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N. H. Kuiper and K. Yano [2]n determined all tensors of some kinds
interesting in differential geometry, which are invariant under the proper
orthogonal group of the ^-dimensional vector space or under the group of
proper orthogonal transformations fixing a Unit vector. The present author
[1] has recently studied tensors invariant under the real representation of
unitary group. The purpose of this paper is to determine all tensors of the
same types as they studied which are invariant under the real representation
of symplectic group Sp(n).

In §1 we make preliminary considerations on the real representation of
symplectic group. In §2 we state the main theorem and prove it in §§2,3,4.
In §5 we give some applications of our main theorem to the theory of affinely
connected manifolds with almost complex, quaternion or Hermitian structure,
which has recently been developed by M. Obata [3].

1. Let V be a 4w-dimensional real vector space and let there be given in
V a metric tensor gih, and tensors φχh and ψih such that

φ^φ* = Si\ ψk

hψik = -δΛ φ*/ιψik = -ΨvΛφΛ

Φia9ah -f φΛat = 0 and ψiagah + ψfgat = 0.

The group composed of all linear transformations of V leaving invariant the
tensors gih, φih and ψih will be seen to be the real representation of symplectic
gsroup Spin). We call the group the symplectic group of V and its element a
symplectic transformation of V for brevity. We define the tensors ιah, φih, ψih

and κih by

/a11 = Φ^ψi10, φih = φiagah, ψίh = Ψiagah, κih = /ciagah.

It is easily seen that

Λfc**,* = -Sih, ψb

hκt* = -/eb

hψi* = ΦΛ

κ^φtt = - φ ^ , * = ψΛf Kih + Khi = 0.

We denote the linear transformations corresponding to φih, ψih and κth

by /, J and K respectively. Since we have

Φihφi?gba = gιh, Ψihψh

agi>a = gih and Kibκh

agba = gth,

I,J and K are orthogonal transformations. Let us suppose that a set of
vectors {xu Ixi, Jx\, Kxl7 x>Λ, Ixi, Jx2, Kx2, — , xm, Ixm, Jxm, Kx™, y} is ortho-
normal. Then so is the set {xu Ixi, Jxi, Kxu — , xm> IXm, Jxm, Kxm, y, ly, Jy,

1) Numbers in brackets refer to the bibliography at the end of the paper.
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Ky}. In fact, ly, Jy and Ky are unit vectors and we have

= 0,

= 0,

• = 0 ,

= gnφΛ'ΦarΨiayhy = ghaψίayhy = ΨujY = 0,

= o,
- o ,

{χ2y* = o,

• = o ,

and similarly

(a = 1,2, ,ίw).

It follows that for any unit vector e there exists an orthonormal base {eu

. . . . , en, Jβi, ...., Jen, Ie{, . . . . , Ien, Kex,...., Ken} of F s u c h t h a t ex = £.

Let {̂ !, . . . . . £w, /βi, . . . . , / ^ , Ieλ, Ien, Kei} ...., Λfe»} be an
orthonormal base of F and σ be a symplectic transformation of F If we
have σβtx, = /ά2^, then σjβa = JcTβa = J5^», oΊβΛ = Iσβa == //*, σKβΛ = Kσβa =

if/*. Therefore σ- transforms any orthonormal base {βi, , £», .M, ,
/^Λ, 7 î, . . . . , /£«, ϋΓ î, , ^ » } into an orthonormal base {/Ί , /n, #1,

, J5Γ«, //,, , 7/*n, ϋΓ/i, . . . . , jfiΓΛi}. Conversely, the linear transformation
of F which transforms an orthonormal base {et...., en,Jeι, , Jen, Iel} ,
Ien, Keu , Ken} into an orthonormal base {/*,, , /», JTΊ, #«,
#*1; , j/*», .K/ί, , Kfn} is a symplectic transformation of F. We see
immediately that the components of tensors gih, φΛ ψih, κιh with respect to
an orthonormal base {eif , en, Jeu . . . . , Jen, Ieu Ien, Keu — , Ken}
are the elements in h-th row and i-th column of the following four matrices
respectively

/°0(
0 - En 0 0 \

En 0 0 0 1
0 0 0 EΛ
.0 0 -En 0 /' \£ n 0

where J?4Λ, E2r. and En are unit matrices of degrees 4n, 2n, and n respec-
tively. This shows that the symplectic group of V is the real representation
of symplectic group Spin).

