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Recently, in an Hermitian manifold T. Otsuki and Y. Tashiro [10p
have studied the holomorphically projective change of the Riemannian con-
nection, i. e. a change which preserves the system of holomorphically planar
curves, and have obtained interesting results. In an almost complex manifold
Y. Tashiro [13] has also studied such a change of a symmetric affine con-
nection with respect to which the almost complex structure is covariant
constant. He has introduced the holomorphically projective curvature tensor
which is invariant under holomorphically projective changes of the connection
and has characterized the holomorphically projective flatness of the connection
by the vanishing of its holomorphically projective curvature tensor. He has
discussed also in [13] holomorphically projective correspondences of Kaehlerian
manifolds. In the present paper we shall concern ourselves with the holo-
morphically projective changes of an affine connection of some type and the
group of holomorphically projective transformations in an almost complex
manifold.

In an almost complex manifold10 we call an affine connection a φ-con-
nection, if it preserves the almost complex structure. We consider a φ-con-
nection Γ^, said to be half-symmetric, which behaves as if it had the sym-
metry Tiμ = Tλ

μv in complex coordinates. Restricting attention to ha If-symmetric
^-connection, we shall treat some problems concerning the holomorphically
projective changes. The theory of such changes of a half-symmetric φ-con-
nection is analogous to that of projective changes of an affine connection.3)

M. Obata [9] has recently studied φ-connections in a manifold, almost
complex, Hermitian or quaternion, and obtained many interesting and sug-
gestive results, which will play fundamental roles in the present treatments.
He has given some simple formulas characterizing completely a φ-connection
in an almost complex manifold. It is also very useful for us that the torsion
tensor of a φ-connection is completely characterized by its relations with
tensors intrinsically defined by the structure of the manifold.

1) The number in brackets refers to the Bibliography at the end of the paper.
2) In the present paper we shall restrict attention to manifolds which are of

differentiable class O° and satisfy the second axiom of countability. Insuch a manifold
there always exists a Riemannian metric and consequently an affine connection (Cf.
Steenrod [12]). We assume further in the paper that any geometric object, for ex-
ample, any tensor field or any affine connection, is of class O . We suppose for
simplicity that the manifold is connected. In a complex manifold we consider only
geometric objects which are analytic in real coordinates.

3) Cf.Weyl [16], Thomas [14], for instance.
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In §1 we shall define the ha If-symmetry and also the semi-symmetry of
a φ-connection. The existence of a half-symmetric or semi-symmetric φ-con-
nection will be established. Further, some preliminary lemmas are given.

In §2 we shall define holomorphically projective, briefly, H-projective
change of a ha If-symmetric φ-connection, i. e. a change of such a connection
preserving the system of holomorphicaΠy planar curves, and characterize
such a change by a formula analogous to that of a projective change of an
affine connection. Other preliminary facts will be given by some lemmas.
In §3 we shall study the H-projectively flat7 half-symmetric φ-connection.

M. Obata has studied also in [9] the quaternion structure in an almost
complex manifold. In §4, by using his results, we shall deal with H-projec-
tive changes of a connection with respect to which the quaternion structure
is covariant constant.

In §5 we shall study a projective change which makes correspond a half-
symmetric φ-connection to another0.

In an almost complex manifold with a half-symmetric φ-connection we
consider a transformation of the manifold, said to be holomorphically projec-
tive, which preserves the almost complex structure and the system of holo-
morphically planar curves. It might be interesting to study the group of
holomorphically projective transformations. In §6 we shall study such a
group, which is compact, or, which preserves the Ricci tensor, in an analogous
way as in a previous paper [7].

In §7, we shall discuss some fundamental behaviors of the holomorphi-
cally projective, infinitesimal transformations of a half-symmetric φ-connection
in an almost complex manifold. In §8, by using the results obtained in §7,
we shall study a group of holomorphically projective transformations of order
not less than 2{mι + m + 1) in a 2^z-dimensional almost complex manifold on
a program analogous to that developed in [6] or in [15]. Then the following
fact will be established.: If an almost complex manifold with a half-symmetric
φ-connection admits such a group, then the group is of the maximum order
2{mz -f 2m), the connection is H-projectively fiat, and the manifold is homeo-
morphic to the complex projective space.

The author wishes to express his gratitude to M. Obata who has given
valuable suggestions and frequent chances of discussions to the paper.

1. Afϊine connections in an almost complex manifold. In a differen-
t i a t e manifold an almost complex strzecture is defined by assigning to the
manifold a tensor field φih such that5)

4) Cf. Goldberg [4], Όtsuki and Tashiro [10].
5) Indices take values as below: in real coordinates

a,b,c, , h,i,j,k,l, = 1,2, ,n;
and in complex coordinates

a,b,c, , h,ij,ktlt = 1,2, , m, ϊ, 2, , tn\
as,β,y, , λ,jtt, v, ω, —1,2, ,m;

«,;£, γ, , λ, μ, v, ω, =ϊ ,2 , , m. (n~2m).
As to the notations, we_ follows Schouten [11] in principle.
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Then an almost complex manifold, i. e. a manifold with an almost complex
structure φ/1, is necessarily of even dimension n = 2m.

The tensor NJt

h defined by

is called the Nijenhuis tensor of the almost complex structure φi
manifold. In a complex manifold JVjiA vanishes identically.

Let Q\ be a tensor in an almost complex manifold defined by φιh. M.
Obata has introduced in [9] the following operators:

~ < W ' - ΦcjQciaφJι), Φ*QJt

Λ

The operators Φ3 and Φ4 can apply also to a tensor ζ?jί just as above. We
have to recall some of formulas given in [9] for the later use as below :

Φi + Φ2 = identity, Φ3 + Φ4 = identity; Φ r Φ r = Φr (r - 1, 2,3; 4)
ΦXΦ3 = Φ.Φx = 0? Φ3Φ4 = Φ4Φ3 = 0 ; Φ,Φ, - Φ rΦ, (r, s = 1, 2, 3, 4)

α. i) Φ 3 Φ 3 + ΦzΦi - Φ *

In an almost complex manifold an affine connection Γ^ is called a φ-con-
nectzon, if the almost complex structure φih is covariant constant with respect
to Γ£, i. e. if Vjφίfi = 0, where the covariant derivative of a vector field vh

is defined by

Let Γ̂ £ be an arbitrary affine connection. Then the affine connection Γ£ —

2 (Vjφΐα)φαΛ is denoted by ΦΓ;V The following theorem is known:
1

THEOREM A.6) Let Γĵ  be an arbitrary but fixed affine connection in an
almost complex manifold defined by φi7\ Then in order that an affine con-
nection Vh

n in the manifold be a φ-connection it is necessary and sufficient that
Yh

H be written in the form

n =
where Λβh is a tensor field such that Φ2 Aμu = 0? or equivalents, there exists
a tensor field Bμh such as Aμh = ΦLByJι.

Theorem A implies that in an almost complex manifold there always
exists a φ-connection. Let Sμh be the torsion tensor of an arbitrary φ-con-

6) Cf. Theorem 7.1 in [9].
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nection; then we have7)

(1-2) Nμh = 2Φ2 Φ3 Sj(*.

