ON THE PROJECTION OF NORM ONE IN W*-ALGEBRAS II

JUN TOMIYAMA

(Received June 20, 1958)

In this paper, we shall study the projection of norm one in W^* -algebras following [7]. Firstly, we obtain the general decomposition theorem of a projection of norm one π from a W^* -algebra **M** to its C^* -subalgebra **N** showing that **N** is decomposed into the maximal W^* -representable direct summand and the rest. Restricting ourself to the case of **N** being a W^* representable * subalgebra, we prove that π is decomposed into three parts by three orthogonal central projections z_1, z_2, z_3 of **N**. The first component is a normal projection of norm one from **M** to **N** z_1 , the second singular one to **N** z_2 and z_1, z_2 are maximal central projections having these properties. In the last section we discuss on the σ -weak continuity property of π and the relation to the other continuity. We can prove that π is σ -weakly continuous if and only if the kernel of π is σ -weakly closed.

1. Preliminaries. Consider a W^* -algebra \mathbf{M} , its conjugate space \mathbf{M}^* and the space \mathbf{M}_* of all σ -weakly continuous linear functionals on \mathbf{M} . We define the operators R_a and L_a on \mathbf{M}^* for each $a \in \mathbf{M}$ such that

 $\langle x, R_a \varphi \rangle = \langle xa, \varphi \rangle$ and $\langle x, L_a \varphi \rangle = \langle ax, \varphi \rangle$

for all $a \in \mathbf{M}$, $\varphi \in \mathbf{M}^*$. The following properties are easily verified: $R_{(\lambda a + \mu)} = \lambda R_a + \mu R_b$, $L_{(\lambda a + \mu b)} = \lambda L_a + \mu L_b$, $R_{ab} = R_a R_b$, $L_{ab} = L_b L_a$, where a and b are arbitrary elements of \mathbf{M} and λ , μ complex numbers.

A subspace of \mathbf{M}^* which is invariant both for every R_a and every L_a is called an invariant subspace. It can be shown that there exists a one-to-one correspondence between the σ -weakly closed ideal m of \mathbf{M} and the closed invariant subspace V of \mathbf{M}_* such that $m = V^0$ and $V = m^0$ where V^0 and m^0 denote the polar of V and m in \mathbf{M} and \mathbf{M}_* respectively.

A positive linear functional φ is called singular if there exists no nonzero positive normal linear functional ψ such as $\psi \leq \varphi$; we denote the closed subspace generated by all singular linear functionals on **M** by $\mathbf{M}_{\star}^{\perp}$. $\mathbf{M}_{\star}^{\perp}$ is an invariant subspace of \mathbf{M}^{*} . It can be shown that any closed invariant subspace V is decomposed such as

$$V = (V \cap \mathbf{M}_*) \bigoplus (V \cap \mathbf{M}_*^+)$$
, in particular $\mathbf{M}^* = \mathbf{M}_* \bigoplus \mathbf{M}_*^+$,

the sum being l^1 -direct sum.

A uniformly continuous linear homomorphism π from a W^* -algebra **M** to a W^* -algebra **N** is called singular if ${}^{\prime}\pi(\mathbf{N}_*) \subset \mathbf{M}^*_*$, where ${}^{\prime}\pi$ denote the transpose of π . We can prove that a positive singular mapping π from **M** to **N** has the property that there exists no non-zero normal linear homomorphism π' such that $\pi'(a) \leq \pi(a)$ for all positive element $a \in \mathbf{M}$. Corresponding to the decomposition of a linear functional on a W^* -algebra it can be shown that any uniformly continuous linear homomorphism from a W^* -algebra to the another is decomposed into the σ -weakly continuous part and the singular part. Some of these proofs are found in [6].

A C^* -algebra is called W^* -representable if it is faithfully representable as a W^* -algebra on some Hilbert space **H**.

Through our discussions we assume that a C^* -algebra has always a unit.

2. Decomposition of the projection of norm one. Let N be a C^* -algebra in which each upper bounded increasing directed set of self-adjoint elements has a supremum in N. We define a "normal" linear functional on N as usually.

LEMMA 1. The set V of all finite linear combinations of normal linear functionals on N is a closed invariant subspace of N^* .

PROOF. Let $\{a_{\alpha}\}$ be an upper-bounded increasing directed set of selfadjoint elements in **N** with $a = \sup_{\alpha} a_{\alpha}$. It is clear that we have $b^*ab = \sup_{\alpha} b^*a_{\alpha}b$ for any invertible element b.

Now, for any element $c \in \mathbf{N}$ there exists a positive number $\lambda > 0$ such that $\lambda 1 + c$ is invertible. Hence

$$(\lambda 1 + c)^* a(\lambda 1 + c) = \sup(\lambda 1 + c)^* a_a(\lambda 1 + c),$$

and we get

$$\sup < (\lambda 1 + c)^* a_{\alpha}(\lambda 1 + c), \varphi > = < (\lambda 1 + c)^* a(\lambda 1 + c), \varphi >$$

for every positive element $\varphi \in V$.

