ON FRACTIONAL INTEGRATION

SUMIYUKI KOIZUMI

(Received August 14, 1957)

1. Introduction. The present paper is devoted to give certain results for fractional integration which are related to the work of I.I. Hirschman, Jr.

Let $u(\theta)$ be a function in the class $L^{p}(0, 2\pi), p \ge 1$ with mean value zero and its Fourier series be

$$u(\theta) \sim \Sigma' a_n e^{in\theta}$$

where $-\infty < n < \infty$ and $n \neq 0$.

The fractional integral $u_{\alpha}(\theta)$ of $u(\theta)$ of order α is defined by

$$u_{\alpha}(\theta) \sim \Sigma' a_n (in)^{-\alpha} e^{in\theta}$$

and let the Abel mean of $u(\theta)$ and $u_{\alpha}(\theta)$ be

$$u(r,\theta) = \sum' a_n r^{|n|} e^{in\theta}$$
$$u_\alpha(r,\theta) = \sum' a_n (in)^{-\alpha} r^{|n|} e^{in\theta}$$

We consider the following functions, the first due to I. I. Hirschman, Jr. [1] and the remains to G. Sunouchi [3],

$$g(\alpha;\theta) = \left\{ \int_{0}^{1} (1-r)^{1-2\alpha} |u_{\alpha-1}(r,\theta)|^{2} dr \right\}^{1/2}$$

$$g^{*}(\alpha,\beta;\theta) = \left\{ \int_{0}^{1} (1-r)^{2(\beta-\alpha)} dr \int_{0}^{2\pi} \frac{|u_{\alpha-1}(r,\theta+t)|^{2}}{|1-re^{it}|^{2\beta}} dt \right\}^{1/2}$$

$$\delta(\alpha,k;\theta) = \left\{ \int_{0}^{2\pi} |\Delta_{t(k)}^{k+1} u_{\alpha}(\theta)|^{2} t^{-2\alpha-1} dt \right\}^{1/2},$$

where

$$\Delta_{i}^{1} u_{\alpha}(\theta) = u_{\alpha}(\theta + t) - u_{\alpha}(\theta - t)$$
$$\Delta_{i}^{k+1} u_{\alpha}(\theta) = \Delta_{i}^{1}(\Delta_{i}^{k} u_{\alpha}(\theta))$$
$$t(k) = t/2(k+1).$$

The main purpose of this paper is to prove the following:

THEOREM 1. Let $u(\theta) \in L^{\nu}(0, 2\pi)$, p > 1, then we have

$$\|\delta(\alpha, k; \theta)\|_p \leq A_p \|u\|_p$$

where $0 < \alpha < k + 1$ ($2), <math>2/p - 1 < \alpha < k + 1$ (1) and k is a positive integer or zero.

The constant A_p depends only on p, and not on the function $u(\theta)$.

We shall use constants, not necessarily the same at each occurrence, which depend only on indicated indices. The case k = 0 is due to I.I. Hirschman, Jr., but his result is not quite right, as G.Sunouchi [3] indicates. The author thanks to Professor G.Sunouchi who gave him valuable suggestions and advices and also to Mr. C. Watari.

2. For the proof of theorem 1 we need the following two lemmas.

LEMMA 1. Let $u(\theta) \in L(0, 2\pi)$, and its mean value be zero, then we have for $\alpha > 0$

$$\delta(\alpha, 0; \theta) \leq A_{\alpha} g^{*}(\alpha, 1; \theta) + B_{\alpha} g^{*}(\alpha, (\alpha + 1)/2; \theta) \qquad a.e.\theta.$$

LEMMA 2. Let $u(\theta) \in L(0, 2\pi)$, and its mean value be zero, then we have $\delta(\alpha, k; \theta) \leq A_{\alpha,k} g^*(\alpha - k, 1; \theta) + B_{\alpha,k} g^*(\alpha - k, (\alpha - k + 2)/2; \theta)$ a.e. θ , for $\alpha > k - 1$, and

 $\delta(\alpha, k; \theta) \leq A_{\alpha,k} g^*(\alpha - j, 1; \theta) + B_{\alpha,k} g^*(\alpha - j, (\alpha - j + 2)/2; \theta) \qquad a.e.\theta,$ for $j - 1 < \alpha < j + 1$ (j = 1, 2, ..., k - 1) and k is any positive integer.