2) Throughout the paper Greek indices a, β, run over the range 1,2, ,n
and Latin indices h,ij, over the range 1,2, ...•• 4».
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The subspace spanned by a set of vectors {x, Jx, Ix, Kx} is called the
Q-section determined by the vector x and is denoted by Q(x).

2. We now state the following
THEOREM 1. Let the tensors Vi, hμ, Tμh and Rhjί

h = — Rjki

h be invariant
under the symplectic group of V (dim V = An). Then
(1. a) vt = 0,

(I. b) hβ = kogβ 4- kiφμ 4- kzΨji 4- k3fCji,

(1. c) TV = 0 for any n,

(1. d) Rkμ
h = (dδαΛ + C20αΛ ^

4- (c 2 1δίΛ 4- c22φi/ι 4- Casψ **
4- (c 2 5δtΛ 4- Caβφi* 4- Ctfψt* 4- c,%ιcift)fCk5 for n Φ 1,

where k's and c's are constants.
If moreover Rί1cjJj = 0, /Λ^w ̂ ^ ^«^β 2/2 (1 . d )

(1. e) 2c5 4- C17 = 2cQ 4- clS = 2c 7 4- c ] 9 = 2c 8 4- c 2 0 = 2c9 4- c 2 i = 2c10 4- c2.4

= 2 c u 4- c23 = 2c 1 2 4- c 2 4 = 2 c 1 3 + c a 5 = 2cu 4- 2̂0 = 2 c ] 6 + c 2 7 = 2c 1 6 4- c2S = 0 .

//" Rhjhagta 4- Rtjtagah = 0, ffcβw ^^ ftβ^ /w (1. d)
( 1 . f) c 2 — c 5 = c3—c9 = c 4 — c 1 3 = c 7 — c 1 0 = c 8 — c 1 4

= C12 — Ci 5 = C17 "— C2i = C 2 5 = 0 .

If Λ^ΪΦi 0 - Rjcjiaφah = 0, ^/Z^Λ w;̂  few* IΛ (1. d)

(1. g) Cx — c5 = c, + c5 = c3 — cs = c4 4- c7 = c9 — cL i = c1Q 4- c 1 3 = cu — c l 6

= C Γ Z 4 " C15 = C J 9 = C 2 0 = C 2 3 == ^24 = CΛΊ = C 2 8 = 0 .

// Rbjoί'Ψt* — Rnjiaψah = 0, */zew 100 fawe j/ι (1. d)
( 1 . h ) Cι — Cn — Cι-\- Cιt = Cz 4- C9 = C± — C10 = C5 4- Cj5 = Co — C J 6 = CΊ — C 1 3

= C8 + C u = Cis = C 2 ϋ = C 2 2 = Cu = C2<J = C 2 S = 0.

PROOF. (1. a) No non-zero vector is invariant under the symplectic group
of V.

(1. b) If hji is invariant under a group of linear transformations, then so
are the symmetric part /zαo and the anti-symmetric part ftyq of hμ. We
study two cases.

In case hμ is symmetric, we consider a constant ko such that, for one
particular unit vector e0,

hμ e^ e'o = kΰ.

The tensor ^ j f — kogμ is invariant under the symplectic group of V. For any
unit vector e there exists a symplectic transformation of V sending eQ to £.
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Therefore

(hjt - kogjt)e?e? = (h3i - kogμ)ej

oe
i

o = 0.

