THE MINIMUM NUMBER OF POINTS OF INFLEXION OF CLOSED CURVES IN THE PROJECTIVE PLANE

Shigeo Sasaki

(Received July 17, 1957)

1. Let us consider a smooth closed curve Γ in a projective plane $P_{2 .}$. By a point of inflexion of Γ we mean a point M of Γ such that the tangent to Γ at M is stationary. We shall prove the following theorems:

Theorem 1. Any smooth closed curve in the projective plane which is not homotopic to zero has at least a point of inflexion.

Theorem 2. Any simple smooth closed curve Γ in the projective plane which is not homotopic to zero has at least three points of inflexion.

Many theorems in the large are known for Euclidean differential geometry and Riemannian geometry and some for affine differenfial geometry too. However, it seems to the author that few theorems are known for projective differential geometry in the large. The above theorems give simple examples of theorems for projective differential geometry in the large.
2. We take a unit sphere S_{2} in Euclidean space E_{3} and consider it as the universal covering space of P_{2}. We shall denote the natural projection of S_{2} onto P_{2} by ϕ.

Take a point A on Γ and denote the points on S_{2} over A by A_{1} and A_{2}. If we draw the curve over Γ on S_{2} starting from A_{1}, then the curve Γ_{1} will end at A_{2} by the assumption that Γ is not homotopic to zero. If we draw again the curve over Γ on S_{2} starting from A_{2}, then the curve Γ_{2} will end at A_{1} and these two curves over Γ are congruent on S_{2} and lie symmetric with respect to the center of S_{3}. We shall call any closed curve such that the antipodal point of any point of the curve lies on the curve as an antipodal curve. Then the curve $\Gamma^{*}=\Gamma_{1}+\Gamma_{2}$ is a smooth antipodal curve.

Now, by a point of inflexion of a curve on S_{2} we mean a point M on the curve such that the tangent great circle to the curve at M is stationary. Then, we can easily see that any point of inflexion of the curve Γ on P_{2} corresponds to an antipodal pair of points of inflexion of the curve Γ^{*} on S_{2} as straight lines on P_{2} correspond to great circles on S_{2}. Hence, the problem turns to prove the existence of points of inflexion on antipodal curves on S_{2}.

First, let us study analytical condition for a point of inflexion. In ordinary Euclidean plane E_{2}, the condition for a point of inflexion of a curve $y=f(x)$ referred to a Cartesian coordinate system is $y^{\prime \prime}=0$. If all points of the curve are points of inflexion, then the curve must be a solution of the differential equation $y^{\prime \prime}=0$. The differential equation $y^{\prime \prime}=0$ is that of straight lines in E_{2}. In the same way, the condition for a point of inflexion of a
curve on S_{2} is given by the differential equation of geodesics on S_{y}. However, it is necessary and sufficient that the equation holds only for the point of inflexion.

We shall represent $S_{\text {: }}$ by

$$
\begin{equation*}
x=\cos u \cos v, \quad y=\sin u \cos v, \quad z=\sin v \tag{1}
\end{equation*}
$$

and the antipodal curve I^{*} on S_{2}, by periodic functions

$$
\begin{equation*}
u=u(s), v=v(s) \tag{2}
\end{equation*}
$$

of period $2 l$ where s is the arc length of Γ^{*} and $2 l$ is the length of Γ^{*}, so the values s and $s+l$ correspond to antipodal pair of points on Γ^{*}. Then the necessary and sufficient condition that a point $s=s_{0}$ on Γ^{*} is a point of inflexion is that the following relation holds good at $s=s_{0}$:

$$
\begin{equation*}
\cos v(\ddot{v} \ddot{u}-\ddot{u} \dot{v})+2 \sin v \ddot{u} \dot{v}^{2}+\sin v \cos ^{2} v \dot{u}^{3}=0 . \tag{3}
\end{equation*}
$$

The last equation multiplied by $\cos u$ is nothing but the differential equation of geodesics in Weierstrass' form. We shall remark that the geodesic curvature k_{g} of Γ^{*} is given by

$$
\begin{equation*}
k_{g}=\cos v(\ddot{u} \ddot{v}-\ddot{u} \dot{v})+2 \sin v \ddot{u} \dot{v}^{2}+\sin v \cos ^{2} v \dot{u^{3}} . \tag{4}
\end{equation*}
$$

3. To prove Theorem 1 it is sufficient to prove the following one for antipodal curves on S_{2} :

Theorem 1'. Any smooth antipodal closed curve on S_{2}, has at least an antipodal pair of points of inflexion.