PROOF OF LEMMA 1. The proof runs on the line of A. Zygmund [4]. Let

$$\begin{aligned} \Delta_{i_{12}}^1 u_{\alpha}(\theta) &= \{\Delta_{i_{12}}^1 u_{\alpha}(\theta) - \Delta_{i_{12}}^1 u_{\alpha}(r_t, \theta)\} + \Delta_{i_{12}}^1 u_{\alpha}(r_t, \theta) \\ &= V + W \qquad \text{say,} \end{aligned}$$

where $1 - r_t = 1 - t/4\pi$ and then $1/2 \le r \le 1$ are mapped on $0 \le t \le 2\pi$, We shall first estimate the W. We have

$$W = \int_{-t/2}^{t/2} u_{\alpha-1} (r_t, \theta + v) \, dv$$
$$W^2 \leq At \int_{-t/2}^{t/2} |u_{\alpha-1} (r_t, \theta + v)|^2 \, dv$$

and so

$$\int_{0}^{2\pi} W^2 t^{-2\alpha-1} dt \leq A \int_{0}^{2\pi} t^{-2\alpha} dt \int_{-t/2}^{t/2} |u_{\alpha-1}(r_t, \theta+v)|^2 dv$$
$$\leq A_{\alpha} \int_{0}^{1/2} \delta^{-2\alpha} d\delta \int_{-2\pi\delta}^{2\pi\delta} |u_{\alpha-1}(r, \theta+v)|^2 dv,$$

where $\delta = 1 - r$. Since in the region: $0 < \delta = 1 - r \le 1/2$, $|t| \le k\delta \le \pi$, it holds that $|1 - re^{it}|^{-1} \sim 1/\delta$, and hence

$$\int_{0}^{2\pi} W^2 t^{-2\alpha-1} dt \leq A_{\alpha} \int_{0}^{1/2} \delta^{-2\alpha+1} d\delta \int_{-2\pi\delta}^{2\pi\delta} |u_{\alpha-1}(r,\theta+v)|^2 P(r,v) dv$$
$$\leq A_{\alpha} (g^*(\alpha,0;\theta))^2.$$

We have next

$$V = \int_{r_t}^{1} \Delta_{t/2}^1 \boldsymbol{u}_{\alpha-1}(\boldsymbol{r}, \boldsymbol{\theta}) d\boldsymbol{r}$$
$$= \int_{0}^{\delta_t} \delta^{(\alpha-1)/2} \delta^{(-\alpha+1)/2} \Delta_{t/2}^1 \boldsymbol{u}_{\alpha-1}(\boldsymbol{r}, \boldsymbol{\theta}) d\delta$$

and so, for $\alpha > 0$ by Schwarz' inequality, it follows that

$$V^{2} \leq A_{\alpha} \, \delta_{t}^{2} \int_{0}^{\delta_{t}} \delta^{-\alpha+1} |\Delta^{1}_{t/2} \, u_{\alpha-1}(r,\theta)|^{2} \, d\delta,$$

$$\int_{0}^{2\pi} V^{2} t^{-2\alpha-1} \, dt$$

$$\leq A_{\alpha} \int_{0}^{2\pi} t^{-\alpha-1} \, dt \int_{0}^{\delta_{t}} \delta^{-\alpha+1} (|u_{\alpha-1}(r,\theta+t/2)|^{2} + |u_{\alpha-1}(r,\theta-t/2)|^{2}) \, d\delta$$

$$= A_{\alpha} \int_{0}^{1/2} \delta^{-\alpha+1} \, d\delta \int_{2\pi\delta}^{\pi} (|u_{\alpha-1}(r,\theta+t)|^{2} + |u_{\alpha-1}(r,\theta-t)|^{2}) \, t^{-\alpha-1} \, dt$$

Since, in the region: $0 < \delta \leq 1/2$, $k\delta \leq |t| \leq \pi$, it holds that $|1 - re^{t}|^{-1} \sim 1/t$, we have

$$\int_{0}^{2\pi} V^{2} t^{-2\alpha-1} dt$$

$$\leq A_{\alpha} \int_{0}^{1/2} \delta^{-\alpha+1} d\delta \int_{2\pi\delta}^{\pi} \frac{|u_{\alpha-1}(r,\theta+t)|^{2} + |u_{\alpha-1}(r,\theta-t)|^{2}}{|1-re^{it}|^{2(\alpha+1)/2}} dt$$

$$\leq A_{\alpha}(g^{*}(\alpha, (\alpha+1)/2; \theta))^{2}.$$

We have thus proved Lemma 1 completely.