This implies
ft

We next consider the case in which hβ is anti-symmetric. We denote
j by htov, v). Let -fa, . . . . , en, Jelf . . . . , /*», Ieu ...., Ien, Kelt . . . .ϋfo,}

be an orthonormal base of V. We denote Jea by eΛl, IeΛ by £α2 and KeΛ by ee8.
We say that a, aγ( = n + α), ^ ( = 2w + α)and # 3 ( = 3w + a)belong to the
same class. The numbers from 1 to 4n separate into n classes. If the class
of i is different from that of j , then there exists a symplectic transformation
sending eι to es and e3 to et. Hence we have h{ehei) = h(ei,ej). Since Λj« is
anti-symmetric, Ueh et) = 0 if the class of / differs from that of /

We shall show that

The equalities of the type h{eh ei) = A(^', ̂ 0 are obtained by applying those
symplectic transformations which send e3 to ey and βi to ^r. We denote by
σi the symplectic transformation sending e* to ^ 2 , eai to — ̂ 8 ) ^α 2 to — eΛ

and ^rt3 to eai, by σ-» the symplectic transformation sending eΛ to ^Λ l, eΛl to
— «̂, ^Λ2 to eaa and ^Λ3 to — eaΛ, and by σ3 ( = cricr2) the symplectic transfor-

mation sending ea to — eas, eaχ to — eΛ2, eat to gαi and eΛz to ea. By applying
<n we get /z( α̂, βΛl) = h(eas, ea2) and ̂ (^Λ ; eas) = ^(^Λ2, ^ α i ). By applying σ2 we
g e t Λ(βαϊ, ea2) = Λ^Λ!, ^«3).

If we set fji = ^ ί — h[ea, e^φβ — h(e*, ea^ψji — h(ecc, ea^fCji, then the

tensor tμ is anti-symmetric and invariant under the symplectic group of V.
We see immediately t(ea, ea2) = t(ea, eaί) = f(βΛ, ^ 3 ) = 0. Hence tμ = 0, i. e.
there exist three constants ki, k*, k3 such that

Since the tensor hμ is the sum of its symmetric part and antisymmetric
part, (1. b) is proved.

(1. c) Let Tμh be invariant under the symplectic group of V. Since the
linear transformation — Sih is a symplectic transformation of V, we have

Tμh = - S/'( - 8ι*') ( - 8^) Tyv« = - Γ^*,
and hence

7 V = 0.

3. To prove (1. d) we prove two lemmas, and this section is devoted to
the proof of the lemmas. Let Rkμ

h = — RJfot
Λ be invariant under the symplectic

group of V. The tensor Rkμ
h is determined by the bilinear mapping

shortly
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of pairs of a bivector and a vector, onto vectors.

We take again an orthonormal base {e1} , en, Jelf , Jen, Iey, ,
Ien, Keτ, . . . . , Ken} and consider in the proof of lemtnas and (1. d) components
of tensors with respect to this base.

LEMMA 1. The component Rtoji
h vanishes unless h,i,j,k belong to the same

class or two of them belong to a class and others do to another one.

PROOF. We distinguish two cases A and B.

Case A. j and k are in the same class.
Subcase 1. /, j and k are in the same class. The vector R(et Λ eJ} et) =

R\cjiheh is the sum of two orthogonal component vectors in the ©-section Q{ei)
determined by eι and in its orthogonal complement. The vector R{ek Λ eh eθ
remains fixed for that symplectic transformation which leaves every vector
in Q(βi) fixed and multiplies every vector in the orthogonal complement of
Q(βi) by — 1. The component vector of R(ehAeJ)eι) in Q(eo remains fixed for
the symplectic transformation, while the component vector of R(ek Aej} et) in
the orthogonal complement of Q{βt) reverses its direction. Therefore the vector
R{ekt\eitet) coincides with its component vector in Q{ei), i.e. Rkjl = 0 unless
the class of h is that of i.