From (1.2) it follows

(1.3) Φi Nμh - 0.

A φ-connection is said to be half-symmetric with respect to φi1 or, briefly,
half-symmetric, if its torsion tensor Sμh satisfies

(1.4) ΦiΦ 3 S J t

f t = 0.

Now we have

THEOREM. 1. In an almost complex manifold there exists always a half-
symmetric φ-connection.

1 1

PROOF Let Γji be an arbitrary φ-connection and Sμh its torsion tensor.
Then, by virtue of Theorem A, the connection

Γ^H-ΦiΦsS^
1

is a φ-connection. Since the tensor Sμh is anti-symmetric in its covariant
1

indices, we see easily that ΦjΦ3 Sμh is also anti-symmetric. Hence, the
torsion tensor Sμh of ΓJ. is given by

Sjifι = Sjib - Φ: Φ 3 Sμ\

Applying ΦiΦ3 to the both sides, we find Φ2Φ3 Sμh = 0 because ΦxΦsΦiΦs
= Φ1Φ3. This shows that the Γj. is half-symmetric.

We see by means of (1.2) that in an almost complex manifold a φ-con-
nection is half-symmetric if and only if its torsion tensor Sμh satisfies

(1.5) NjtΛ = 2 Φ3S,Λ

It is known that for an arbitrary symmetric affine connection Γ^ the φ-con-
nection ΦT i has the torsion tensor Sjth satisfying (1.5)8). Thus we have

LEMMA 1.1. Let Y!ι

}ί be an arbitrary symmetric affine connection. Then the
φ-connection Φ Γ^ is half-symmetric.

We assume that the torsion tensor Sμh of a φ-connection Tμh satisfies

(1.6) Sjt* - A ΦASuδtf) = 0, Sj = Sjaa.

Then, the φ-connection Y)t is said to be semi-symmetric with respect to φih

or, briefly, to be semi-symmetric. The torsion tensor Sμh of a semi-sym-
metric φ-connection satisfies ΦiΦ3Sμh ~ 0 because of Φ3Φ4 = 0. Thus we see
that any semi-symmetric φ-connection is half-symmetric. We have now

THEOREM 2. In order that in an almost complex manifold there exist a
semi-symmetric φ-connection, it is necessary and sufficient that the Nijenhuis

7) Gf. Theorem 7.3 in [9].
8) Cf. Lemma 7.1 in [9].
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tenor Njίh of the manifold vanish identically.

PROOF. Let Γjf be a semi-symmetric φ-connection and Sjth its torsion
tensor. Then Φ2Φ3 Sjih = 0 holds good, since Φ 3 Φ 4 — 0. This together with
(1.2) implies Njt

h = 0.
Conversely, if Nμh = 0, we see that in the manifold there exists a

certain symmetric φ-connection. In fact, it is known that an almost complex
manifold admits a symmetric φ-connection if and only if its Nijehuis tensor
Njih vanishes identically9^ It is obvious that any symmetric φ-connection is
semi-symmetric. Thus there exists a semi-symmetric φ-connection in the
manifold.

In a complex manifold any quantity, say TV, is said to be self-adjoint,
if

Tμh

in complex coordinates.1 0 ) The self-adjoint quantity represents a real quantity
in real coordinates and vice versa. The self-adjointness of a tensor is
preserved by covariant differentiation with respect to a self-adjoint affine
connection. We shall restrict ourselves to self-adjoint quantities.

In a complex manifold the complex structure φ (

Λ has the numerical
components

with respect to complex coordinates (z\ 2λ). Thus we have easily the fol-
lowing facts: In a complex manifold an affine connection is a φ-connection,
if and only if

Γ^ = 0, Γ* = 0

in complex coordinates.lD It is easily seen that a φ-connection ΓJJ is half-
symmetric if and only if

Tμi = ΓJM, conj. Γ^- = 0, conj.

in complex coordinates,m and also that a φ-connection ΓJ is semi-symmetric
if and only if its torsion tensor Sμh has the components

^ £ conj.,

where Aj is a certain vector field.

2. Holomorphically projeetive changes of afϊine connections. Let Γ^

9) Cf. Frolicher [3], Obata [9], for example.

10) /Γ=λ7 if A=λ; and Λ^λ if Λ = λ7
The bar on the central letter denotes the complex conjugate.

11) Cf. Obata [9], for example.
12) The sign "conj." denotes the complex conjugate ohfe formulas already

written.
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be a half-symmetric φ-connection in an almost complex manifold. We consider
in the manifold a curve defined by means of differential equations of the
form:

<2 1 } ~W + Γ ? δ "A' Λ" = a ( t ) df + β{t)Φ*W '

where a{t) and β{t) are certain functions of the parameter t. We call such
a curve a holomorphically planar curve.I3> The set of all holomorphically
planar curves is called the system of holomorphically planar curves. If the
function β(t) vanishes identically, the differential equation (2.1) defines the
paths of the connection.

Consider a vector vh at a point p of the almost complex manifold. Then

the plane element at p spanned by the two vectors vh and vh = ifφ<£ is called
a holomorphic section containing the vector v/ι. A curve is holomorphically
planar, when and only when the holomorphic section containing the tangent
vector of the curve is parallel along the curve itself.

For a vector uj we denote by uj the vector φfttϋ. We have now

LEMMA 2.1. Let ΓJt and Γj( be two half-symmetric φ-connections in an
almost complex manifold. Then, the two connections have all holomorphically
planar cvtves in common, when and only when

(2. 2) Γ* = Γ* 4- Fo S?) - FoΦoh + Γ,δ? + TjφS

holds for certain vector fields Fj and Tj.

PROOF. When Γ^ has the form given by (2. 2), itπs obvious that the two

connections Th

n and ΓJ have the common system of holomorphically planar

curves. Conversely, we suppose that ΓJt and T)t have all holomorphically
planar curves in common. Thus, on putting

A h „ rn ~phμ - 1 β — 1 jt,

we have

(2 3) Aj,* = ^O8J> + F o φ o * + P,eΛ,

where Z7; and F^ denote certain vector fields and Pμ

h = ΛEjί]Λ.

Since the φ-connections ΓJ £ and ΓJ are half-symmetric, from Theorem A
and the definition of half-symmetry it follows

(2.4) ΦaAji* = 0, ΦiΦ 3 P^ f t = 0.

We have to note that ΦΛQμh 4- ΦJ Qtf = 0 holds good for any tensor Qμh

such that Quo11 = 0. Taking.aeeount φ-this fact, we find by virtue of (1.1)

ΦiΦΛ* = -ΦsPi/1 -

According to (2. 4), this i nplies

(2. 5) iV

13) Cf. Otsukΐ εni Tashiro [10], Tashiro 113].
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On the other hand, applying Φ . to the both sides of (2.3j, we have by-
virtue of (2.4)

1
Φ a P / = - -1 {gj (Ui - Vt) 4- Φ / W +

If we substitute this in (2.5), we find

Thus from (2.3) it follows

AJt

h - F α 8% - Fcjφo* 4- Γjδf +

where we have put

F3~Uj + Vj, Tj = Z7j - F,.

