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1. Introduction. The present paper is devoted to give certain results
for fractional integration which are related to the work of 1.1. Hirschman,
Jr.

Let u{θ) be a function in the class Lp(0,2ir),p>l with mean value zero
and its Fourier series be

where — oo < n < oo and n =t= 0.

The fractional integral u#{θ) of uψ) of order a is defined by

«β(fi)-Σ'ftι(ί»)"Vn β

and let the Abel mean of u(θ) and u»(θ) be

Ma{r, θ) = 'Σίan(in)~a> r | M l einθ

We consider the following functions, the first due to 1.1. Hirschman, Jr.
[1] and the remains to G. Sunouchi [3],

g(a;θ)= \ j {l-r)y^lcΰ\ua-1{ryθ)\'dr
0

1 '2*
\l/2

where

ΔJ ^^(^9) = uΛ{β + t)- ujβ - ί)

1).

The main purpose of this paper is to prove the following:

THEOREM 1. Let u{θ) € Lp(0,2τr), p>l, then we have

where 0<a<k + l(2<p<oo), 2fp — l< a<k + l(Kp<2) and k is a
positive integer or zero.

The constant AP depends only on p, and not on the function u(θ).
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We shall use constants, not necessarily the same at each occurrence,
which depend only on indicated indices. The case k = 0 is due to 1.1. Hir-
schman, Jr., but his result is not quite right, as G. Sunouchi [3] indicates.
The author thanks to Professor G. Sunouchi who gave him valuable sug-
gestions and advices and also to Mr. C. Watari.

2. For the proof of theorem 1 we need the following two lemmas.

LEMMA 1. Let u{θ) € L(0,2τr), and its mean value be zero, then we have
for a>0

δ(a, O θ)^ A* g*(a, l;θ) + Ba g\a, {a + l)/2 θ) a. e. θ.

LEMMA 2. Let u(θ) € L(0,2τr), and its mean value be zero, then we have

B(a, k;θ)<L Aa,κg*(a — k, 1 θ) + Z?*,» g*(a — k, (a—kΛ- 2)/2 θ) a. e. θf

for a > k — 1, and

B(a, k θ)^ A*,*; g*(a - j , l;θ) + B^ g*(a -j,(a-j+ 2)/2 θ) a. e. θ,

for j — 1 < a < j -f 1 (j = 1,2, , k — 1) and k is any positive integer.

PROOF OF LEMMA 1. The proof runs on the line of A. Zygmund [4j.
Let

ΔJ/2 u*(θ) = {A]β Uoc{θ) - ΔJ/3 ua(rt> θ)} + ΔJ/3 uΛ(rt, θ)

= V+W say,

where 1 — ^ = 1— t/4m and then 1/2 < r <, 1 are mapped on 0 ^ t ^ 2<π, We
shall first estimate the W. We have

W = I uΛ-x (rt, θ + v) dv
-ί/2

dv

-ί/2

and so

J WH-2«-ι dt^AJ t-*« dtj \u«^(rt,θ + v)
0 -ί/2

1/21/2 JUB

^AxJ δ-2Λ dS I \u«-λ(r,θ + v)\* dv,

0 -2τtδ

where δ = 1 — r. Since in the region : 0 < 8 = l - r g 1/2, \t\ <Ξ kS ̂  π, it
holds that |1 - reu\~ι ~ 1/8, and hence

J W*r2*"1 dt^Aaj δ-2 Λ + 1 dS J IwΛ_! (r,θ + v)\*P{r, v) dv

0 0 -2jr&

We have next
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V= J A\lΐnβ-ί(r,θ)dr
n

/ δ£

—— I ί\(^—1)/2 5!(—£B4-l)/2 Λl Λ» /-^ /3\ /τfS\

J
0

and so, for a > 0 by Schwarz' inequality, it follows that

V* ̂ AaB
2

tJ S-*+ 1 IΔ 1 ^ ua-τ (r, θ) | 2 dδ,

ί

- α + 1 dδj (|«β_1(r,
δ0

Since, in the region : 0 < δ g 1/2, £δ g \t \ ̂  w, it holds that 11 - r ^ | - 1 ~ 1/ί,
we have

/

1/2 Tt

J | l_ r ^ί|a(*+i)/z
δ

We have thus proved Lemma 1 completely.

