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1. Introduction. A classic problem in the geometry of the zeros of
polynomials is the determination of the number of zeros of a polynomial in
a given half-plane. This problem can easily be reduced to that of deter-
mining the number of zeros lying in the upper half-plane (Im z > 0). The
classic Cauchy Index Theorem (see [1], p. 129, Th. 37,1) solves the problem
for F(z) ~ai) + a1z + . . . . + On-i z™'1 + zn =/fc) + ig(z), where f(z) and g{z) are
real polynomials, respectively of degree n and g w - 1 , and where the
highest degree term in f{z) has the coefficient 1.

In the present paper we show that this theorem can easily be extended
to the case in which Fiz) is of the form f{z) -f- \g(z), where λ is a non-real
number, and fiz) and giz) are real polynomials of any degree. Theorem 1
gives this extension. Theorem 7 is a converse of Theorem 1. In addition
we derive some results from these two propositions (Theorems 2/6, Theorems
8/10).

2. Definitions. Let fiz) and g(x) be two real polynomials with no common
real zeros. The combined real zeros of these polynomials can be arranged
in order of increasing magnitude whereby multiple roots are counted according
to their multiplicities. If no sequence of consecutive zeros of either polyno-
mial is contained in this arrangement, we consider it final and call it S. In
the other case we delete from each sequence of, say ξ, consecutive zeros of

f{z) or of g(z) all ξ zeros if ξ is even and any set of ξ — 1 zeros if ξ is odd7

repeating the process if necessary until an arrangement S is obtained in
which no further deletions are possible. Let m{ > 1) and n{ > 1) be the degrees
of f{z) and g(z) respectively. If m^nim^n) the number k of the zeros atj
of fiz) (the zeros βj of g(z)) in S is called the index of the polynomials f(z) and
g(z). Of course k => 0. S is an arrangement either of the form ax< βί< ,
or βι < aλ < , or au or βu or is empty.

REMARK. If m = n, then there are as many a} as β5 in the final arran-
gement since fiz) and giz) are real polynomials.

To show Theorem 1 we use the following

LEMMA. Let L be a line on which a given polynomial fiz) has no zeros.
Let ΔL arg f(z) denote the net change in arg fiz) as point z traverses L in a
specified direction, and accordingly let p(q) denote the number of zeros of fiz)
to the left {right) of L. Then

See [1], p. 5, Th. 1,6.
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THEOREM 1. Let f(z) ΞΞ A(Z - ax) (z -ai)....(z~ aj, g{z) Ξ B(Z - bx) (z -
δ2) . . . . (z — bn) be real polynomials with no real zero in common (AB 4= 0).
Let k be the index of the polynomials. Let λ = λ' + iXf be a non-real number.
Let y denote the number λ"(od — β\) g{oίι)f(βι) if S contains at least ax and
βλ, the numbe? — Xfg{oίi) if S consists of ax only, the number Xff(β) if S consists
of βλ only, the number 0 if k = 0. Let F(z) =f(z) -f Xg(z). Furthermore let

μx = {max (m, n) -f (sgn y) k}/2

μ.> = {max (m, n) — (sgn 7) k}/2

ASSERTION : F{z) has μx zeros in the upper half-plane and μ2 zeros in the
lower half-plane.

PROOF. Since λ is non-real, and/(z) and g(z) are real polynomials, with
no common zeros it follows that F(z) has imaginary zeros only. Now we in-
vestigate the behaviour of the point w = F(z) when z runs through the real
numbers from — 00 to 00. The curve described by W has an asymptotic
direction Rl z — 0 if m > n, an asymptotic direction Im z - 0 if m = n, A +
X'B = 0, an asymptotic direction (Imz)/(Rlz) = X'/\' if m < n, an asymptotic
direction {lmz)j{Rl z) = X'B I {A -f XB) if m = w, A + VB Φ 0. When 2 passes
through a value a}, then /(z) vanishes, and the curve W = F(z) cuts the line
through the origin and λ at the point \g(aj). When z passes through the
value bj, the curve cuts the real axis at the point f(bj). It depends on the
signs of the factors of 7 whether the origin is encircled clockwise or counter-
clockwise. The net change of argF(^) is determined by the value of k and
the sense in which the origin is encircled. Furthermore we have max {m, n)
= μι + μ2. The application of the lemma to all possible cases establishes

the assertion.