Subcase 2. The class of * is different from that of j. The vector R(ebλ
eh e-i) remains fixed for the symplectic transformation of V leaving fixed every
vector in Q(ei) and Q(eό) and multiplying every vector orthogonal to both
Q(βi) and Qfa) by — 1. It follows from this that Rkji

h = 0 if the class of h
is neither that of / nor that of j. The symplectic transformation of V mul-
tiplying every vector in Q{eό) by — 1 and leaving fixed every vector ortho-
gonal to Q-'yβj) leaves the vector R{ekl\ehei) fixed. Therefore i?fcji

7* = 0 if the
class of h is that of /.

Case B. j and k are in different classes.

Subcase 1. The class of i is either that of j or that of k. The vector
R(eis/\eJtei) remains fixed for that symplectic transformation which leaves
fixed every vector in Q{e3) and Qβh) and multiplies every vector orthogonal
to both Q[βj) and Qίβb) by — 1. It follows from this that RSsji

h' = 0 if the
class of h is neither that of j nor that of k. We may assume without loss
of generality that the class of i is that of /. The symplectic transformation
of V multiplying every vector in Q(βt) by — 1 and leaving fixed every vector
orthogonal to Q(ei) leaves the vector Rίekl\ei,ei) fixed. Therefore RhJt

h = 0 if
the class of h is that of i.

Subcase 2. The class of i is neither that of j nor that of k. The vector
R(eic/\ehei) remains fixed for that symplectic transformation which leaves
fixed every vector in Q{eι) and multiplies every vector orthogonal to Q(ei)by
— 1. Hence i?fcjί

Λ = 0 unless the class of h is that of i. The vector R(eιΰf\ej,
ei) remains fixed for that symplectic transformation which multiplies every
vector in Q{ei) and Q(e3) by — 1 and leaves fixed every vector orthogonal
to both Qίβi) and Qfa). Therefore &^A = 0 if the class of h is that of L This
completes the proof of lemma 1.
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LEMMA 2. Let the dimension of V be greater than 4. Then the tensor
Rkμh is zero if the following 28 components vanish:

Rβ««β( = Rβ>*>*'β'), Rβ««β*( = Rβ>»>*>βd, Rβ**βK = Rβ'«'*>t$, Rβ««β*( = Rβ>»>»>β:),

Rβaa/( = Rβ'*'Λ'f'),RβaΛ2βK = Rβ'*'a'2β'2), Rβacc/K = ϋ?/J'α'Λ'2βίλ RβΛ**β*( = Rβ'cc'ctoh),

Rβ*aιβ( = Rβ'Λ'a'f),RβΛ*fK ~ Rβ'a'aΊβ2),RβaΛιβΊ( = Rβ'a'a'iβ'i), RβΛ*ιβ*( = Rβ'a'*'\p£)

Rβaaa

β( = Rβ'a'a'Bβ')>Rβcccί*βίl( = RβΊ*'*'*fy,RβΛafK = /?3'«'tf'8βi)> Rβ*aa

β*( = Rβ'cc'<*'zBs)

= Rcύ'cύΊβ'β ),

where different letters in the indices of components of the tensor belong to
different classes.

PROOF. By the assumption and lemma 1 the vectors R(eβ/\ea,ea),R(eβf\
ec6,eΛo), R{eβf\eΛj e*Ί), R(eβAe«, e«3), R(e*/\e«Λ, eβ), R(eΛf\eΛly eβ) and /?(^βΛ
^Λ3, ^β) are zero. We denote by cr]oJ the symplectic transformation fixing
every vector orthogonal to Q(eΛ) and sending £α to β«2, £«t to — ^«3, ^ 2 to
— ^Λ and βΛ8 to gΛl. Let us denote by σ-2Λ the symplectic transformation

fixing every vector orthogonal to Q(g«) and sending ^ to ββ l, eΛι to — gΛ,
e«2 to βα3 and ^Λ 3 to — ea2 and by σ-3«( = <ri*^2«) the symplectic transform-
ation fixing every vector orthogonal to Q[eΛ) and sending ea to — ̂ α a, βΛ l

to — eaj ea2 to eΛχ and βα!3 to βΛ. Applying crlcc, cr.2Co, cr3Λj σ iβ, σ^β or cr3,9
to the vectors indicated above, we see that the vector R(ekf\eh ei) is zero
if i, j and k are in two classes.