PROOF OF LEMMA 2. We prove the case k = 1, and for the remaining case we only sketch the proof.

(a) the case k = 1. As in Lemma 1, let us put

$$\begin{aligned} \Delta_{i/4}^2 \, u_{\alpha}(\theta) &= \{ \Delta_{i/4}^2 \, u_{\alpha}(r_t, \, \theta) - \Delta_{i/4}^2 \, u_{\alpha}(r_t, \, \theta) \} + \Delta_{i/4}^2 \, u_{\alpha}(r_t, \, \theta) \\ &= V + W \qquad \text{say.} \end{aligned}$$

Concerning W, we have

$$W = \int_{-t/4}^{t/4} \Delta_{t/4}^{1} u_{\alpha-1} (\theta + v) dv$$
$$= \int_{-t/4}^{t/4} dv \int_{-t/4}^{t/4} u_{\alpha-2} (\theta + v_{1}) dv_{1}$$

and then

$$W^{2} \leq At^{2} \int_{-t/4}^{t/4} dv \int_{-t/4}^{t/4} |u_{\alpha-2}(\theta+v_{1})|^{2} dv_{1}.$$

Changing the order of integration, we have

$$W^{2} \leq At^{3} \int_{-t/2}^{t/2} |u_{\alpha-2}(\theta+v)|^{2} dv,$$

$$\int_{0}^{2\pi} W^{2} t^{-2\alpha-1} dt \leq A \int_{0}^{2\pi} t^{-2\alpha+2} dt \int_{-t/2}^{t/2} |u_{\alpha-2}(r_{t},\theta+v)|^{2} dv$$

$$\leq A \int_{0}^{1/2} \delta^{-2\alpha+2} d\delta \int_{-2\pi\delta}^{2\pi\delta} |u_{\alpha-2}(r,\theta+v)|^{2} dv$$

$$\leq A(g^{*}(\alpha-1,1;\theta))^{2}.$$

By integration by parts, we have

$$V = (1 - r_t) \frac{\partial}{\partial r} \Delta_{tj4}^2 u_{\alpha}(r_t, \theta) + \int_{r_t}^1 (1 - r) \frac{\partial^2}{\partial r^2} \Delta_{tj4}^2 u_{\alpha}(r, \theta) dr$$
$$= V_1 + V_2 \qquad \text{say.}$$

 $= V_1 + V_2$

Since $0 \leq \delta_t = 1 - r_t \leq 1/2$ for $0 \leq t \leq 2\pi$, we get $V_{1^{2}} = \delta_{2}^{t} r_{t}^{-2} \langle \Delta_{t/4}^{2} \boldsymbol{u}_{\boldsymbol{\alpha}-1} (\boldsymbol{r}_{t}, \boldsymbol{\theta}) \rangle^{2}$

$$=At^{2}\left(\int_{-t/4}^{t/4}\Delta_{t/4}^{1}\,\boldsymbol{u}_{\alpha-2}\left(\boldsymbol{r}_{t},\,\boldsymbol{\theta}+v\right)\,dv\right)^{2}$$
$$\leq At^{3}\int_{-t/2}^{t/2}|\boldsymbol{u}_{\alpha-2}\left(\boldsymbol{r}_{t},\boldsymbol{\theta}+v\right)|^{2}\,dv.$$

Similarly as for W, we obtain

$$\int_{0}^{2\pi} V_{1}^{2} t^{-2\alpha-1} dt \leq A(g^{*}(\alpha-1,1;\theta))^{2}.$$