Proof. Let A_{1} and A_{2} be an antipodal pair of points on I^{*} which are not points of inflexion and consider the great circle perpendicular to the radius $O A_{\mathrm{i}}$. Then we may assume that on the great circle there exist at least a point C_{1} and its antipodal point C_{2} which do not lie on Γ^{*}, for if every point of the great circle lies on Γ^{*}, then Γ^{*} has infinitely many points of inflexion. We take a rectangular coordinate system such that $O A_{1}$ and $O C_{1}$ coincide with x-axis and z-axis respectively. We can easily see that in some neighborhoods of C_{1} and its antipodal point C_{2}, there do not lie points of the curve Γ^{*} any more. And we assume that our curve Γ^{*} is given by the equations (1) with (2) with respect to this coordinate system.

We shall denote $k_{g}(s)$ given by (4) by $k(s)$. As the correspondence $M_{1}(s)$ of Γ^{*} to its antipodal point $M_{2}(s+l)$ is given by

$$
\begin{equation*}
(u, v) \rightarrow(u+m \pi,-v), \tag{5}
\end{equation*}
$$

where m is a fixed odd integer, we can easily see that

$$
\begin{equation*}
k(s+l)=-k(s) \tag{6}
\end{equation*}
$$

By assumption A_{1} and A_{2} are not points of inflexion. If we assume that A_{1} and A_{2} correspond to parameter values 0 and l, then $k(0) \neq 0, k(l) \neq 0$ and $\boldsymbol{k}(l) \lessgtr 0$ according as $k(0) \gtrless 0$. Hence there exists at least a value s_{0} in $(0, l)$ such that $k\left(s_{0}\right)=k\left(s_{0}+l\right)=0$. Such values s_{0} and $s_{0}+l$ correspond to points of inflexion on Γ^{*}. Accordingly Γ^{*} must have at least an antipodal pair of

Theorem 1^{\prime} can be stated also as follows :
Theorem 1". Any smooth antipodal closed curve on S_{2} has at least an antipodal pair of points such that the geodesic curvatures at them are zero.

Fig. 1 and 2 give examples of closed curves with a node in P_{3} which have only one point of inflexion. In Fig. 1, the straight line g is asymptotic to both branches of the curve Γ and the points at infinity on g is a point of inflexion of I. In Fig. 2, the straight line g is asymptotic for both branches

Fig. 1

Fig. 2
of the curve Γ, but the point at infinity on g is not a point of inflexion of \boldsymbol{r}. The point of inflexion lies in finite reigion of the plane.
4. To prove Theorem 2 it is sufficient to prove the following one for antipodal curves on S_{2} :

Theorem 2'. Any smooth, simple, antipodal closed curve on S_{2}, has at least three antipodal pairs of points of inflexion.

Proof. By Theorem 1', there exists on Γ^{*} a pair of points of inflexion. We shall denote these points by C_{1} and C_{2} and take rectangular coordinate system such that the radius $O C_{1}$ coincides with the positive z-axis and the tangent great circle to Γ^{*} at C_{1} lies in $x z$-plane. We may assume that C_{1} and C_{2} have parameter values 0 and l respectively.

We may assume also, performing a reflexion with respect to a plane passing through O if it is necessary, that the arc corresponding to parameter values $0 \leqq s \leqq s_{1}$ for s_{1} sufficiently small lies in the positive side of $x z$-plane. If we take sufficiently small neighborhood of C_{1} and C_{2}, then it is clear that there does not enter other part of Γ^{*} than the parts which correspond parameter values sufficiently near to 0 and l.

Now, we map the sphere S_{2} onto a plane E_{2} by the Mercator projection ψ defined by

$$
\begin{equation*}
\xi=u, \quad \eta=\log \tan \left(\frac{v}{2}+\frac{\pi}{4}\right) \tag{7}
\end{equation*}
$$

where (ξ, η) is rectangular coordinate system in the plane E_{2}. Then the part of Γ^{*} for $0 \leqq s \leqq s_{1}$ is mapped into E_{2} as a branch of a curve $\psi\left(\Gamma^{*}\right)$ which has the positive ξ-axis as its asymptote for $s \rightarrow 0$.