We next consider any vector R{enf\e}l d) such that /, j and k belong to
the same class, say, that of a. Let a' be different from a. Let us apply
to the relation R(ek/\ej,ei) = Rk)theh = Rkjίaea, + Rkji^ecci -f Rkyiaβa^ + Rkβcc8eaB

such symplectic transformation which sends #* to —τ== (βΛ -f ea

f), e«> to

v ^

— / = - (e — β«') and hence eai to -.—• (eΛι + eΛ\), eai to —f— (e«2 + βΛ;), Λ̂»

to —,-= (eΛz 4- ^Λ3), «̂ί to —, -= (^Λl — e«{), ea.λ to -y—- (ea2—eΛ^) and e*'3 to

• 7~— (^Λ3 — £α'3). Then the vector R(ekhej, ei) is transformed into - — , =
v 2 • Z s/ Δ

R((eh + βfeOΛto + ^ 0 , ^ + ^ ) = o /-7Γ (Rίeki\ehei) + R(et>/\ey, *<')), while

the vector ΛviVΛ into -Λ== Rtfih{eh + ^40 Therefore we have— Λ(eΛ Λ ^ , ^ )

= Rkjiheh. Thus the vector R(ehΛej,et) is zero if f, / a n d £ belong to the
same class. This completes the proof of lemma 2.

4. On the basis of lemmas 1 and 2 we now proceed to the proof of

(1. d). We define 28 tensors RkJl* = - Rjki

h (a = 1,2,...., 28) invariant under
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the symplectic group of V to be those in (1. d) with coefficients ca. The com-
ponents of tensors gthί φi

fι

) ψin, κιh with respect to an orthonormal base
{e1} . . . . , en, Jelf , Jen, Iely , Ien, Keu , Ken} can be found in
section 1. We see that #-th component in lemma 2 of the tensor Rkμ

h is
a

equal to 1 and its other components in lemma 2 are zero. If we define the
tensor Tkji/l = — T^ as follows

Tkji
h = Rk3i

h - RβΛ«
β Rjcμh - Rβ««**Rkji

h - . . . . - R«ccS3
βsRw\

1 2 28

then the tensor is invariant under the symplectic group of V and its 28
components in lemma 2 are zero. Lemma 2 shows that Tkβh = 0, i. e. there
exist 28 constants ca(a = 1, , 28) such that

Sbjιh = c&jt* 4- cjtteji
h + . . . . 4- c.iSRkji

h.
1 2 28

Hence (1. d) is proved.
(1. e) By alternation of (1. d) we obtain

3#Lfcj ί ]

Λ = (2cδ + c17) (δfφjt.+ Sihφkj

+ (2CQ + Cl8) (0fc

Λ0;f + 0tΛ0fc

+ (2c7 4- cI9) ( ^ Λ φ^ + Ψ*ίAΦ

+ (2c8 + c,0) (rcjj'φμ + /c<A0fc

+ (2c9 + c21) (B^ψβ + &Aψ *i +

+ (2c10 + c22) (φfc^i + Φi*Ψbj 4-

+ (2CU + C23) (ψ ̂ i H- Ψ i^/y 4-

-ϊ-(2cl2 + c2i) (Kttψjt + Kt*Y*j +

4- (2c3 8 4- c25) (δk

hκji 4- δ i V j 4- SjΛκib)

4- (2c1 4 4- Csβ) (φbhκji 4- φi V j 4- Φ A a O

4- (2c15 4- C27) (^Λ^i + Ψih*kj + Ψ/^fc)

4- (2c,6 4- c28) (/cΛji + ΛiΛ/cfcj 4- /cAffc).