Lemma 2.1 is thereby proved completely.
We have the following lemma as an immediate consequence of Lemma

2.1.

LEMMA 2.2.1 4 ) Two symmetric φ-connections Γ^ «w<i Γ^ &UW£ «//
morphically planar curves in common, when and only token

(2.6) T], = V% + Foδ?) - FαΦoΛ

^o/Js /or cί certain vector field Fj.

Let Γ^ and Γ^ be two half-symmetric φ-connections satisfying (2.2) for

certain vector fields F$ and Tj. Theα the correspondence Γ^ -+Γ% is called

a holomorphically projectίve change1^ or, briefly, an Ή.-projective change of

ΓJj. Such two half-synπαetrie φ-connections are said to be H-projectively

related to each other.
If we take the anti-symmetric parts of the both sides of (2.2) with respect

to the covariant indices, we have

where Sy* and SjίA are the torsion tensors of Γ^ and Γ^ respectively. Con-
tracting indices h and i, we find

Tj = — r s ^ - s J α

α).

If we substitute this in the right-hand side of the above relation, we obtain
easily

14) Cf. Tashiro [13].

15) Such a change has been said to be holomorphically projective by Otsuki and
Tashiro [10] in an Hermitίan manifold. In an almost complex manifold Tashiro [13]
has called such a change holomorphically projective correspondence for symmetric
connections. By Schouten and Struik such a change was called "Bahntreue Transfor-
mation".
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where Sj = SJa

a

t Sj = Sja

a.

Consequently, we have

LEMMA 2.3. Let S3i

h be the torsion tensor of a half-symmetric φ-connection
in an almost complex manifold. Then the tensor

j

is invariant under H-projective changes of the connection, where Sj = Sja

a

COROLLARY. If a half-symmetric φ-connection is H-projectively related to
a symmetric φ-connection, then it is semi-symmetric. Conversely, a semi-sym-
metric φ-connection is H-projectively related to a symmetric one.

PROOF. The first part is an immediate consequence of Lemma 2. 3. Then
we shall prove the second part. Let Γ^ be a semi-symmetric φ-connection
and Sμh its torsion tensor. We consider an H-projectively related φ-connection
ΛJ defined by

where Sj = SJa

a. Denoting by Tμh the torsion tensor of A%, we find

(2.8) Tjth - Sjt* - — ΦάSLjSft.
n

The right-hand side vanishes identically, because the Γ£ is semi-symmetric.
Therefore, the φ-connection Λ^ is symmetric.

Now we have easily
LEMMA 2.4. For a half-symmetric φ-connectίon ΓJt the quantity

(2.9) Π* = Γ* - n^2(Vluh% - Γα%φc/Φoft) — § (Γξjn + Φ/n.^

is invariant under H-projective changes of Γ£. Conversely, if we have ΠJt =

ϊl% for two half-symmetric φ-connections Γ^ and Γ% then the two half-sym-
metric φ-connections are H-projectively related to each other.

The Tl% is not an aflϊne connection, but it seems to be a quantity cor-
responding to the projective connection of T. Y. Thomas [14]. The IIJi trans-
forms like an afiine connection under the transformation of coordinates whose
Jacobian determinant is constant.

3. The holomorphically projeetive flatness. Let Γ^ be a half-sym-
metric φ-connection in an almost complex manifold. Let us suppose that for
any point of the manifold there exists a certain neighborhood of the point
in which Γ^ is H-projectively related to a flat φ-connection. Then the half-
symmetric φ-connection Γ ;̂ is said to be H-projectively flat.

We consider the half-symmetric φ-connection A% formed from a half-
symmetric φ-connection Th

H by means of (2.7). Then A)t is H-projectively
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related to Γ£. If 'ΓJ( is supposed to be H-projectively flat, then Λ* is sym-
metric. In fact, the torsion tensor Tμh of Λ^ is given by (2.8). By virtue
of Lemma 2.3 we see that Th

yι vanishes identically because of the H-projective
flatness of Γ^. Since Λ^ is H-projectively related to Yh

ji7 the H-projective
flatness of Y% implies that of A%. Thus we have

LEMMA 3.1. In order that a half-symmetric φ-connection Yh

μ be H-projectively
flat it is necessary and sufficient that there exist an H-projectively flat, sym-
metric φ-connection which is H-projectively related to Γ^ .

Lemma 3.1 implies together with Theorem 2 that the Nijenhuis tensor of
an almost complex manifold vanishes identically if the manifold admits an H-
projectively flat, half-symmetric φ-connection.

As to the symmetric φ-connection Yu

n Y. Tashiro [13] has recently intro-
duced the tensor

(3. 1) Pw* - Rw* -f δ* p Λ t - f^Jl S? - φ^Pypφih + iWiΦif φtκ

in an almost complex manifold of dimension n > 2 and call it the holo-
morphically projective er; briefly, H-projective curvature tensor oίY)ί} where
Rfcjίh and Rμ — Raji

a are respectivey the curvature tensor and the Ricci tensor
of Γ* and P5i is defined by

(3.2) Pβ = ~^—\Rji + -2-o φ3(Rμ + Ri5)

He has proved that the H projective curvature tensor Pkμh is invariant under
H-projective changes of Γ£ and that in order that the ΓJ; be H-projectively flat
in an almost complex manifold of dimension n > 2 it is necessary and sufficient
that Picji11 vanish identically.

The φ-connection A1';- defined by (2.7) is symmetric, if the φ-connection
Yj\ is semi-symmetric. Then we see that the H-projective curvature tensor of
AJi is invariant under H-projective changes of Γ^ if Y}jL is semi-symmetric.

From the argument above given it follows that in an almost complex
manifold of dimension n > 2 a half-symmetric φ-connection is H-projectively flat
if and only if the connection is semi-symmetric and the H-projective curvature
tensor of the connection A% defined by (2.7) corresponding to the given con-
nection vanishes identically.

The^ following theorem has been proved also in [13].

THEOREM B. In order that a Kaehlerian manifold of dimension n > 2 be
H-projectively flat1G\ it is necessary and sufficient that the manifold be of constant
holomorphic sectional curvature.

4. Quaternion manifolds. Let us consider an ^-dimensional manifold
admitting two almost complex structures φi/ι and ψih satisfying

(4. 1) φSψa" + ψfφa'* - 0.

16) If in a Kεehleriεn manifold ΐhe Riemannian connection is H-projeodvely flat,
then the manifold is said to be so.
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Such a manifold is called a quaternion manifold and the pair (φih, ψιh) of
two tensors satisfying (4.1) is called a quaternion structure,l7) Then it is
known that any quaternion manifold is of dimension n = 4 j>.

Now, if we put Kιh = φίaψa

h, we see that Kih is also an almost complex
structure, i.e. KiaKa

h = —δA. If (φ*A,^<A) is a quaternion structure, Oψ'ΛKth)
and (Kih,φih) give the same quaternion structure to the manifold [9].

