A REMARK ON THE INVARIANTS OF W*-ALGEBRAS1)

Jun Tomiyama

(Received October 2, 1957)

The purpose of this paper is to supplement the theory of invariants of W^* -algebras accomplished by [1], [5], [6], [9] and [10] etc., with some considerations and to show some spatial isomorphism theorems.

Through the following discussion $M^{\mathfrak{q}}$ denotes the center of a W^* -algebra M on a Hilbert space H. We denote by z(e) the central envelope of a projection e. By an isomorphism, we mean a *-preserving isomorphism. Ω denotes always the spectrum of $M^{\mathfrak{q}}$ and Ω_{eH} the spectrum of Me.

1. Definition of the Invariant. We employ the invariant of M in the same sense as in Pallu de la Barrière [1] if M is finite with finite commutator and denote it by $\overline{C}(t)$.

Next, let M be a W^* -algebra and α an infinite cardinal. A central projection e is called a homogeneous projection of type F_{α} if it is a "projection of type S_{α} " in the sense of Griffin [5] and "projection de uniforme d'ordre α " in [1] and e is called a homogeneous projection of type C_{α} if it is an " α -dimensional projection" in the sense of Griffin [6] and "homogeneous projection of order α " in Suzuki [13].

The following multiplicity theorem of a W^* -algebra is well known (cf. [1], [5], [6], [13]).

THEOREM 1. Let M be a W^* -algebra on a Hilbert space H and π_1 (resp. π_2) the set of infinite cardinal α for which there exists a homogeneous projection of type F_{α} (resp. C_{α}). Then there exists a family of orthogonal central projections $\{e_{\alpha}\}_{\alpha \in \pi_1}$ (resp. $\{e_{\beta}\}_{\beta \in \pi_2}$) such that

$$1 = e_1 + \sum_{\alpha \in \pi_1} e_{\alpha} + \sum_{\beta \in \pi_2} e_{\beta}$$

where $e_{\alpha}(\alpha \in \pi_1 \text{ or } \pi_2)$ is a maximal homogeneous projection of type F_{α} or of type C_{α} and e_1 a maximal central finite projection. This decomposition is unique.

We denote by K_{α} an open and closed set in Ω corresponding to e_{α} in Theorem 1. A function p(t) defined on a dense open set $\bigcup_{\alpha \in \{1\} \cup \pi_1 \cup \pi_2\}} K_{\alpha}$ in Ω is called *the algebraic invariant of* M, if

$$p(t) = \alpha$$
 for $t \in K_{\alpha}$.

Now let $\{p_1, p_2\}$ be an orthogonal central decomposition where M_{v_1} is finite with finite commutator and M_{v_2} does not contain such coupled component. Denote by $\overline{C}(t)$, p(t), and p'(t) the invariant of M_{v_1} the algebraic invariants

¹⁾ This is a part of the author's graduation thesis in March 1957.

of M_{p_2} and M'_{p_2} respectively. p(t) and p'(t) are defined on dense open sets Ω_1 , Ω_2 in Ω_{p_2H} .

We define the invariant of M as follows;

$$C(t) = \overline{C}(t) \qquad \text{for } t \in \Omega_{p_1 H}$$

= $(p(t), p'(t))$ for $t \in \Omega_1 \cap \Omega_2$,

where (p(t), p'(t)) means a formal coupled function on $\Omega_1 \cap \Omega_2$. C(t) is defined on a dense open set of Ω .

2. Spatial Isomorphism Theorem. The following lemma is due to Pallu de la Barrière [1].

LEMMA 1. Let M be a finite W^* -algebra with finite commutator and $\overline{C}(t)$ the invariant of M. For any projection $e' \in M'$, let $\overline{C}_{e'H}(t)$ be the invariant of Me'. Then we have

$$\overline{C}_{e'H}(t) = \overline{C}(t) \ e'^{\downarrow}(t) \ for \ all \ t \in \Omega_{e'H} \ and \ \overline{C}(t) \neq \infty.$$

Lemma 2. Let M_1 and M_2 be properly infinite W*-algebras on each Hilbert space H_1 and H_2 with finite commutators and θ an isomorphism between them. There exists a continuous function $\gamma(t)$ defined on the common spectrum Ω of M_1^0 , i = 1, 2, and ranging over $[0, \infty]$ such that for any finite projection $e \in M_1$

$$\overline{C}_{\theta(e)H_2}(t) = \gamma(t)\overline{C}_{eH_1}(t) \text{ for all } t \in \Omega_{eH_1} = \Omega_{\theta(e)H_2},$$

where $\overline{C}_{eH_1}(t)$ and $\overline{C}_{\theta(e)H_2}(t)$ are the invariants of M_{1e} and $M_{2\theta(e)}$.