3. Applications.

T H E O R E M 2. If the real polynomials f(z) = (z — ax) (z — a£) (z — an),
g(z) = (z — bj.) {z — b2).. . .(z — bn) have real zeros ivith the property aL < bλ <
aι<bι< . . . . <an< bn, then the polynomial F(z) ~f(z) + \g(z), where X^X

+ i\" is a non-real number, has all its zeros either in the upper half-plane
(X' > 0) or in the lower half-plane (X" < 0).

PROOF. Here we have in each case g(aιY(bι) < 0. Hence, if λ" > 0, we
have γ > 0 and thus μ ι = n, μλ = 0 ; if λ," < 0 we find μ} = 0, μ.Λ = n.

THEOREM 3 (THE CAUCHY INDEX THEOREM ([1], p. 129)). Let F(z) ~ao + aι

z -\r . . . . +#«-! zn~ι 4- zn =f(z) -f ig{z), where f(z) and g(z) are real polynomials
with g(z) φ 0. Let z describe the real axis from — 00 to 00, let σ be the
number of real zeros of f(z) at which f(z)/g(z) changes from — to + , and r the
number of real zeros of f{z) at which f(z)/g(z) changes from -f to — . If F(z) has
no real zeros, μλ zeros in the upper half-plane and μλ zeros in the lower half-
plane, then

μι = {n 4- (T - σ)}/2, μ2 = {n - (r - <τ)}/2.

PROOF. Here k is the number of the reduced set of real zeros of f{z) and
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equal to the absolute value of τ —<r. Furthermore λ" > 0. The assertion
now follows from Theorem 1.

THEOREM 4. Let F{z) ~ao + a±z + . . . . + an-ι zn^ + zn ^f(z) -f ig{z).

If f(z) has n real zeros a5, and g(z) has n — 1 real zeros βά with ax< βλ<
<x2< <βn-\ < oίny then F(z) has n zeros in the u pper half-plane if { — T)n

g(ct\) > 0, and n zeros in the lower half-plane if ( — 1)^(^0 < 0. See [1], p.
130, Ex. 3.

PROOF. Here k = n λ" > 0, ax — βι< 0.

THEOREM 5. Let g(z) be a real polynomial of degree n having n distinct
zeros of which p are real. Let f(z) be a real polynomial of degree n — 1 which
relative to g{z) has the partial fraction development

V ( Ύj - 4. - ^ J Γ -

where au a2, ap are real numbers, 7 , = m5 eiμ-s with m5 > 0 (j = 1,2, ,

n), μ j = 0 ( / = 1,2, . . . . ,J>), μjreal and Φ 0 with \μ3\ < π/2(J = p + 1, . . . . , w ) .

Z^ί λ be a non-real number X -f zk". Let F(z) ^f(z) -f λflr(s). Z ^ 7 be the
number \"(cci — βi), where cii and βL have the same meaning as in 2. Then
the polynomial F(z) has {n + (sgπ y)p}/2 zeros in the upper half-plane, and
{n — (sgn y)p}/2 zeros in the lower half-plane.

PROOF. According to Marden ([2], p. 92, Th. 2.3) there lies an odd number
of zeros of f(z) between two consecutive zeros of g(z). This implies that
outside of the smallest closed interval containing all the real zeros of g(z)
there is an even number of zeros of f{z) (or none). Furthermore we have
sgn g( — en) Φ sgn /( — oo), because of our assumption concerning 7 .̂ The
index of fiz) and g{z) is equal to p. In addition f{βι)g(aι) > 0. The application
of Theorem 1 now yields the proof.

THEOREM 6. Let f{z) and g{z) be the polynomials of the preceding theorem.
Let ω be a point on the real axis distinct from the zeros of f(z) and g(z), and
let ω be located next to βr (r = 1,2, . . . .,p) or possibly separated from the
nearest βr by an even number of real zeros of f(z). Let λ be a non-real num-
ber. Let 7 have the same meaning as in Theorem 5.

Then F(z) =βz) + X(x - ω) g{z) has

{n + (sgn7)|2r — p — l|}/2 zeros in the upper half plane, and

{n — (sgn7)|2r — p — l|}/2 zeros in the lower half-plane.

PROOF. The index of the polynomial f{z) and (z — ω)g(z) is |2r — P — 1|.
Furthermore, investigating all possible cases, we see that the sign of
(a — βY(β)g(cc) in this theDrem is the same as that of the corresponding
expression in the preceding theoren. Hence the assertion follows.

4. A converse of T h e o r e m 1 is

THEOREM 7. Let f(z) and g(z) be two real polynomials with no real zeros
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in common. Let F(z) ^f(z) -f Xg{z), where λ is a non-real number, have μι
zeros in the upper half-plane and μ<> zeros in the lower half-plane. Let k =
\μτ — A*2|- Then one of the polynomials f(z) and g(z), namely the one with the
highest degree, has at least k real zeros, while the other also has at least k
real zeros if m — n~ (mod 2), and has k±l real zeros if m — n= 1 (mod 2).