We have for V_2 ,

$$= V_{2} \int_{r_{t}}^{1} (1-r) r^{-2} \Delta_{t/4}^{2} u_{\alpha-2}(r,t) dr$$

$$A \leq \int_{r_{t}}^{1} (1-r) \left(|u_{\alpha-2}(r,\theta+t/2)| + 2|u_{\alpha-2}(r,\theta)| + |u_{\alpha-2}(r,\theta-t/2)| \right) dr$$

$$= A(V_{21} + V_{22} + V_{23}) \qquad \text{say.}$$

For V_{22} , if we write $\delta = \delta^{(\alpha-1)/2} \delta^{(3-\alpha)/2}$ and apply the Schwarz inequality, then we have for $\alpha > 0$

$$V_{22} \leq t^{\alpha} \int_{0}^{\delta_{t}} \delta^{3-\alpha} |u_{\alpha-2}(r,\theta)|^{2} d\delta,$$

and so,

$$\int_{0}^{2\pi} V_{22}^{2} t^{-2\alpha-1} dt \leq \int_{0}^{2\pi} t^{-\alpha-1} dt \int_{0}^{\delta_{t}} \delta^{3-\alpha} |u_{\alpha-2}(r,\theta)|^{2} d\delta$$
$$\leq \int_{0}^{1/2} \delta^{3-\alpha} |u_{\alpha-2}(r,\theta)|^{2} d\delta \int_{4\pi\delta}^{\infty} t^{-\alpha-1} dt$$
$$\leq A_{\alpha} \int_{0}^{1/2} \delta^{3-\alpha} |u_{\alpha-2}(r,\theta)|^{2} d\delta$$
$$\leq A(g(\alpha-1;\theta))^{2} \leq A(g^{*}(\alpha-1,1;\theta))^{2}$$

For V_{21} , we have similarly as for V_{22} ,

$$V_{21}^2 \leq t^{\alpha} \int_0^{\delta_t} \delta^{3-\alpha} |u_{\alpha-2}(r,\theta+t/2)|^2 d\delta,$$

and so,

$$\int_{0}^{2\pi} V_{21}^{2} t^{-2\alpha-1} dt \leq \int_{0}^{2\pi} t^{-1-\alpha} dt \int_{0}^{\delta_{t}} \delta^{3-\alpha} |u_{\alpha-2}(r,\theta+t/2)|^{2} dt$$
$$\leq A_{\alpha} \int_{0}^{1/2} \delta^{3-\alpha} d\delta \int_{2\pi\delta}^{\pi} |u_{\alpha-2}(r,\theta+t)|^{2} t^{-1-\alpha} dt$$
$$\leq A_{\alpha} \int_{0}^{1/2} \delta^{3-\alpha} d\delta \int_{2\pi\delta}^{\pi} \frac{|u_{\alpha-2}(r,\theta+t)|^{2}}{|1-re^{it}|^{2(1+\alpha)/2}} dt$$
$$\leq A(g^{*}(\alpha-1, (\alpha+1)/2; \theta))^{2}.$$

Similarly, we have

$$\int_{0}^{2\pi} V_{22}^{2} t^{-2\alpha-1} dt \leq A_{\alpha}(g^{*}(\alpha-1, (\alpha+1)/2; \theta))^{2}.$$

Thus, we have established completely the Lemma of typical case.

(b) general case $k \ge 2$. First we prove for $\alpha > k - 1$. Let

$$\begin{aligned} \Delta_{t(k)}^{k+1} u_{\alpha}(\theta) &= \{\Delta_{t(k)}^{k+1} u_{\alpha}(\theta) - \Delta_{t(k)}^{k+1} u_{\alpha}(r_t, \theta)\} + \Delta_{t(k)}^{k+1} u_{\alpha}(r_t, \theta) \\ &= V + W \qquad \text{say.} \end{aligned}$$

For W, we have

$$W = \int_{-t(k)}^{t(k)} dv_1 \int_{v_1-t(k)}^{v_1+t(k)} dv_2 \dots \int_{v_k-t(k)}^{v_k+t(k)} u_{\alpha-k-1}(r_t, \theta+v_{k+1}) dv_{k+1}.$$