PROOF. By J. Dixmier [4: Proposition 2] one can easily verify that there exists a W^* -algebra N on a Hilbert space K and two projections f_1, f_2 in N' whose central envelopes are the identity such that θ may be identified with the isomorphism

$$\theta: a_{0} \to a_{0}$$
 for all $a \in N$.

Thus, we can assume that $M_1=N_{fl}'$, $M_2=N_{f_2}'$. Since f_i' (i=1,2) are finite, $f_0'=f_1'\vee f_2'$ is finite, too. Take a finite projection $e\in N_{f1}'$. Without loss of generality we may assume that z(e)=1 in N_{f_1}' (i. e. $=f_1'$). We find a projection $e_0\in N$ with $e=e_0f_1'$; e_0 is finite in N with $z(e_0)=1$. As N_{f_0}' and $N_{f_0e_0}'$ are finite, we can consider canonical applications \natural_1 and \natural_2 in N_{f_0}' and $N_{f_0e_0}'$ respectively. Then, applying lemma 1 to $N_{f_0e_0}'$, we have

$$egin{aligned} \overline{C}_{eH_1}\!(t) &= \overline{C}_{e_0\!f_1'K}\!(t) = \overline{C}_{e_0\!f_0'K}\!(t)(e_0f_1')^{rak{q}_2}(t) \ \overline{C}_{\theta(e)H_2}\!(t) &= \overline{C}_{e_0f_1'K}\!(t) = \overline{C}_{e_0f_1'K}\!(t)(e_0f_2')^{rak{q}_2}(t) \end{aligned}$$

for $t \in \Omega_{e_0 j_1 K} = \Omega_{e_0 j_2 K}$ such as $\overline{C}_{e_0 j_0 K}(t) = \infty$. Since N'_{j_0} is isomorphic to $N'_{e_0 j_0}$ we get the identification $(e_0 f_i')^{\natural_2} = f_i'^{\natural_1}$ (i=1,2). Moreover, by an isomorphism between N'_{j_1} and N'_{j_0} , we get the further identification, that is, $\{f_i^{\natural_1}(t)\}_{t=1,2}$ can be considered as continuous functions on $\Omega_{j_1 K}$. Therefore putting $\gamma(t) = f_2'^{\natural_1}(t)/f_1'^{\natural_1}(t)$, we have a continuous function on $\Omega_{j_1 K}$. Q. E. D.

We are now going to prove our main

Theorem 2. Let M_1 and M_2 be W*-algebras and θ an isomorphism between them. By the isomorphism θ we may identify two spectra Ω_1 , Ω_2 of M_1^{η} , M_2^{η} respectively. Suppose M_1 and M_2 have the same invariant C(t). Then

1° if $C(t) = (\alpha, 1)$ for all infinite cardinal α , θ is spatial,

 2° if $C(t) = (\alpha, 1)$, and $\gamma(t) = 1$, then θ is spatial.

PROOF. Following the same notations as in the proof of Lemma 2 we may assume

$$\theta: a_{f_1} \to a_{f_2}$$
 for all $a \in N$

where $z(f'_1) = z(f'_2) = 1$. Hence, to prove θ being spatial is reduced to prove that $f_1' \sim f_2' \mod N'$, so that it suffices to prove this fact in the following cases, separately.

Case (1°) $C(t) = (\alpha, 1)$.

a. f_1' , f_2' are finite. In this case N_{f_1}' is finite, otherwise this yields an excluded case. $f_0' = f_1' \vee f_2'$ is finite, too. Since N_{f_0}' becomes finite we have, by lemma 1 applying to N_{f_0}' ,

$$\overline{C_{f_{1K}}}(t) = \overline{C_{f_{0K}}}(t)f_1'^{\dagger}(t)$$
 and $\overline{C_{f_{2K}}}(t) = \overline{C_{f_{0K}}}(t)f_2'^{\dagger}(t)$

for $t \in \Omega'_{f_1K}$ and $\overline{C}_{f_0K}(t) \neq \infty$. Therefore $f_1^{r_0}(t) = f_2^{r_0}(t)$ for such t. But as N_{f_0} is isomorphic to N_{f_0} , we get $f_1^{r_0}(t) = f_2^{r_0}(t)$ over a dense open set in Ω_{f_0K} , whence $f_1^{r_0} = f_2^{r_0}(t)$. We get $f_1^{r_0} \sim f_2^{r_0} \mod N'_{f_0}$, $f_1^{r_0} \sim f_2^{r_0} \mod N'$.