In a quaternion manifold an affine connection is called a (φ, ψ)-connection,
if the two almost complex structures φ*Λ and ψih are covariant constant with
respect to the connection. Then, the almost complex structure ϋf*A is also
covariant constant with respect to any (φ, ̂ -connection.

Now, let us consider a complex manifold with a quaternion structure
(φih, ψih) of class O, where φih represents the complex analytic structure.
Let (zk, zκ) be a system of complex coordinates with respect to φΛ Then,
in (zλ,zχ) φih, ψιh and Kth take the following components respectively1^ :

^ - (o - > = i ί )' **'= W o. )• <ffi>)" (-v=i W „)
It is known that zw ΰt complex manifold with a quaternion structure (φth,

Ψf), where φ/1 gives the complex analytic structure, the (φ, ψ)-connection Γ^
is determined if a tensor field Tjth of type in (1,2): is given the manifold

Γ£μ = -O^^.VΨ S*1 - ΨμtTv-β" ψa\ COnj.
(4'2) It,= r^- , conj.,
the others being zero,19)

Let us suppose that a (φ, Vr)-connection Γ^ is semi-symmetric with respect
to the complex analytic structure φΛ Then, by means of (1.7) the torsion
tensor Sμh of Γfj has the components:

the others being zero, where Aj is a certain vector field. Thus, taking ac-
count of (4.2), we find

Consequently, in a complex analytic manifold with a quaternion structure
(ΦΛ ^i7*) where φιlh gives the complex analytic structure, there exists a
unique (φ, "ΨO-connection which is semi-symmetric with respect to φΛ

It is known-0) that in a complex manifold with a quaternion structure
(φih,ψί/ι), where φih gives the complex analytic structure, there exists a
symmetric (φ, ̂ -connection if and only if the Nijenhuis tensor Njιh(ψ) of
ψi* vanishes identically. We note here that NjtKΨ) = 0 if and only if Bίvψμ^

17) Cf. Ehresmann [2], Libermann [8], Obata [9].
18) Cf. §2, Chap. I of [9].
19) CL Theorem 11.1 in [9].
20) Cf. Corollary 2 to Theorem 11.1 in [9].
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= 0. Hence, the vector A} above obtained is necessarily zero, ίif Nμh{ψ) = 0.
Thus, any (φ, ̂ -connection is symmetric in such a manifold, if Nμh(Ψ) = 0
and the connection is semi-symmetric with respect to φΛ Further, the
unique symmetric (ώ, ^-connection is given by
r4- 3) ΓJμ = -(a, ψ^)ψ«\ conj. Γ ^ = 0, conj.

The curvature tensor Rkjt

h of the symmetric (φ, ^-connection given by
(4.3j has the components

the others being zero31'. Thus the Ricci tensor Rμ vanishes identically. In
fact, we see

Rϊμ = Sxf = a,-((a*^)^hr°0 = o.
As the Ricci tensor Rμ vanishes identically, the H-projective curvature tensor
with respect to φth coincides with the curvature tensor for the symmetric
(φ, ψ)-connection. Thus, we have

THEOREM 3. Let ΓjJ be a half-symmetric (φ, ψ)-connection with respect to
φi/ι in a complex manifold with a quaternion structure (φi/ι, ψih), where φίh

gives the complex analytic structure. If Yh

j} is H-projectively flat with respect
to φih, and, if Njt\Ψ) = 0, then Γ^ is of zero curvature.

Now we assume that in a Kaehlerian manifold defined by (gμ}φih) there
is given another almost complex structure ψih which constitutes a quaternion
structure (φ^yψi11) together with φt

A. We further assume that the Rieman-
0

nian connection leaves ψ ^ invariant, i.e. Vjψih = 0. Then, we say that
the given manifold is a Kaehlerian manifold with a quaternion structure. It
is known that the Ricci tensor of a Kaehlerian manifold vanishes identically
if the manifold has a quaternion structure.22i Thus we have

THEOREM 4. If a Kaehlerian manifold defined by (gji} φih) has a quaternion
structure (φth, ψth), and, if it is R-projectively flat with respect to φih, then it
is of zero curvature.

5. φ-projeetive changes of half-symmetric φ-connections. We as-
sume that in an almost complex manifold two half-symmetric φ-connections

Yh

yi and ΓJί have all paths in common. Then, as is easily seen, on putting Aμh =

ΓJi - Γ* , we have

where Fj is a certain vector field and Pμh = A{μ{1.
Now we shall determine the tensor Pμh and then the tensor Aμh. The

connections Γ* and T% being φ-connections, from Theorem A it follows
Φ2Aμh = 0. Thus we see

(5.1) 2ΦaPJJ + ΦίCFcjδί)) = 0.

21) Cf. §11, Chap, III of [9].
22) Cf. Theorem 17.1 in [9].
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Since these two connections are half-symmetric, we have ΦiΦ 3 Pμh = 0.
Combining this with (5.1), we find Φ3Pβh = 0, since Φ x + Φs = identity,

Since Pao

h = 0, it is easily seen that Φ2 Pμh + Φ* Pi/1 = 0. By virtue
of this and (1.1) we have

Φ 2 / V = -Φ 3Φ 3Pί/ 4 - Φ1Φ4ΛΛ

Taking account of Φ3 Pμh = 0, we find now

Φ i i V + φ * J V = o

because of Φ3 4- Φ4 = identity. Thus we obtain

Ptf = φ3Pji*-ΦzPij\

from which we have, substituting (5.1),

Pjιh = ΦΛFϋSJj).
We have therefore

LEMMA 5.1. In order that two half-symmetric φ-connections Γ* <2W<i ΓJ£

Zί̂ ^̂  α// paths in common, it is necessary and sufficient that

(5.2) ϊ * = Γ* •+ F σ δo A + Φ^Ft^S)

/or a certain vector field Fj.

ϊf we put Aj = ^ F^; Γj = Fj, from (5.2) it follows

Thus ί/zβ change (5. 2) o/β half-symmetric φ-connection is an K-projectiυe change.

Therefore, two connections Γ£ and ΓJ, have all holomorphically planar curves

in common. Two half-symmetric φ-connections related by means of (5.2) are

said to be φ-projectively related to each other. The correspondence Γ'J£—>Vh

Ji

defined by (5. 4; is called a φ~projective change of the half-symmetric φ-con-

nection Γ^. From the corollary to Lemma 2. 3 we have now

LEMMA 5.2. A half-symmetric φ-connection is semi-symmetric, if it is φ-
projectively related to a symmetric φ-connection.

LEMMA 5. 3. Let ΓJ£ be a half-symmetric φ-connetion and Sji/ι its torsion
tensor. Then the half-symmetric φ-connection

(5. 3) 2J4 .= Γ% - A s ( j δ ΐ ) _ Λ φ/S^JJ), S, = Sja«

is invariant under φ-projectiυe changes of ΓJ£. Conversely, if we have 2jf =

Xji /or too half-symmetric φ-connections I™ <2ŵ  ΓJ(, ίΛβw the two connections
are φ-projectively related to each other.