PROOF OF LEMMA 2. We prove the case k = 1, and for the remaining case
we only sketch the proof.

(a) the case k = 1. As in Lemma 1, let us put

ΔΪM ua(θ) = {Δ*M «β(r», θ) - Δf/4 »Λ(r»f β)}

= F + TΓ say.

Concerning W, we have

TF = J Δ]β u—τ (θ + v) dv
J
-ί/4

-t/4 -t/4

and then
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' / I ««-2 (θdv

-tμ -ί/4

Changing the order of integration, we have

W2 ^At3 I I w*_2(0 + v) Ia <fc,
-ί/2

/
Wzί"2*-1 dt^A ί t~2ΰύ+2dt I \uΛ-4r%iθ + t/)Ia rfw

J J
0 D - t / 2

/

1 / 2 -2« 2 f2π

J
0

*(αc — 1,1 «)*.

By integration by parts, we have
1

~ ΔSμ ua{rt, θ) + f (1 - r) ^ Δ?/4 ua(r, θ) dr

n

= Vi + F^ say.

Since 0 g δί = 1 - n ^ 1/2 for 0 ̂  ί ^ 2τr; we get

pi

= At*(J ΔJn ««_2 (rt, θ + v) dvj
-ί/4

-ί/2

Similarly as for W, we obtain

o

We have for F 2 j

1 — r) r " a Δξu u<*-2 (r, t) dr

J (1 - r) ( |« β-, (r, 6> + ί/2)| + 2|ffa-1(r, 6>)| + |«a_2 (r, (9 - ί/2)|) dr

+ F 3 2 + FM) say.
For F2 2, if we write δ = gc -D/agcs-*)̂  a n d a p p l y t h e schwarz inequality,
then we have for α; > 0
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A

F 2 2 ^ ί« J 83-* I «α_2 (r, θ) I« rfδ,
0

and so,

j Vlλt'
2a'1 dt?£ I t-*-1 dt I &-*\u»-t(r,0)\* dS

J ~~ J J
0 U 0

^ j «3-» |«._I(r,fl)|« dδj t-"-1 dt
0 4τrδ

^ Λ Λ I δ 3 "* |»«- z (r,^) | 2 ύ?δ
o

<; A(g(a — 1 θ))* ̂  A{g*(cc — 1,1 ^))2.

For F2i, we have similarly as for F 2 2 ,

0

and so,

r' Γ r8t

J VΆ r2"- 1 rf# S J ί-1-" * J 83-« I ua-z (r, 0 + ί/2) 12 dt
0 0 0

r1/2 r*
S Aa J δ3"» dδ J I M._2 (r, ̂  + t) 12 ί"1-" d

0

1/2

2τrδ

Similarly, we have

J V | ί-1-1 <ft ̂  Aα(^*(α - 1 , (α
0

Thus, we have established completely the Lemma of typical case.
(b) general case k ^ 2. First we prove for a > k — 1.

Let

Δfίϊ «-0) = {ΔΪ5} « W " Δf(
+

fe5 «β(rϊf ^)} + Δf(ΐJ «β(r,, θ)

-V+W say.

For W? we have

itoi / dv2.... J «*-*-i(rϊ,^ + Vfc+i)£/wfc+1.



ON FRACTIONAL INTEGRATION 303

Here if we apply Schwarz' inequality and then change the order of inte-
gration repeatedly, we have

-'(ft)

dv1j dv
-f(fc) «t-ί(fc)

/

2t(fc) -»* + '

dv2.... I
- a (ft) Vft-'(fc)

r"2

/
2t(fc)

- a (ft)

r"2
-ί/2

and we obtain

f
J Wι t™-1 dt S At,* (g*(ct - ft, 1 0))
0

For V, we have

F = / αz/j / dvi. - - / ΔtCfc) {ua-k+i (θ -

Integrating by parts the integrand as in the case (a), we have

V:
-ί(fc) vi-tOc)

όγ J όγ

n

= Fi + F 2 ; say.

We have

Fi = A £ : J Λ Ί J dv*....j dv*-! J Δf(ft) wΛ- f e-i(n, β •
ft—1

-ί/2

and

Γ
ϋ

For F 2 , we have

Fa = 1 ί/fi J dvz J dp*}-! I (1 — r)r~'1 Δξ(k) ««-*-! (r,.ί) tίr

t»i-ί(t)
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= V2i + F22 + F23, say.