 $b.\ f_1',\ f_2'$ are homogeneous projections of type $C_{\not \preccurlyeq 0}$ in N'_{f_1} and N'_{f_2} . We may assume that $N^{i'}_{f_1}(i=1,2)$ are countably decomposable, so that f_1' and f_2' are countably decomposable in N'. Then we have

$$f_1' = \sum_{n=1}^{\infty} e_n'$$
 with $e_n' \prec f_2' \mod N'$.

On the other hand we may write $f_2' = \sum_{n=1}^{\infty} f_{2n}'$ where $f_2' \sim f_{2n}'$ for all n. Therefore $f_1' < f_2'$; by symmetry it follows $f_1' \sim f_2' \mod N'$.

c. f_1' , f_2' are homogeneous projections of type F_{α} (or C_{α}) in N_{f_i}' (i=1,2). (In case of type C_{α} we assume $\alpha> \not \bowtie_0$). We may consider as in case b, that $N_{f_i}^b$ are countably decomposable for i=1,2. Then we can find an infinite family $\{e_i'\}_{i\in I}$ of orthogonal, equivalent, finite (resp. cyclic) projections in N_{f_1}'' such that $f_1' = \sum_{i\in I} e_i'$, where the cardinal of I is α . Now take a fixed projection e_{i_0}' and a central projection g such that $ge_{i_0}' > gf_2'$ and $(1-g)e_{i_0}' < (1-g)$ f_2' . In both cases $ge_{i_0}' > gf_2'$ is impossible except for g=0. Hence $e_{i_0}' < f_2'$. Take a maximal family $\{\bar{e}_j'\}_{j\in J}$ of orthogonal, equivalent, finite (resp. cyclic) projections such that \bar{e}_j' is contained in f_2' and equivalent to e_{i_0}' . Notice that we may consider I as an infinite index set. Then we can choose a central projection I such that I as an infinite index set. Then we can choose a central projection I such that I as an infinite index set. Then we can choose a central projection I such that I as an infinite index set. Then we can choose I as I is I and which implies that I as I and I as I and I and I as I as I and I as I and I as I and I as I and I as I as I and I as I and I as I and I as I and I as I as I and I as I and I as I and I as I as I and I as I as I and I and I and I and I as I as I and I and I and I as I as I and I and I as I and I and I as I and I are I and I

 $\mod N'$.

Case (2°), $C(t) = (\alpha, 1)$.

Put $f_0' = f_1 \vee f_2'$, then f_0' is finite. If $\gamma(t) = 1$, $f_1' \sim f_2' \mod N' f_0'$ from the definition of $\gamma(t)$. Hence $f_1' \sim f_2' \mod N'$. Q. E. D.

A spatial isomorphism between two W^* -algebras also induces an isomorphism between their commutators and these two isomorphisms coincide each other on the center. For the inverse statement we get

THEOREM 3. Let M_1 and M_2 be W^* -algebras which do not contain such coupled components as (II_{∞}, II_1) and (II_1, II_1) . Suppose that θ and θ' are isomorphisms between M_1' and M_2 , M_1' and M_2' respectively and coincides each other on the center of M_1 . Then θ is spatial.

For the proof we need the following

Lemma 3. Let M_1 and M_2 be W^* -algebras with commutative commutators. Then any isomorphism between M_1 and M_2 is spatial.

PROOF OF THEOREM 3. Without loss of generality we may restrict our proof to each separated coupled components which (M_1, M_1') contain. But since, except for the cases of $(I_{\infty}, \text{ finite})$ and (finite and type I, finite), the invariant of M_1 is constructed by couplings of algebraic invariants and theorem 2 may be applicable it is sufficient to deal with the above excluded cases. Now take an abelian projection e of M_1 with z(e) = 1. Then θ induces an isomorphism θ_1 between M_{1e} and $M_{2\theta(e)}$. For the commutator of M_{1e} we define θ_1' as $\theta_1'(a_e') = \theta'(a')\theta(e)$. Then one verifies easily that this is an isomorphism between M_{1e} and $M_{2g(e)}$. By lemma 3, θ_1 is spatial. Moreover θ_1 is also spatial because $M_{1e} = M_{1e}^{n}$. Hence $\overline{C}_{\theta(e)H_2}(t) = \overline{C}_{\thetaH_1}(t)$ for $t \in \Omega_{\theta H_1} = \Omega_{\theta(e)H_2}$. Therefore, if it is the case of $(I_{\infty}, \text{ finite}) \gamma(t) = 1$ on Ω_{eH_1} by Lemma 2. But, as z(e) = 1 we have $\gamma(t) = 1$ on Ω . That is, θ is spatial. If M_1 is finite and type I with finite commutator we have $\overline{C}'_{eH_1}(t) = \overline{C}'_{\theta(e)H_2}(t)$, where $\overline{C}'_{eH_1}(t)$, $\overline{C}'_{\theta(e)H_2}(t)$ denote the invariants of M'_{1e} and $M'_{2\theta(e)}$. By lemma 1 applying M'_1 and M'_2 we get