PROOF. It is easily seen that the φ-connection 2^ is half-symmetric. Let

Έμh be the torsion tensor of the φ-projectively related half-symmetric φ-con-
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nection Γ?i given in (5.2). Taking the anti-symmetric parts of the both sides
of (5.2) and contracting h and i, we find

n

where Sj — Sja

a If we substitute this in (5.2), we have a relation which
shows that the φ-connection Σ% defined by (5. 3) is invariant under the φ-
projective change (5.2). The first part of Lemma 5.3 is thereby proved.
The second part will be proved easily.

COROLLARY. If two symmetric φ-connections are projeotively or, equivalently,
φ-projectively related to each other, then they coincide with each other.

Thus we have

THEOREM 5.23) In a complex manifold, if two Kaehlerian metrics have all
geodesies in common, then their Riemannian connections coincide with each
other.

Keeping assumptions as in Theorem 5, we see that the two metrics are
homothetically related to each other if, moreover, at least one of the given
Kaehlerian metrics is irreducible.

Let Γ^ be a half-symmetric φ-connection in an almost complex manifold.
Let us suppose that for any point of the manifold there exists a certain
neighborhood of the point in which ΓJ is φ-projectively related to a flat φ-
connection. Then the given half-symmetric φ-connection Γ*. is said to be φ-
projectiυely flat. If the Riemannian connection of a Kaehlerian manifold is
projectively or, equivalentJy, φ-projectively flat, then the manifold is said to
be projectively or φ-projectively flat. Now we have the following

COROLLARY. If a Kaehlerian manifold is projectively flat, then the manifold
is of zero curvature.

6. Compact groups of H-projeetive transformations and groups of
H-projeetive transformations preserving the Rieei tensor. In an almost
complex manifold defined by φtfι we consider a transformation leaving the
almost complex structure φih invariant and call it a φ-transformation. Let
Y% be a φ-connection in the manifold then the affine connection Γlh

n induced20

from Y}]t by a φ-transformation is also a φ-connection. If V\ is half-
symmetric, then ΓJi is also.

We assume that a φ-transformation s carries any holomorphically planar
curve of a half-symmetric φ-connection Γ^ into such a curve. Then, the φ-
transformation s is said to be holomorphically projective or, briefly, H-projective
with respect to ΓJf. According to Lemma 2.1 we see that in this case the

half-symmetric φ-connection Γ^ induced from Γ% by s is related with Γ£ by

23) This theorem has been proved by Bochner [1].
24) Cf. Ishihara [7], for example.
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means of (2.2).
Let us consider a group25) of H-projective transformations of a half-

symmetric φ-connection Γ^ in an almost complex manifold. If there exists
in the manifold an H-projectively related half-symmetric φ-connection which
is invariant under the group, then the group is said to be essentially affine
with respect to the T^.

We have now the following theorems in an analogous way as in a
previous paper.26:>

THEOREM 6. A group of H-projective transformations of a half-symmetric
φ-counection is essentially affine, if the group is compact.

THEOREM 7. A transitive group of H-projective transformations of a half-
symmetric φ-connection is essentially affine, if its isotropy group is compact.

Corresponding to Theorem 3 in [7] we have the following theorem, if
we take account of the results which will be given in §7 and §8.

THEOREM 8. Let G be a transitive group of H-projective transformations of
a half-symmetric φ-connection, which is not H-projectively flat, in an almost
complex manifold. If the identity component of the linear isotropy group of G
at a point is irreducible, then G is essentially affine with respect to the given
connection.

Theorem 8 implies together with Theorem B the following

COROLLARY. Let G be a transitive group of H-projective transformations of
a Kaehlerian manifold whose holomorphic sectional curvature is not constant.
If the identity component of the linear isotropy group of G at a point is ir-
reducible, then G is essntially affine with respect to the Riemannian connection.

In a complex manifold of dimension n = 2m, we consider a symmetric

φ-connection T\ and an H-projective transformation s of Γ*;.. Then the φ-con-

nection Γ^ induced from ΓJ;. by s is related to Γj* by means of (2.2). Denoting

by Rtji* and RkJi
h the curvature tensors of T% and T% respectively, we have

by virtue of (2.2)

(6.1) gbJt* = RkJi* + ̂ kFj}i - F M δ f - ΦβFjitΦϊ + FW\ φj?φιh,

where Fjt is defined by

Fjt ^ VjFt — Φ3(FjFί).

Contracting h and k in (6.1), we find

(6.2) Rji = R3i ^ J

where Rji and ΐ?^ are the Ricci tensors of ΓJ and Γ£ respectively.
We suppose that the transformation s preserves the Ricci tensor, i .e.,

Rji = Rji. Then from (6.2) it follows that

25) We restrict attention to Lie groups in the paper.
26) Cf. Theorems 1 and 2 in £7].
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Φ3(FJt + Ftj) - — J - Fji = 0

which implies, provided n > 2, Fji = 0. Thus, we have

LEMMA 6.1. In a complex manifold of complex dimension m>l, if an H-
projective transformation of a symmetric φ-connection preserves the Ricci tensor,
then the vector field Fj corresponding to the transformation satisfies
(6. 3) VjFt = Φ 3 (FjFt).

It is easily seen from the above argument that an H-projective transfor-
mation of a symmetric φ-connection preserves the curvature tensor if and
only if it leaves the Ricci tensor invariant. We have the following lemma
as in a previous paper.27)

LEMMA 6.2. If in a complex manifold with a symmetric φ-connection there
exists a non-trivial vector' field Fj satisfying (6.3), then the homogeneous holo-
nomy group of the manifold has an invariant hyperplane and the restricted
homogeneous holonomy group of the manifold has an invariant covariant vector.

In a complex manifold M with a half-symmetric φ-connection we denote
by HP(M) and A(M) the group of all H-projective transformations and that
of all affine transformations respectively. We shall denotefby HP*(M) the group
of all H-projective transformations preserving the Ricci tensor. In a Kaehler-
ian manifold we denote by I(M) the group of all isometries and by HP(M),
HP*(M) and A(M) respectively the corresponding groups with respect to the
Riemannian connection. By virtue of Lemma 6.2, we have the following
theorem as in a previous paper28).

THEOREM 9. Let M be a complex manifold of complex dimension m>l
with a symmetric φ-connection. If the homogeneous holonomy group of M has
no invariant hyperplane, or, if the restricted homogeneous holonomy group has
no invariant covariant vector, then HP*(M) = A(M). If, moreover, the Ricci
tensor of M vanishes identically, then HP{M) = A(M).

We can prove the following lemma as in a previous paper.29i

LEMMA 6.3. In a complex manifold with a symmetric φ-connection, if a
covariant vector field Fj satisfying (6.3) has no singularity at any point, provided
the manifold to be complete with respect to the φ-connection, then Fj vanishes
identically.