PROOF. The truth of 1 the above assertion follows immediately from the
relations concerning μΊ and μ2 of Theorem 1. For we have μx — μ2 = k{sgn y).

5. Applications of Theorem 7.

THEOREM 8. If f{z) and g{z) are real polynomials such that F(z) =f(z) +
ig(z) has q roots in the lower-half plane, then f{z) has at most q pairs of
conjugate complex zeros (N. G. de Bruyn). See [3], p. 215, Lemma 2.

PROOF. We have q = {max(m, n) — (sgny)&}/2, where m} n, k and y have
the same meanings as in Theorem 1. From this equality it follows that the
number of complex zeros of f(z) is less than or equal to 2q -f (sgn y)k — k',
where kf is the number of real zeros of f(z). Since k>k' according to the
definition of k, the assertion of the theorem follows.

THEOREM 9: If the real polynomial

F(z) Ξ β o + aiZ + aλz'z -f Λ-an zn

has μλ zeros in the left half-plane {Rl z < 0) and μλ zeros in the right half-
plane {Rl z > 0), then the polynomials

f(z) = aΰ + aΛz + a^ + . . . . + α a p z* (p =

g(z) ΞΞ ax + a3z + a5z* + . . . . + a2q+1 & (q = ψ-

have at least ~ 2 ~~ negative zeros.

PROOF. F{iz) = /( ~ z2) + izg{ — z>Λ) has μι zeros in the upper half-plane
and μ2 zeros in the lower half-plane. According to theorem 7 each of the
polynomials/( — z2) and zg( — z1) has at least \μι — μz\ — 1 real zeros. When
n is even, f( — zl) and zg( — z'2) are of degrees n and n — 1 respectively, and
when n is odd, /( — 23) and zg{ — z*) are of degrees n — 1 and n respectively.
This implies: for even n, f( — z2) has at least \μ1 — μ2\ real zeros and g{ — zz)
has at least \μx — μ2\ —2 real zeros; for odd nyg( —z2)has at least \μi — μ2\

— 1 real zeros, and equally f( — z2). When \μx — μ z\ is odd, each of these
numbers of real zeros must be augmented by 1. It follows that /( — z) and

g( — z) have at least j ^ ' ^ - H ^ 2 ' ~~ 1 positive zeros, and that implies that f(z)

and g(z) have at least -μι ~~^2' ~ Ί negative zeros.

REMARK. A S a special case of the preceding theorem we mention the
following result which we proved recently in a different way (see [4], Th 4).
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When the zeros of a0 -f axz 4- + anz
n are all negative, the zeros of

f(z) ~ao + a2z + .... +a2Pz
p (p = [ | - j ) and g{z) ~ a{ + a3z + . . . . + a2q+1 zq

(q =3 j_^~g-—_]) a r e a ί l negative.

6. LEMMA. Let f{z) and g(z) be two real polynomials of degrees m and n
respectively, and of index k. Then, if for some arbitrary real constants A
and B the polynomial F(z) == Af(z) + Bg{z) has the degree max (m, n), F(z) has
at least k real zeros.

PROOF. Let m>n. Then f(z) has at least k distinct real zeros such that
between any two consecutive zeros lies at least one zero of g(z). By using
continuity properties it can be seen that in any such interval lies at least
one zero of F(z). 8o F(z) has at least k — 1 real zeros. But, since the degree
of F(z) is m} it follows that F(z) has at least k real zeros.

By application of this lemma and theorem 7 we have

THEOREM 10. If the polynomial

F(z) ΞΞ (oo + ib0) + (flfi + ibι)z + . . . . + (an + ibn)zn =/(z) + ig(z)
has μx zeros in the upper half-plane and μ2 zeros in the lower half-plane then
the real polynomial Af(z) -f B(g(z) where A and B a?e real constants with
Aan + Bbn =J= 0 has at least \μx — μ*\ real zeros.

REMARK. Another application of the preceding lemma and theorem 7,
due to several authors (see [1], p. 130, pr. 4) is the following.

// F(z) == oo + aa + . . . . + On-i zn~ι -h zn =f(z) + ig(z) where f{z) and g{z)
are real polynomials, has n zeros in the upper half-plane {or in the lower
half-plane), then for real constants A and B the polynomial Af{z) + Bg{z) has
n distinct real zeros.
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