Here if we apply Schwarz' inequality and then change the order of integration repeatedly, we have

$$W^{2} \leq A_{k} t^{k+1} \int_{-t(k)}^{t(k)} dv_{1} \int_{v_{1}-t(k)}^{v_{1}+t(k)} dv_{2} \dots \int_{v_{k}-t(k)}^{v_{k}+t(k)} |u_{\alpha-k-1}(r_{i}, \theta+v_{k+1})|^{2} dv_{k+1}$$

$$\leq A_{k} t^{k+2} \int_{-2t(k)}^{2t(k)} dv_{2} \dots \int_{v_{k}-t(k)}^{v_{k}+t(k)} |u_{\alpha-k-1}(r_{i}, \theta+v_{k+1})|^{2} dv_{k+1}$$

$$\dots$$

$$\leq A_{k} t^{2k+1} \int_{-t/2}^{t/2} |u_{\alpha-k-1}(r_{i}, \theta+v)|^{2} dv,$$

and we obtain

$$\int_{0}^{2\pi} W^2 t^{2\alpha-1} dt \leq A_{k,\alpha} \left(g^*(\alpha-k, 1; \theta)\right)^2$$

For V, we have

$$V = \int_{-\iota(k)}^{\iota(k)} dv_1 \int_{v_1-\iota(k)}^{v_1+\iota(k)} dv_2 \dots \int_{v_{k-2}-\iota(k)}^{v_{k-2}+\iota(k)} \Delta_{\iota(k)}^2 \left\{ u_{\alpha-k+1}(\theta+v_{k-1}) - u_{\alpha-k+1}(r_{\tau},\theta+v_{k-1}) \right\} dv_{k-1}.$$

Integrating by parts the integrand as in the case (a), we have

$$V = \int_{-t(k)}^{t(k)} dv_1 \int_{v_1-t(k)}^{v_1+t(k)} dv_2 \dots \int_{v_{k-2}-t(k)}^{v_{k-2}+t(k)} dv_{k-1}$$

$$\cdot \left\{ (1-r_t) \frac{\partial}{\partial r} \Delta_{t(k)}^2 u_{\alpha-k+1}(r_t, \theta+v_{k-1}) + \int_{r_t}^1 (1-r) \frac{\partial^2}{\partial r^2} \Delta_{t(k)}^2 u_{\alpha-k+1}(r, \theta+v_{k-1}) dr \right\}$$

 $= V_1 + V_2$, say.

We have

$$V_{1} = A \cdot \frac{t}{4\pi} \int_{-t(k)}^{t(k)} dv_{1} \int_{v_{1}-t(k)}^{v_{1}+t(k)} dv_{2} \dots \int_{v_{k-2}-t(u)}^{v_{k-2}+t(u)} dv_{k-1} \int_{v_{k-1}}^{v_{k-1}+2t(k)} \Delta_{t(k)}^{1} u_{\alpha-k-1}(r_{t}, \theta+v_{k}) dv_{k},$$

$$V_{1}^{2} \leq A_{\alpha} t^{2k+1} \int_{-t/2}^{t/2} |u_{\alpha-k-1}(r_{t}, \theta+v)|^{2} dv,$$
and

and

$$\int_{0}^{2\pi} V_1^2 t^{-2\alpha-1} dt \leq A_{\alpha} (g^*(\alpha-k,1;\theta))^2.$$

For V_2 , we have

$$V_{2} = \int_{\tau^{\ell}(k)}^{\prime(k)} dv_{1} \int_{v_{1}-t(k)}^{v_{1}+\ell(k)} dv_{2} \dots \int_{v_{k-2}-t(k)}^{v_{k-2}+\ell(k)} dv_{k-1} \int_{r_{t}}^{1} (1-r)r^{-2} \Delta_{\ell(k)}^{2} u_{\alpha-k-1}(r,\theta) dr$$

$$= V_{21} + V_{22} + V_{23},$$

It follows that

$$V_{21} = \int_{-t(k)}^{t(k)} dv_1 \int_{v_1-t(k)}^{v_1+t(k)} dv_2 \dots \int_{v_{k-2}+t(k)}^{v_{k-2}+3t(k)} dv_{2-1} \int_{r_1}^{1} (1-r) u^{\alpha-k-1} (r, \theta + v_{k-1}) dr$$

and

$$V_{21}^{2} \leq A_{k} t^{2k-3} \int_{-t/2}^{t/2} dv \left(\int_{rt}^{1} (1-r) u_{\boldsymbol{\sigma}-k-1}(r,\theta+v) dr \right)^{2}$$

If $\alpha > k-1$, we write $\delta = \delta^{(-k+\alpha)/2} \delta^{(k-\alpha+2)/2}$, and applying the Schwarz inequality, we have

$$V_{21}^2 \leq A_{\alpha,k} t^{k+\alpha-2} \int_{-t/2}^{t/2} dv \int_{r_l}^{1} (1-r)^{k-\alpha+2} |u_{\alpha-k-1}(r,\theta+v)|^2 dr.$$