As a consequence of Lemma 6.3 we have the following theorem just as
in a previous paper.30)

THEOREM 10. If a complex manifold M of complex dimension m>l is
complete with respect to a symmetric φ-connection, then HP*(M) = A(M). If,

27) Cf. Lemma 3 in [7].
28) Cf. Theorem 6 in [7].
29) Cf. Lemma 4 in [7].
30) Cf. Theorem 7 in [7].
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moreover, the Ricci tensor of M vanishes identically, then HP(M) = A(M).

We denote by HP*(M) the identity component of the group HP*(M) and
use analogous notations for the other groups. We have now the following
theorems as in a previous paper31).

THEOREM 11. If the restricted homogeneous holonomy group of a complete
Kaehlerian manifold M has no invariant vector, and, if M is of complex dim-
ension m >1, then HP$(M) = MM). If moreover, the Ricci tensor of M
vanishes identically, then HP${M) = MM).

THEOREM 12. If M is a compact Kaehlerian manifold of complex dimension
m > 1, then HP^(M) = MM). If, moreover, the Ricci tensor of M vanishes
identically, then HP0(M) = MM).

7. Infinitesimal H-projective transformations. In an almost complex
manifold defined by φιh an infinitesimal transformation uh is called an infini-
tesimal ^-transformation, if uh preserves310 the almost complex structure
φιh, i.e., if

(7. 1) £ φih = Uadaφih - φia3aUh + φJVtU1* = 0,
u

where £ denotes the operator of Lie differentiation3^ with respect to uh. Let
u

ΓJ( be a half-symmetric φ-connection in the manifold. We call an infinitesimal
^-transformation uh an infinitesimal ΊΆ-projective transformation of Γ^f if we
have
(7.2) £ Γ* = Fcjδ?> - FuΦ

ho + T,δ? + Tjφt*

for certain vector fields Fj and Tj. If the connection ΓJ£ is symmetric, the
condition (7.2) is reduced to

(7.3) £

Let uh be an infinitesimal H-projective transformation of a half-symmetric
φ-connection Γ^ in an almost complex manifold. Contracting h and i in (7.2),
we find

Further, contracting h and j in (7.2), we have

' Fj.
» aJ 2

From these two relations it follows that

31) Cf. Theorems 8 and 9 in [7].
32) If the Lie derivative of a geometric object vanishes with respect to an infi*

nitesimal transformation uh

t then we say that uh preserves the geometric object.
33) Cf. Yano [17].
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If we substitute this in the right-hand side of (7.2), we obtain

(7.4)

where Π^ is the quantity defined by (2. 9) corresponding to Γ£. It is easily
verified that the Lie derivative £ ΠJ. is a tensor. By using .(7,4) we have

LEMMA 7.1. Z^ί uh be an infinitesimal Ή.~projectiυe transformation of a
half-symmetric φ-connection Γ*£ in an almost complex manifold and p be a point
of the manifold such that uh does not vanish at p. Then, in a certain neigh-
borhood of p there exists a system of coordinates (x*) such that dx 11% = 0.

This lemma implies together with Lemma 2.4

LEMMA 7.2. Let G be a one-parameter group of φ-transformations in an
almost complex manifold with a half-symmetric φ-connection ΓJ,. If the infini-
tesimal transformation induced by G is Έί-projective with respect to Γ% then
the group G is that of H-projective transformation of Γ^.

By means of Lemma 7.2 the problems concerning groups of H-projective
transformations is reduced to those of infinitesimal H-projective transforma-
tions, as far as connected groups are concerned.

Let us consider two infinitesimal H-projective transformations uh and vh.
We define as usual the product ιvh of uh and vh by

Wh = UaBaV/ι — VadaUft.

Then, as is well known, we have34)

In an almost complex manifold with a half-symmetric φ-connection Γ^
we construct the half-symmetric φ-connection ΛJ4 defined by (2.7) corresponding
to ΓJ,. It is easily seen from (7.2) that for an infinitesimal H-projective
transformation uh of Yh

n

(7-6) £ ΛJ£ = FoSh ~ FaΦtf

holds. We suppose that £, Λ^ = GaΦo — GaΦoh holds good for another infini-

tesimal H-projective transformation v"-. Then from (7. 5) it follows easily

(7.7) £ Λ* = Hυ δ*> - Haφif, H} = £Gj - £Fh
W U V

where ιvh is the product of uh and v\ We see thereby that in an almost
complex manifold with a half-symmetric φ-connection the set of all infinitesi-
mal H-projective transformations of the φ-connection forms a Lie algebra.

Now we shall consider the integrability conditions of the differential
equations (7.6). It is well known35)

*,) - 2 7

34) Cf. Yano [17].
35) Cf. Yano [17].
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Vj denoting the operator of covariant differentiation with respect to X% where
RkJt

h and T3i

h are respectively the curvature tensor and the torsion tensor
of ΛJ;. Substituting (7.6) in the right-hand side of the above relation, we
have

(7.8) £

Contracting & and &, we find

(7. 9) £ £„ = Φ3{VjFi + v«Fj) - — ί - VjFi - 2Fa

because of Tf = Tjb°φl = 0; where i?μ denotes the Ricci tensor of A%. Now
we have to note that for any infinitesimal ^-transformation uh the operator
£ commutes with each of the operators Φr, i. e., £ Φr = Φ r £, (r = 1,2,3,4).

If we apply Φ3 to the both sides of the above relation, we have, provided
n >2,

ViFj)

because of ΦiΦ3 Tμh - 0 and hence

(7.10) ^

where P ί̂ is the tensor constructed formally from A7'H by means of (3.2).
By virtue of (7.6) and (7.10), if we put uth = v*zΛ we see that u\

and Uth form a system of solutions of the differential equations

FaΦιTjia.+ Γ
We have thereby

LEMMA 7.3. Let uh be an infinitesimal H-projective transformation of a
half-symmetric φ-connectίon in an almost complex manifold of dimension n>2
and Fj the vector field given in (7.6) corresponding to uh. If all of uh, Fj and
\/ίUh vanishes at a point of the manifold, then uh vanishes identically.

We take a point p0 of an almost complex manifold with a half-symmetric
0-connection Γ^. It is easily seen that the set of all infinitesimal H-projective
transformations of Γj* vanishing at p0 forms a subalgebra <S0 |of the Lie
algebra @ of all H-projective infinitesimal transformations of Γ$. The algebra
@o is called the isotropy Lie algebra of @ at p0. Let To be the tangent
space of the manifold at the point p0. Then in To there exists a system of

complex coordinates (ξk, ξκ) in which the value (φih)G of the almost complex
structure φth at p0 has the components

(7.11) * * ) = ( '
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respect to f j . Thus the argument developed above concerning A% applies

also to the flat φ-connection Y\ in U.

Let uh be an infinitesimal H-projective transformation of T%. Denoting

by y^ the operator of covariant differentiation with respect to Tfv we see
according to (7.2) that

(7.14) V; Vι uh = F α 8f> - FaΦi?

holds in £7 for a vector field Fj, since T% is flat. From (7.10) it follows that

(7.15) VjFi^O

holds in U if n = 2τw > 2.
We consider another infinitesimal H-projective transformation #fc of ΓjJ.