Considering the components with respect to an orthonormal base {eh ,

en, Jel} ...., Jen, Ieu . . . . , Ien, KeL, . . . . , Ken}, we see that the tensors in
the parentheses are linearly independent. Therefore the condition R[bjt}

h = 0
implies 2c5 4- c17 = 2cQ 4- cis = 2c7 4- c19 =. 2c8 4- c20 = 2c9 4- c3i = 2c l0 + c22 = 2c n

4- c23 = 2cI2 4- c24 = 2ci3 4- c25 == 2CM 4- c& = 2c15 4- ca7 = 2ci6 4- c2s == 0.
(1. f) From the relation (1. d) we get

4- )

4-

4" (C7 ~ Cl0) (ψbtφjh -

4- (C8 — CU

4" (CU ~ Cl5) (

4- 2cπgthφbj 4- 2c2igihψbj 4- 2c2δgih/cicj
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T h e condition Rkjh

agta + Rkμagah = 0 implies c> - cδ = c3 — c9 = c4 —
= c7 — έ?10 = c8 — cu = c]2 — c 1 5 = c,9 = cΆ = c2 β = 0.

(1. g) From the relat ion (1. d) we obtain

R*jahφta - Rtjiaφah = (CX - CQ) (SSφtj - δ / 0 * - φSg'jt + 0

t

t

— 2c21κth/ckj -t- 2csSψiΛ/Ckf.

Hence the condition Rkja
hφia — Rkji

aφa

h — 0 implies cL — c6 = c2 + c 5 = c3 — c8

= C4 + C7 = C9 — Ci 4 = Cio + ^13 = Cn — C l β = C 1 2 -f C l β = t i g = C20 = C 2 3 = C 2 4 = C 2 7

= ^28 = 0.

(1. h) From the relation (1. d) we obtain

R*,ahψι*-RnϊΨah = (ci - cn) (Sfψtj - S/'ψib - ψ ̂ « + *jh9u)

+ (c2 + cV2) (φ J'ψij - φ/ιψiJC + κjιgμ - re/'gid)

+ (ce + c16) ( - δfnj + 8 Aί* - ΨSΦjt +

+ (Ce - C1G) ( - φ A < i + Φ/'fdk + κk

Aφμ -

ihφicj - 2c2()φi"φkj

Hence the condition Rkja'ψ,/1 — Rjcjfψa1' = 0 implies cλ — cn = c2 + c12 = c3 +
= C4 — Cio == ^5 + Cί5 = C<3 — CIQ = C7 — C 1 3 = <?8 + ^14 = ^18 " = ^20 = ^22 = £34 = ^

= c a e = 0.

This completes the proof of all the statement of theorem 1.
If a tensor Rkji

h satisfies the conditions Rkja
hφia — Rkμaφah = 0 and Rjcj

x ψia — RkjicΨah = 0, then we have

Rk3a
hKta - Rkji

aKa11 = Rkja
hφιGψil

= 0.
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If a tensor R*μh = —Rμ .ih invariant under the symplectic group of V
satisfies the conditions Rvk5if = 0, Rkja

hφia — Rkμ
σφa

h = 0 a n d RkJa

hΨta — Rkμa

x ψa

h = 0, then theorem 1 shows that Rkji

h = 0.
If a tensor Rkμ

u = — Ry^ invariant under the symplectic group of V
satisfies t h e conditions RkJh

agta + Rkμ
agah = 0, Rkja

hφίa — RkJι
aφa

h = 0 and Rkja

h

x ψia — Rjcjiψ"^ = 0, then the tensor has the form

RkJt» = c(δk

hgβ - Sjhgki + 0 t A 0 ^ - φjhφkt

5. THEOREM 2. £#£ M be a in-dimensional manifold for « Φ l admitting
a quaternion structure (φih,ψih) and an almost Hermitian metric gih with
respect to both φιfh and ψih [3]. Let ΓJ4 be a (φ,ψ)-connection in M [3]. If the
manifold M admits a group of affine transformations and the isotropy group
in the tangent space at any point contains the symplectic group, then the
connection is locally flat.