Hence, we have

$$\int_{0}^{2\pi} V_{21}^{2} t^{-2\alpha-1} dt$$

$$\leq \int_{0}^{2\pi} t^{k-\alpha-3} dt \int_{-t/2}^{t/2} dv \int_{0}^{\delta_{t}} \delta^{k-\alpha+2} |u_{\alpha-k-1}(r,\theta+v)|^{2} d\delta$$

$$\leq \int_{0}^{1/2} \delta^{k-\alpha+2} d\delta \int_{4\pi\delta}^{2\pi} t^{k-\alpha-3} dt \int_{-t/2}^{t/2} |u_{\alpha-k-1}(r,\theta+v)|^{2} dv.$$

Since $\alpha > k-1$, integrating by parts the second integral, we have

$$\int_{0}^{2\pi} V_{21}^{2} t^{-2\alpha-1} dt$$

$$\leq A_{k,\alpha} \int_{0}^{1/2} \delta^{-2(\alpha-k)} d\delta \int_{-2\pi\delta}^{2\pi\delta} |u_{\alpha-k-1}(r,\theta+v)|^{2} dv$$

$$+ B_{k,\alpha} \int_{0}^{1/2} \delta^{k-\alpha+2} d\delta \int_{2\pi\delta}^{\pi} (|u_{\alpha-k-1}(r,\theta+t)|^{2} + |u_{\alpha-k-1}(r,\theta-t)|^{2}) t^{k-\alpha-2} dt$$

$$\leq A_{k,\alpha} (g^{*}(\alpha-k,1;\theta))^{2} + B_{k,\alpha} (g^{*}(\alpha-k,(\alpha-k+2)/2;\theta))^{2}.$$

The same argument may be used for the estimation of the V_{22} and V_{23} . Combining these estimations we obtain the lemma in general case for $\alpha > k-1$.

Now the remaining case $0 < \alpha \leq k - 1$ is estimated easily by the following inequality.

Let
$$j-1 < \alpha < j+1$$
 $(j = 1, 2, ..., k-1)$, then $|\Delta_{t(k)}^{k+1} u_{\alpha}|^2 = |\Delta_{t(k)}^{k-j} \Delta_{t(k)}^{j+1} u_{\alpha}|^2$

$$\leq A_k \sum_{l=-(k-j)}^{k-j} |\Delta_{t(k)}^{l+1} u_{\alpha}(\theta+l t(k))|^2$$

We now need the following lemma due to G. Sunouchi [3].

LEMMA 3. Let $u(\theta) \in L(0, 2\pi)$, and its mean value be zero, then we have for $\beta > \alpha > -\infty$

$$g^{*}(\alpha, \beta; \theta) \leq A_{\alpha, \beta} g^{*}(0, \beta; \theta)$$

Combining Lemmas 1,2 and 3, we get the following lemmas.

LEMMA 4. Let $u(\theta) \in L(0, 2\pi)$, and have mean value zero, then we have for $0 < \alpha < 1$

$$\delta(\alpha, 0; \theta) \leq A_{\alpha} g^{*}(\alpha, 1; \theta) + B_{\alpha} g^{*}(0, (\alpha + 1)/2; \theta) \qquad a.e.\theta.$$

LEMMA 5. Under the same assumptions, we have

$$\delta(\alpha, k; \theta) \leq A_{\alpha, k} g^{*}(\alpha - j, 1; \theta) + B_{\alpha, k} g^{*}(0, (\alpha - j + 2)/2; \theta)$$

where $j-1 < \alpha < j+2$ $(j = 1, 2, \ldots, k)$, k is a positive integer.

In order to complete the proof of the Theorem, we quote the following results due to G. Sunouchi [2], [3].

THEOREM A. Let $u(\theta) \in L^{p}(0, 2\pi)$, p > 1, and its mean value be zero, then we have

$$\|g^*(0,\beta;\theta)\|_p \leq A_p \|u\|_p$$

where $1/2 < \beta$ $(2 , <math>1/p < \beta$ $(1 . We have also <math>\|g^*(\alpha, 1; \theta)\|_p \leq A_p \|u\|_p$

where $-\infty < \alpha < 1$.