As s runs in $l \leqq s \leqq l+s_{1}$, the corresponding arc of Γ lies antipodally
to the arc corresponding to $0 \leqq s \leqq s_{1}$, so the half arc Γ_{1} of Γ^{*} from C_{1} to C_{2} corresponding to $0 \leqq s \leqq l$ arrives at C_{2} from the direction of the oriented great circle $C_{1} A_{1} C_{2}$ where A_{1} is the point ($1,0,0$). Accordingly, if we map the arc $s_{\nu} \leqq s \leqq l$ for s_{2} sufficiently near to l by the Mercator projection ψ, then the part of $\psi\left(\Gamma^{*}\right)$ for $s_{2} \leqq s \leqq l$ has a straight line

$$
\begin{equation*}
\xi=m \pi \quad(m: \text { a fixed even integer }) \tag{8}
\end{equation*}
$$

as its asymptote for $s \rightarrow l$. We shall show that $m=0$.
To show it, we consider the antipodal part Γ_{2} of the arc Γ_{1} corresponding to $0 \leqq s \leqq l$. Then Γ_{2} can be represented both by parameters $(u(s)+\pi,-$ $v(s)$) and by parameters ($u(s)-\pi,-v(s)$) for $0 \leqq s \leqq l$. Hence, if $m \neq 0$ in (8), we consider that Γ_{2} is represented by $(u(s)+\pi,-v(s))$ for $0 \leqq s \leqq l$. Then we can see that $\psi\left(\Gamma_{1}\right)$ intersects with the curve $\psi\left(\Gamma_{2}\right)$, which shows that Γ^{*} intersects with itself contrary to the assumption that Γ^{*} is simple. So m can not be greater than zero. In the same way m can not be smaller than zero. Hence $m=0$.

Now, consider the point M_{1} on the arc $\Gamma_{1}(0 \leqq s \leqq l)$ such that the parameter value $\xi(s)$ is the absolute maximum. At the point $M_{1} \dot{u}=0, \ddot{u} \leqq 0$, but \dot{v} can not be greater than zero, for if so the curve $\psi\left(\Gamma_{1}\right)$ must intersect to itself which contradicts to the assumption that Γ^{*} is simple. If we assume that M_{1} corresponds to s_{0}, then we can easily see that

$$
k\left(s_{0}\right)=-\cos v\left(s_{n}\right) \ddot{u} \dot{v} \leqq 0 .
$$

So, if the point M_{1} is not a point of inflexion, then $k\left(s_{0}\right)<0$ at M_{1}. Even if M_{1} is a point of inflexion, if Γ_{1} does not contain a subarc of a great circle $u=u\left(s_{0}\right), k(s)<0$ near s_{0}.
(i) The case where the arc corresponding to $s_{2} \leqq s \leqq l$ mentioned above lies in the positive side of $x z$-plane. In this case $k(s)$ is greater than zero for $s>0$ sufficiently near to zero and for $s<l$ sufficiently near to l. Hence there exist two values a and b such that $k(a)=k(b)=0$ and $0<a<s_{0}, s_{0}<b$ $<l$. The pairs of points on Γ^{*} corresponding to $a, a+l$ and $b, b+l$ are antipodal pairs of points of inflexion of Γ^{*}.
(ii) The case where the arc corresponding to $s_{2} \leqq s \leqq l$ mentioned above lies in the negative side of $x z$-plane. We consider the point N_{1} on the arc corresponding to $s_{0} \leqq s \leqq l$ such that the parameter value $\xi(s)$ is the absolute minimum. At the point $N_{1} \dot{u}=0, \ddot{u} \geqq 0$, but \dot{v} can not be greater than zero, for if so the curve $\psi\left(\Gamma_{1}\right)$ must intersect with itself. If we assume that N_{1} corresponds to s_{0}^{\prime}, then we can easily see that

$$
k\left(s_{0}^{\prime}\right)=-\cos v\left(s_{0}^{\prime}\right) \ddot{u} \dot{v} \geqq 0 .
$$

So, if the point N_{1} is not a point of inflexion, then $k\left(s_{0}^{\prime}\right)>0$ at N_{1}. Even if N_{1} is a point of inflexion, if Γ_{1} does not contain a subarc of a great circle $u=u\left(s_{0}^{\prime}\right), k(s)>0$ near s_{0}^{\prime}. Hence, in this case, there exist two values a and b such that $k(a)=k(b)=0$ and $0<a<s_{0}, s_{0}<b<s_{0}^{\prime}$. The pairs of points on Γ^{*} corresponding to $a, a+l$ and $b, b+l$ are antipodal pairs of points of
inflexion of Γ^{*}.
Consequently, we can see that Γ^{*} in consideration has at least three antipodal pairs of points of inflexion. Q.E.D.

Theorem 2^{\prime} can be stated also as follows :
Theorem 2". Any smooth, simple, antipodal closed curve on S_{3} has at least three antipodal pairs of points such that the geodesic curvatures at them are zero.

Fig. 3 and 4 give examples of simple closed curves in P_{z} which have just

Fig. 3
three points of inflexion. In Fig. 3 the straight line g is asymptotic to both branches of the curve Γ and the point at infinity on g is a point of inflexion. In Fig. 4, the straight line g is asymptotic to both branches of the curve Γ and the point at infinity on g is not a point of inflexion.