PROOF. The value of the torsion tensor field at any point is invariant
under the linear isotropy group at the point which contains the symplectic
group. It follows from theorem 1 (1. c) that the torsion tensor is zero. Since
Γ^ is a (φ, ψ)-connection without torsion, the curvature tensor field Rkβ

h

satisfies the relations /?L W

Λ = 0, RkJa

kφia - Rkjί

aφa/ι = 0 and Rkja

f>Ψίa - R^ΨJ1

= 0. The value of the curvature tensor field at any point is invariant under
the symplectic group. Therefore the curvature tensor is zero.

THEOREM 3. Let M be a connected in-dimensional manifold for n 4= 1
admitting a quaternion structure (φia, ψia) and an almost Hermitian metric
gth with respect to both φιa and ψίa. Let G be a (2ri* + 5n)-dimensional effective
group of automorphisms of M. Then the group G is transitive and the Levi-
Civitds connection is the only linear connection invariant under the group G.
The connection is a (φ,ψ)-connection and locally flat.

PROOF. The linear group of isotropy at any point coincides with the
symplectic group of the tangent space at the point. By the same arguments
as in the proof of Theorem I in [4] we can conclude that the group G is
transitive. Let Yh

n and TJ; be two linear connections in M invariant under
the group G. The tensor Tμh = ΓJf — TJf is invariant Under the group G.
From (1. c) we have TV* = 0. Consequently the Levi-Civita's connection is
the only connection invariant under the group. The covariant derivatives of
φih and ψih are invariant under the group. It follows from (1. c) and theorem
2 that the connection is a (φ, ψj-connection and locally flat.

THEOREM 4. Let M be a in-dimensional manifold for n Φl admitting a
quaternion structure (φ«Λ, ψi/ι) and an almost Hermitian metric gih with respect
to both φih and ψih. Let Y)t be a metric (φ, ψ)-connection [3]. We assume that
the homogeneous holonomy group of M at a point of M is the symplectic group.
If the curvature tensor field has null covariant derivatives, then it has the
form

= C(8k

hgμ - δjhgki + φk

hφμ-φjhφki + ψk

hψμ~Ψ)hψkj + κk

hκμ-
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with an absolute constant c.
PROOF. Since the curvature tensor field has null covariant derivatives,

the value of the tensor field at any point is invariant under the homogeneous
holonomy group at the point which is the symplectic group. Since Γ* is a
metric (φ, ΨO-connection, the curvature tensor field satisfies the relations
ftΛ« + R*jia9a* = O,JRkJa

hφia-Ricjiaφah = 0 and Rkja
hψia-Rk.βaψah = 0. There-

fore the tensor field has the form

Rkjt* = c(δk

hgJt-8J

hgkt + φSφjt-φfφtt + Ψk'Ψji-ψ/Ψki + fc^/cji-fc^fcjci)
with a scalar c. The tensor field in the parentheses is parallel. Hence the
scalar c is an absolute constant.

By analogous arguments we have the following [1]
THEOREM 5. Let M be a 2n-dimensional almost Hermitian manifold for

w Φ l and ΓJ£ be a metric φ-connection. We assume that the homogeneous
holonomy group of M at a point of M is the real representation of unitary
group. If the curvature tensor field has null covariant derivative, then it has
the form

Rκjih = c(Sk

hgji - Bjhgjci + φ*hφ3ι - Φ/'φia) + Cφt

ΛφkJ

with absolute constants c and d'. If moreover the torsion tensor field has null
covariant derivative, then the connection is the Leoi-Civitάs one and the
manifold is a Kάhlerian manifold of constant holomorphic curvature.
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