Denoting by Gj the vector field corresponding to υh, we see from (7.7) that
the vector field Hj corresponding to the product wh of uh and vh is given in
Uby

(7. 16) ^ - Ga Vj U« - Fa V &

because of (7.15). We see further on account of (7.14) that

(7.17) ViWh = Vί ^ α Vo ^7ι — V*

holds in f/. From the definition we have in Z7

(7.18) α/* = ^ α y a ^7t — ̂ α v« «Λ

The tensor v* w'1 has self-adjoint components, such as given in (7.12), in

complex coordinates (ξκ,fκ) in the tangent space TQ at po. If M/' is the product

of two infinitesimal H-projective transformations uh and vh, denoting by aλ(u),

aμ(u) and aμ

λ(u) respectively the values of uh, Fj and VίUh at a point p0 with

respect to (ξ\ ξ;), we have by virtue of (7.16), (7.17) and (7.18)

a\w) = a*(u)a<»λ(v) — a*{v)aa

κ(u)7

aμ(w) = aμ"(u)aa(v) — a^{

— (aμ(u)aκ(v) - aμ(v)a\u))

- (aa{u)a«(v) - ajv)aa(u)) δ*.

For an infinitesimal H-projective transformation wft we define as below:

bo*(u) = -a\u), bμ\u) - a/(M) -

Then the above relations can be witten as follows:

(7.19; V(w) - 2 *Λ«) δ'-1> )̂ ~ 2 V(«)
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Let uh be an element of ©0 and Fj the vector field corresponding to it.
Then, from (7.1) it follows

(φia)θ(VaUh)o = (V^MΨΛo,
(Vί«Λ)o denoting the value of τjtuh at p0, since #Λ vanishes at p0. Thus,
taking account of (7.11), we see that (VΐWΛ)o has self-adjoint components

(7.12)
/ aμ\u) 0 v

= ( _ _ J
\ 0 β;rA(»)'in complex coordinates (ξκ,ξκ) introduced in 7V Denoting by a^{u) the com-

ponents of Fj in (£\£ λ ), we shall define the complex (mΛ-l,m + l)-matrix

/ 0 aμ(u) \
(7.13) a(u)~ ( )

corresponding to u!\ where n = 2m.
Consider two elements uh and vh of @a and their product wh € <S0. Then,

since uh = ^' = 0 at £OJ from (7.7) it follows
a(w) = [«(«), a(v)l

where the right-hand side denotes the commutator product of two matrices
a(u) and a(v). If we denote by 8 the set of all complex (m + 1, m -h 1)-
matrices of the form

A =
0 aμ \

0 a* /'

then it forms a Lie algebra over the field of real numbers, which is denoted

also by 8. The correspondence u1ι^ a{u) determines therefore a homo-

morphism a of @0 into 8. Thus, on account of Lemma 7. 3 we have
LEMMA 7.4. The isotropy Lie algebra ©0 is isomorphic to a subalgebra of

8, i. e. the homomorphism a is an isomorphism, if the manifold is of dimension
n>2.

We define for an element uh of @0 a complex (m, mj-matrix

β(u) - (*/(«)),

where <z/(w) is the coefficients of a(u). The set Sm of all complex (m, m)-
matrices forms a Lie algebra over the field of real numbers, which is denoted
also by 2m. Then, the correspondence uh-^β(u) determines a homomorph-
ism β of @o into 2m The image β(®0) of @0 by β is called the linear iso-
tropy Lie algebra g0 of @ at the point p0.

Let us consider an almost complex manifold of dimension 2m which admits
H-projectively flat half-symmetric φ-connection ΓJt. Then the Nijenhuis tensor
Njth of the manifold vanishes identically. We take a point po of the manifold.
There exists then a neighborhood U containing p0 in which Γ£ is H-projecti-
vely related to a flat φ-connection I \ because ΓjJ is H-projectively flat. Any
infinitesimal H-projective transformation of Γji is also H-projective in U with
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where (p, q = 0; 1, ... .m).

Now we make correspond the complex matrix

to an infinitesimal H-projective transformation uh of Y\. Here we have to
note that the trace of B(u) vanishes. Let S 2m+1 be the set of all complex
(m + 1, m + IJ-matrices whose trace vanishes. Then it forms a Lie algebra
over the field of real numbers, which is denoted also by S 2m+ι The cor-
respondence uh -> B(u) determines a homomorphism B of the Lie algebra ©
of all infinitesimal H-projective transformations of Γ£ into the Lie algebra
S 2m+Ί. Further, from. Lemma 7.3 it follows that the homomorphism B is
an isomorphism if n = 2/w > 2. By virtue of the argument above given we
have

THEOREM 13. Let <S be the Lie algebra oj all infinitesimal H-projective
transformations of an ll-projectively flat, half-symmetric φ-connection in a
complex manifold of complex dimension m > 1. Then © is isomorphic to a
subalgebra of the Lie algebra S Sm+ι u e. the homomorphism B defined by (7.20)
is an isomorphism.

8. Th group of H-projective transformations of sufficiently high
order. We shall now study a manifold admitting a group of H-projective
transformations of sufficiently high order. For this purpose we shall give
some preliminary lemmas. Let us consider an almost complex manifold with
a half-symmetric φ-connection ΓJJ. We denote by (S the Lie algebra of all
infinitesimal H-projective transformations of ΓJ; and by (So the isotropy Lie
algebra of % at a point p0 of the manifold. The linear isotropy Lie algebra
of © at po is denoted by g(t.

Let uh be an infinitesimal H-projective transformation of ΓJ and Λj4 be
the half-symmetric φ-connection defined by (2.7) corresponding to ΓjJ. It it easily
seen from (7.6) that

2
F

Substituting this in (7.10), since £TH

h = 0, we have
(8.1) VjFί = £ΠJi,

U

the quantity Tljt being defined by

Π ί l s i ' ' + ( ί T 2 7 A i Φ l W

where Pόi is the tensor defined by (3.2) and Tμh is the torsion tensor of Λ%.
The quantity Π;; is not a tensor, but its Lie derivative £ Hji is a tensor.