Now we can now complete the proof of the Theorem 1 combining Theorem A, Lemmas 4 and 5.

REMARK. The difference $\Delta_{t(k)}^{k+1} u_{\alpha}(\theta)$ in our theorem, may be replaced by $\Delta_t^{k+1} u_{\alpha}(\theta)$, since the [contribution for the integral is influenced only by the behavior of $u(\theta)$ in the neighbourhood of the point t = 0.

Finally we prove a converse theorem of Theorem 1.

THEOREM 2. Let $u(\theta) \in L^{p}(0, 2\pi)$, p > 1 and its mean value be zero, then we have

$$B_{p,\alpha} \|u\|_p \leq \|\delta(\alpha, 1; \theta)\|_p$$

where $0 < \alpha < 2$.

We begin to prove the following lemma.

LEMMA 6. Under the assumption of Theorem 2, we have

$$B_{\alpha} g(\alpha - 1; \theta) \leq \delta(\alpha, 1; \theta)$$

PROOF OF LEMMA 6. Let

$$u_{\alpha-2}(r,\theta) = \frac{1}{2\pi} \int_{0}^{2\pi} u_{\alpha}(t) P_{\theta\theta}(r,\theta-t) dt$$

then, since $P_{ti}(r,t)$ is even function and $|P_{ti}(r,t)| < A|1 - re^{it}|^{-3}$, we have

$$\begin{aligned} |u_{\alpha-2}(r,\theta)|^{2} &= \left| \frac{1}{2\pi} \int_{0}^{2\pi} \Delta_{t/2}^{2} u_{\alpha}(\theta) P_{tt}(r,t) dt \right|^{2} \\ &\leq A \int_{0}^{2\pi} |\Delta_{t/2}^{2} u_{\alpha}(\theta)|^{2} |1 - re^{tt}|^{-3-\alpha} dt \int_{0}^{2\pi} |1 - re^{tt}|^{\alpha-3} dt \\ &\leq A (1-r)^{\alpha-2} \int_{0}^{2\pi} |\Delta_{t/2}^{2} u_{\alpha}(\theta)|^{2} |1 - re^{tt}|^{-3-\alpha} dt, \end{aligned}$$

provided that $\alpha < 2$. Hence it follows that

$$\begin{split} |g(\alpha-1;\theta)|^{2} &\leq \int_{0}^{1} (1-r)^{-\alpha+1} dr \int_{0}^{2\pi} |\Delta_{t/2}^{2} u_{\alpha}(\theta)|^{2} |1-re^{tz}|^{-3-\alpha} dt \\ &\leq A \int_{0}^{2\pi} |\Delta_{t/2}^{2} u_{\alpha}(\theta)|^{2} dt \int_{0}^{1} (1-r)^{-\alpha+1} |1-re^{tz}|^{-3-\alpha} dr. \end{split}$$

Since

$$\int_{0}^{1} (1-r)^{-\alpha+1} |1-re^{it}|^{-3-\alpha} dr \leq At^{-2\alpha-1} \qquad (\alpha < 2),$$

we have

$$(g(\alpha - 1; \theta))^2 \leq A \int_{0}^{2\pi} |\Delta_{t/2}^2 u_{\alpha}(\theta)|^2 t^{-2\alpha - 1} dt$$
$$\leq A(\delta(\alpha, 1; \theta))^2.$$

This is the required. Theorem 2 follows now immediately from Lemma 6 and the following theorem [1]:

THEOREM B. Under the assumption of Theorem 2, we have $B_{p,\alpha} \|u\|_p \leq \|g(\alpha; \theta)\|_p$

for $-1 < \alpha < \infty$.

LITERATURE

- I.I.HIRSCHMAN, JR., Fractional integration, Amer. Journ. of Math. 75(1953), 531-546.
- [2] G.SUNOUCHI, Theorems on power series of the class H^p, Tôhoku Math. Journ., 8(1956), 125-146.
- [3] G.SUNOUCHI, Some theorems on fractional integration, Tôhoku Math. Journ., 9(1957), 307-317.
- [4] A.ZYGMUND, On certain integrals, Trans. Amer. Math. Soc., 55(1944), 170-204.

MATHEMATICAL DEPARTMENT, HOKKAIDO UNIVESRITY.