, for
every f € L.(C), {Safix)} converges for almost all x € C. Here we note that
L.(C) is dense in L;(C). Further, as was shown in the proof of Lemma 4.5,
it holds that, for every f & ILI(C),l SS[ILJ? |Suf(%)] < +o0 in C. Thus Si’s satisfy

(4.2) and (4.3) in Lemma 4.6. Hencz by Lemma 4.6 we conclude that, for
every f € L,(C), the sequence of averages S.f(x) ( = Twf(x)/Tul(x)) converges
for almost all x € C.

It remains to prove that if f &€ L,(C) and f >0 in C, the limit function %
of {Twf(x)/Twl(x)} is >0 in C. If we set

A(0) ={x € C; hix) =0},
then by Theorem 2.1 we have that

f fi%) pl(dx) = fﬂx‘)mdx) < 0-u(CNAL0)) = 0.
4(0) CnA*(o)

Since f >0 in C, u(A(0)) =0, as was to be proved. q.e.d.

From Lemma 4.7 it follows that, for every f € Li(C) and every g € L,(C}
with g >0 in C, the sequence of averages Tuf(x)/Tng(%) converges for almost

al xe C. In fact, lim L29%)

m 1 1(x) >0 in C and hence the limit

. Twf(x)
lim Tufix) _ hﬁn Thrl(x)
n Tng(x) . Tu!,@
hfln Tl(x;
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exists and is finite for almost all x € C.
Thus for the proof of Theorem 3.1 it remains only to prove (3.5).

LEMMA 4.8. Let S be the operator defined by

v T TnﬂX)
Sflx) = hnm Tl
Jor every f € Li(C). Then S is a linear positive continuous operator of L,(C)

into itself.

Proor. It is clear that S maps ZL.(C) and L,(C) into L.(C) and M(C)
respectively, and is linear and positive. By Lemma 4.7 it holds that |Sf|:
= |f], for every f &€ L.(C). Hence S, considered as an operator defined on
L.(C), has an unique extension to L;(C), denoted by §, such thatgf =5 in
C for fe€ L.(C) and S is a linear positive operator of Z;(C) into itself with
|§ll = 1. Thus, for the proof of Lemma 4.8 it suffices to prove that Sf =

§f in C for every f € L,(C).
We define Su(z =1,2,....) by
_ T
SI= Tl
for f€ L(C). Then every S, is a linear continuous operator of Z;(C) into
itself with |Sa|; <#. We note here that, a fortiori, each one of S, (n =
1,2,....) and S is a linear continuous operator of L;(C) into M(C).
Let & be an arbitrary positive number. We set
B, ={f€L(C); |Sif —SifIlu=€ for alli =k and all y =k}, k=1,2,.....

Since, for every f &€ L,(C), {S«f(x)} converges almost everywhere in C and
hence [Sif — Sf|x—0 asi,j— + oo, it follows that L,(C) = \_JBi. Further,
k=1

since every S, is a continuous operator, every B is closed in Z,(C). Hence,
by the Baire category theorem, there exists a By, of the second category
which contains a closed sphere whose center is f, € Z;(C) and radius is » >0,
that is, {f € Li(C); |f —/fol1 =7}. Thus it follows that

[(Si —Ssflus €
for i, = ky and for f € L,(C) with |f —f;|. =<7, so that
(4.4) [(Ss — S lu = 1(S: — S))(f +Sfo)lor + 1(S: — S;¥olu =26

for i,7 =k, and for f € L(C) with |[f|.<7r. If f€ L,(C) and [f|, = 7/2, we
can choose g € L.(C) such that

gl <7, 1Solf —)x<€  ISF—g)x=<€
On the other hand,
1SS — S 1u < 1(Sy — Seo)f Lo+ 1Seef — )l ae
+ 1(Se — S)glu+ |Sig —Sglu+ |Slg —N)lwy =12, .....
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Since §g = Sg in C and hence [S:g ~§glaz = |S;9 — Sg|x—0 as i— + oo and,
by (4.4), [(S;— S, x=2&, |(Si, — St)glar <26 for 7,7 =k,, we have

|Sf — Sf | < 6¢
for f € L(C) with |f], <7/2. For every f € L,(C) we can choose g € L.(C)
such that |f —g|, <7/2. Since TSg = Sy in C, we obtain that
IS — 1w < IS — 9) — ST — 9)lar+ |Sy — Sy |u =< 6¢
for every f € L,(C). Since & is arbitrary,
Sf=Sf inC
for every f € L,(C), as was to be proved.
LemMA 4.9. For every f € Li(C) and every g € L,(C) with g > 0in C and

for every real o and B, the sets {x € C; lim ;"?f%ﬁ > a} and : x€ C; lim
Tuf(x)
Toi(%) < ﬂ [ are T-invariant.

ProoF. We use the notation S defined in Lemma 4.8. Since

Twf() _ i L =) o
{xEC 11mT,.g(x) <,8}_{xeC,117rln Try(x) > ( ’8)}

and

{xec lim 2712 >a} {xec,S(f tg) (1) > 0],

it suffices to prove that, for every f & L,(C), the set {x € C; Sf(x) >0} is
T-invariant.

Let f € Li(C). If we set fu(x) =f(x) for [flx)] <» and fu(x) =0 for |f(x)]
>n, then fo€L.(C) and fu(x) tends to f(x) for almost all x € C as n — 4+ oo.
Since, by Lemma 4.8, S is a linear positive continuous operator of ZL;(C)
into itself, it is easily seen that lim Sfa(x) = Sf(x) for almost all x € C.

Thus
{x € C; Sfulx) >0} >{x € C; Sfix) >0}
as n— + oo, while every {¥ € C; Sfu(x) >0} (n =1,2, ....) is T-invariant by
virtue of Lemma 4.4. Hence {x € C; Sf(x) > o} is T-invariant. qg.e.d
Then (3.5) follows directly from Lemmas 4.9 and 4.5. Thus Theorem
3.1 is completely proved.

Appendix. We note the proof of the maximal ergodic theorem in [6].
Although the theorem is properly true, his proof contains a minor mistake.
His proof used that, in our notations,

{ ’ Tnf(x)_o} { ) Tof(%) - 0}

X; su =
lSnSN Thny(x lén?m Tag(x)

as N— + oo, but it does not necessarily hold. In this connection we sketch
the proof of Theorem 2.1. Lemma 3.2 in [4] is slightly modified as follows,
as their proof shows.
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LEMMA. Let T be a linear positive operator of L, into itself with |T|, S 1.
For every f € L, and for every positive integer N, let

E = {x; sup Tnf(x) > 0}‘
1SnsN

Then
ff(_x)p.(dx) =0.
E
Proor oF THEOREM 2.1. For every real v we set
(o Tafix) — . s
Axly) = {x,l 23& Tog(%) > fy} = {x i ésﬂuévan(f vg) (%) > 0},

N o Tnf(%)
Axtor) = {xi 380 72565 > 7}

Then, by the lemma stated above,

(%) f f%) pldx) Z v - f 9(x) plax).
AN(Y) <An()

Since Ax{y) > A.(y) as N— + o and A.(y)— A*(a) as v increases and tends
to «, we obtain the first in=quality of (2.1) from (*x). The second inequality
of (2.1) is deduced from the first inequality upon replacing f and « by —f
and — B, respectively.
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