It follows that

Fai = / ^ 1 / dvz.... * tfe^i I (1 — r) t

Vl-t(k)

and

Vi ^ Afc ί*-» J dvίj (I- r^-^-xf r, θ+v)dr Y

If rt>ft-l, we write δ = δ<-*+*>/aδ^-^2)^ a n d a p p iy i n g the Schwarz
inequality, we have

-t/2

Hence, we have

2 r1

dvj {I - rr-x^Ua-Tc^irtθ + v)\* dr.

r 2 7 £

0

0

J δfc α + 2 Jδ J ίΛ * 3 ί/ί J [ uΛ-*.i (r, ί1 + v)

dv
-t}2 0

0 4Λ5 —t/2

Since <x > & — 1, integrating by parts the second integral, we have
Jlit

b

J δ-2ί«-fc) 6?δ J [*,_*_! (r, β + »)|»
δ

0 2ΛS

^ Akt*(g*(ct — k, 1 ^))a + Z?fc,α (sί*(oc — yfe, (α; — k + 2)/2 θ))2.

The same argument may be used for the estimation of the F 2 3 and F 2 3 .
Combining these estimations we obtain the lemma in general case for a >

Now the remaining case 0< a<^k — l i s estimated easily by the following
inequality.

L e t / - l < α c < / + l ( y = 1,2, . . . . , £ - 1), then
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I--(fc-J)-

We now need the following lemma due to G. Sunouchi [3].

LEMMA 3. Let u(θ) € Z(0,27r), ΛWC? # S WẐΛW Z;#/W# be zero, [then we have
for β>a> —oo

g*(*,β;θ)£AΛfβg*(Q, β θ)

Combining Lemmas 1,2 and 3, we get the following lemmas.

LEMMA 4. Let u(θ) € L(0,2τr), and have mean value zero, then we have
forΰ<a<l

8(a, 0;θ)S A* g*(a, l;θ) + B« g*(0, {a + l)/2 ; θ) a. e. θ.

LEMMA 5. Under the same assumptions, we have

8{a, k;θ)S A^ g*(a - / l;θ) + B^ ^*(0, {a - j + 2)/2 ft

where j — I < a < j + 2 (j~ 1,2, , k), k is a positive integer.

Γn order to complete the proof of the Theorem, we quote the following
results due to G. Sunouchi [2], [3].

THEOREM A. Let u(θ) € Lp(0,2τr), p > 1, and its mean value be zero,
then we have

llff*(0,/S;4)||,^A,|M|,
where 1/2 < β (2<p< oo), 1/p < β (Kp< 2). We have also

\\g*(a,l;θ)\\P^AP\\u\\P

where — oo < a < 1.

Now we can now complete the proof of the Theorem 1 combining Theorem
A? Lemmas 4 and 5.

REMARK. The difference Δξfc]ua(θ) in our theorem, may be replaced by
Δ?+1«α(0), since the [contribution for the integral is influenced only by the
behavior of u{θ) in the neighbourhood of the point t = 0,

Finally we prove a converse theorem of Theorem 1.

THEOREM 2. Let u{θ) € Lp(0,2π), p > 1 and its mean value be zero, then
we have

where 0 < a < 2.

We begin to prove the following lemma.

LEMMA 6. Under the assumption of Theorem 2, we have

PROOF OF LEMMA 6. Let

w«-2(r, θ) = ^ J ua(t) PUr, θ-t)dt
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then, since Ptt(r,t) is even function and \Ptt(r,t)\ < A\l — re{t\-3, we have

A
0

j |4 ϊ

i lιι-(^)l»|l-rβ«|- ϊ-*J | l -

0

provided that a < 2. Hence it follows that
«2*

r1

j (l-r)-« o
1

Since

i (1 — r)~ α + 1 11 — r e " I ~3~α <iy g A ί " 2 * " 1 (oc < 2),

0

we have

J \ Δξl2 ua dt

This is the required. Theorem 2 follows now immediately from Lemma 6
and the following theorem [1] :

THEOREM B. Under the assumption of Theorem 2, we have

BP^\\u\\PsA\g(cί;θ)\\P

for — 1 < a < co.
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