Γf we substitute (8.1) in the right-hand side of (7.8), we find

(8.2) £ mJt

h = - 2 Γfc/(FCα8i>A - ^
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where Πkjih is defined by

The quantity ΐlkJi
h is not a tensor, but its Lie derivative £ Uhji71 is a tensor.

u

LEMMA 8.1. If the kernel of the homomorphisms β: (30 -> g0 is not the
trivial subalgebra {0}, then the torsion tensor Tjih of Kh

H vanishes at jpo

PROOF From the condition of the lemma it follows that there exists an
infinitesimal H-projective transformation uh such that uh and ViUn vanishes
at the point pQ but the vector field Fj corresponding to uh does not vanish
at po. We have to note that the Lie derivative £ Π^ίΛ isfa linear cαmbina-

tΐon of uh and v«»ft. Thus £ lTfcJi

ft vanishes at p0. From (8.2) it follows that

holds at po. Contracting h and i} we obtain TufFa = 0. Multiplying φf

A and

contracting, we find Tisf Fa = 0. Consequently, it follows 7\/ F; — Ttf φahFt

= 0? which becomes TkjλFμ — 0 in complex coordinates (ξκ,ξκ) introduced

in the tangent space To at p0. Thus we have 7\/ = 0 at pQt since the vector

field Fj does not vanish at pQ. Lemma 8.1 is thereby proved.
Now we consider a semi-symmetric φ-connectΐon Yfv Then the connection

ΆjS defined by (2.7) corresponding to Y% is symmetric, i.e. TJt

h = 0. Let uh

be an infinitesimal H-projective transformation of Γ% Taking account of
Tjth = 0, from (7.8) and (7.10) we have

(8.3) £ Aji* = 0,

where P^;Λ is the H-projective ^curvature tensor of ΛJJ. As the integrability
condition of (7.10), i.e. of VJFΪ = ί,Pμ, we have

(8.4) £ i V = Pw i« F«,

where Pfc<ίf has been defined by PkJi = 2 Vι* PJJ*- The relation (8.4) being
established, we have easily

LEMMA 8.2. Let Y\ be a semi-symmetric φ-connection. If the kernel of the
homomorphism β: ©0 -> So is of the maximum dimension 2m, then the H-
projectiυe curvature tensor of A jj vanishes at po.

The closed and connected subgroups of the group of all real («, w)-matrices
has been determined by H. C. Wang and K. Yano [15], if it is of dimension
not less than riz —2n + 5. Now we have Lemma 8.3 establishing a similar
fact concerning subalgebras of the Lie algebra S». We shall use the follow-
ing notations denoting the subalgebras of 2m:

= s 0 . £ = 2 , 3 . . . . . ,

= 0, q = 2,3, . . . . ,
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Q(A) = i(βμ

κ)\aμ

x = At 8^, A : non-vanishing complex number},
where t is a real variable. We see at once that dim S2m = 2(mz — 1), dim
5Dΐ = dim W = 2(w2a - m" + 1), dim 3 (A) = 1. We denote by 3 (A) x S2m

the Lie algebra generated by Q(A) and © S w .

LEMMA 8.3. Each subalgebra of 2m is, if its dimension is not less than
2{ntι —mΛ-Vj, conjugate to one of the Lie algebras: 2m, $ (A) x S2m, S 2m,

m, 3R'.
By virtue of Lemma 8.3 we have

LEMMA 8.4. Let ξ) be a subalgebra of the Lie algebra 2m. If dim ξ> ί>
2(nϊz + 1), then the kernel of β in ξ> is of dimension 2m and the image βφ) is
conjugate to one of the algebras indicated in Lemma 8.3.

We consider an almost complex manifold of dimension n = 2m > 2 with
a half-symmetric φ-connection ΓJ( which admits a group of H-projective trans-
formations of order not less than 2(m* + m + 1). Let G be the group of all
ϋΓ-projective transformations in such a manifold then we may assume that
G is effective in the manifold. We denoted by © the Lie algebra of all
infinitesimal ZΓ-projective transformations induced in the manifold by G.
Then we see dim @ >2(m* -f- m -f 1), because G is effective in the manifold.
Taking an arbitrary point p0 of the manifold, we mean by @0 and g0 res-
pectively the isotropy Lie algebra and the linear isotropy Lie algebra of &
at PQ. It is easily seen that dim @0 > dim (3 — 2m, i. e.

dim @o > 2{mι -h 1).

Thus, from Lemmas 7.4 and 8.4 it follows that the kernel of β in @u is of
dimension 2m and the linear isotropy Lie algebra g0 = /3(@o) is conjugate to
one of the Lie algebras indicated in Lemma 8. 3.

Since the kernel of β in ©0 is of dimension 2m, the point p0 being taken
arbitrary, Lemma 8.1 implies that the ^-connection T% is semi-symmetric.
Thus, from Theorem 2 it follows that the Nijenhuis tensor Njth of the manifold
vanishes identically if dim G ;> 2{mι + m 4- 1). Furthermore, from Lemma 8.2
it follows that the given half-symmetric φ-connection Γ^ is H-projectively flat
if dim G ^ 2{nί1 + m -f 1). Hence, by virtue of Theorem 13 the Lie algebra
@ is isomorphic to a subalgebra of S2m+1. On the other hand, we have
supposed dim @ ̂  2(m2 + m + 1). From Lemma 8. 3 it follows thereby that
@ is isomorphic to S 2m+Ί itself. We see further that the group G is transi-
tive in the manifold, since the manifold is connected.

The Lie algebra S 2ϊft+1 contains the Lie algebra U of all unitary matrices
(bζ)svίch that V + V = 0 (p, q = 0,1, . . . . , m). The Lie algebra U generates a
compact group Gf in the group G. We see easily that the orbit of Gf is 2m-
dimensional in the manifold. Hence, the gronp Gf being compact, it is transi-
tive in the manifold and then the manifold admits a Kaehlerian metric with
constant holomorphic sectional curvature. Therefore, the manifold is homeo-
morphic to the complex protective space of complex dimension m.36) Summing

36) Cf. Igusa [5]. ~~ ~~
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up the above arguments, we have

THEOREM 14. Let G be an effective group of Ή.~projective transformations
in an almost complex manifold of complex dimension n = 2m > 2 with half-
symmetric φ-connection. Suppose that the group G is of order not less than
2(m2 + m + 1). Then the connection is R-projectively flat and the group G is of
the maximum order 2{m1 + 2m) and transitive in the manifold. The manifold
is further homeomorphic to the complex projective space.

We shall give without proof the following theorem which will be proved
by using Lemmas 8.1 and 8. 4.

THEOREM 15. Let G be an effective group of H-βrojective transformations
of a halfsymmetric φ-connection in an almost complex manifold of dimension
n = 2m. If the connection is not semi-symmetric, then dim G Ξϋ 2m1 for m > 1.

COROLLLARY. Let G be an effective group of H-projective transformations
of a half-symmetric φ-connection in an almost complex manifold of dimension
n = 2m. If the Nijenhuis tensor of the manifold does not vanish, then dim G
<Ξ 2m1 for m>l.

A similar fact holds good for the group of affine transformations of φ-
connections. A ^-transformation is called an affine φ-transformation of a 0-
connection, if the transformation leaves the φ-connection invariant. Thus, we
have the following fact: Let G bean effective group of affine φ-transfor maίions
of a φ-connection in an almost complex manifold of dimension n = 2m. If the
φ-connection is not symmetric, or, if the Nijenhuis tensor of the manifold does
not vanish, then dim G 5Ξ 2m* for m > 1.

A ^-transformation is called a 0-projective transformation of a φ-connection,
if the transformation preserves the system of paths of the connection. Here
we have easily the following facts by virtue of Lemma 5. 3: Any group of
φ-projective transformations of a half-symmetric φ-connection is essentially affine.
If the connection is symmetric, then the grcup leaves the connection invariant.
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