$$\begin{split} \overline{C}'_{\mathfrak{g}'H_1}(t) &= \overline{C}'_1(t)\mathfrak{g}^{\flat}(t) \quad \text{for} \quad t \in \Omega_{\mathfrak{g}H_1} \text{ and } \overline{C}'_1(t) \neq \infty, \\ \overline{C}'_{\mathfrak{g}(\mathfrak{g})H_0}(t) &= \overline{C}'_2(t)\theta_1\mathfrak{g}^{\flat}(t) \text{ for } t \in \Omega_{\mathfrak{g}(\mathfrak{g})H_2} \text{ and } C'_2(t) \neq \infty. \end{split}$$

Therefore we get $\overline{C}_1(t) = \overline{C}_2(t)$ on Ω considering z(e) = 1, which implies $\overline{C}_1(t) = \overline{C}_2(t)$. Hence θ is spatial.

REMARK. Theorem 3 fails in the excluded cases. In the case of (II_1, II_1) , take a standard approximately finite factor M on a separable Hilbert space H. Let R^2 be a two-dimensional Euclidean space and construct $H \otimes R^2$, tensor product of H and R^2 . Consider an ampliation from M to $M \otimes 1$ over $H \otimes R^2$. Then $(M \otimes 1)' = M' \otimes B(R^2)$ is also an approximately finite factor by Misonou [10], and so $(M \otimes 1)'$ is isomorphic to M'. Thus M is coupled isomorphic to $M \otimes 1$ in the sense of theorem 3. But $\overline{C}(t) = \overline{C}(t) + \overline{C}(t)$ where $\overline{C}(t)$ and $\overline{C}(t)$ denote the invariants of $M \otimes 1$ and M respectively, whence M is not

spatially isomorphic to $M \otimes 1$. In the case (II_{∞}, II_1) , we shall only refer to the paper [14], [7] (an example of the W^* -algebra with a non-unitarily induced center-elementwise-invariant automorphism).

REFERENCES

- [1] R.PALLU DE LA BARRIÈRE, Sur les algbères d'opérateurs dans les espaces hilbertiens, Bull. Soc. Math. France, 82 (1954), 1-52.
- [2] J.DIXMIER, Sur certains espaces considérés par M.H.Stone, Summa Brad. Math., 11(1950), 151-182.
- [3] _____, Applications \(\psi\) dans les anneaux d'opérateurs, Compositio Math., 10 (1952), 1-55.
- [4] —, Sur les anne ux d'opérateurs dans les espaces hilbertiens, C.R.Acad. Sci. Paris, 238 (1954), 439-441.
- [5] E.L.GRIFFIN, Some contributions to the theory of operator algebras I, Trans. Amer. Math. Soc., 75 (1953), 471-504.
- [6] ——, Some contributions to the theory of operator algebras II, Trans. Amer. Math. Soc., 79 (1955), 386-400.
- [7] R.V.KADISON, Isomorphisms of factors of infinite type, Canad. Journ. Math., 7 (1955), 322-327.
- [8] I. KAPI.ANSKY, Quelques résultats sur les anneaux d'opérateurs, C. R. Acad. Sci. Paris, 231(1950), 485-486.
- [9] Y.MISONOU, Unitary equivalence of factors of type III, Proc. Japan Acad., 29(1952), pp. 482-485.
- [10] —, On the direct product of W^* -algebras, Tôhoku Math. Journ., 6 (1954), 189-204.
- [11] J. VON NEUMANN, On rings of operators, Ann. Math., 37(1936), 116-226.
- [12] —, On rings of operators IV, Ann. Math., vol. 44 (1943), 208-248.
- [13] N.SUZUKI, On the invariants of W*-algebras, Tôhoku Math. Journ., 7 (1955), 177-185.
- [14] —, On automorphisms of W*-algebras leaving the center elementwise invariant, Tôhoku Math. Journ., 7(1955), 186-191.

TÔHOKU UNIVERSITY.