On the other hand,

$$<(\lambda 1+c)^*a_{lpha}(\lambda 1+c), arphi>=\lambda^2< a_{lpha}, arphi>+\lambda< c^*a_{lpha}, arphi> +\lambda< a_{lpha}c, arphi>+< c^*a_{lpha}c, arphi>$$
,
 $<(\lambda 1+c)^*a(\lambda 1+c), arphi>=\lambda^2< a, arphi>+\lambda< c^*a, arphi> +\lambda< c^*a, arphi> +\lambda< ac, arphi>+\lambda< c^*ac, arphi>.$

Then a usual computation applying Schwarz's inequality shows that $\langle c^*a_{\alpha}, \varphi \rangle$ and $\langle a_{\alpha}c, \varphi \rangle$ converge to their corresponding terms. Therefore, we get that $\langle c^*a_{\alpha}c, \varphi \rangle$ converges to $\langle c^*ac, \varphi \rangle$ for every positive $\varphi \in V$ and for any $c \in \mathbf{N}$, i.e. $\sup \langle c^*a_{\alpha}c, \varphi \rangle = \langle c^*ac, \varphi \rangle$. Therefore, we have $L_c^*R_cV \subset V$ for all $c \in \mathbf{N}$. Then an equality

$$4L_{a}^{*}R_{b} = L_{(a+b)}^{*}R_{(a+b)} - L_{(a-b)}^{*}R_{(a-b)} + iL_{(a-ib)}^{*}R_{(a-ib)} - iL_{(a+ib)}^{*}R_{(a+ib)}^{*}$$

proves that $L_a * R_b V \subset V$ for all $a, b \in \mathbb{N}$. That is, V is an invariant subspace of \mathbb{N}^* .

Denote by \overline{V} the norm-closure of V and suppose $a = \sup_{\alpha} a_{\alpha}$ for an upperbounded increasing directed set $\{a_{\alpha}\}$ of self-adjoint elements in **N**. Since

J. TOMIYAMA

 $\langle a_{\alpha}, \varphi \rangle$ converges to $\langle a, \varphi \rangle$ for every $\varphi \in V$ and since $\{a_{\alpha}\}$ are uniformly norm-bounded, we see that $\langle a_{\alpha}, \psi \rangle$ converges to $\langle a, \psi \rangle$ for all $\psi \in \overline{V}$; especially for any positive element $\psi \in \overline{V}$ we have sup $\langle a_{\alpha}, \psi \rangle$

 $a = \langle a, \psi \rangle$, that is, ψ is normal. Thus every positive element $\psi \in \overline{V}$ belongs to V. By [4: Theorem 1] \overline{V} is algebraically spanned by positive elements in \overline{V} , so that \overline{V} is contained in V and V is closed.

LEMMA 2. Suppose **N** is a C*-algebra above-mentioned. Then **N** is a direct sum of a W*-representable algebra and a C*-algebra on which no normal linear functional exists.

PROOF. Consider an invariant subspace V in Lemma 1. The polar V^0 of V in **N** is a closed two-sided ideal of **N**. Let $\{e_{\alpha}\}$ be a maximal family of orthogonal projections of V^0 with $e = \sup e_{\alpha}$. We have $e \in V^0$.

It is clear $\mathbf{N}e \subset V^0$. Suppose there exists an element a in V^0 such that $b = a - ae \pm 0$, then we can get an element c as cb^*b becomes a non-zero projection of V^0 . Moreover $cb^*be = 0$. This contradicts the maximality of $\{e_{\alpha}\}$. Hence $V^0 \subset \mathbf{N}e$, which implies $V^0 = \mathbf{N}e$. As V^0 is self-adjoint, $V^0 = \mathbf{N}e = e\mathbf{N}$.

Now, for a self-adjoint element a, $ea \in e\mathbf{N} = \mathbf{N}e$, so that eae = ea = ae. Hence e is a central projection of \mathbf{N} .

By [3], N(1-e) is W*-representable and the decomposition N = N(1-e) + Ne is a desired one.

With these preparations we show the following

THEOREM 1. If π is a projection of norm one from a W*-algebra **M** to its C*-subalgebra **N**, π is decomposed into π_1 and π_2 by a central projection z of **N** where π_1 is a projection of norm one from **M** to a W*-representable algebra **N**z and π_2 a projection of norm one from **M** to $\mathbf{N}(1-z)$ on which no normal linear functional exists.

PROOF. As in the proof of Theorem 4 in [7], **N** is a C^* -algebra in which each upper-bounded increasing directed set of self-adjoint elements has a supremum in **N**. Hence there exists, by Lemma 2, a central projection z of **N** such that **N**z is a W^* -representable algebra and $\mathbf{N}(1-z)$ a C^* -algebra on which any non-zero normal linear functional does not exist. If we put

$$\pi_1(a) = \pi(a)z$$
 $\pi_2(a) = \pi(a)(1-z)$ for all $a \in \mathbf{M}$,

then we have the decomposition $\pi = \pi_1 + \pi_2$ as stated above.

In the following lines we restrict ourself to the case $\pi = \pi_1$. Let π be a projection of norm one from a W^* -algebra **M** to a W^* -representable *-subalgebra **N**. **N** is the conjugate space of a Banach space \mathbf{N}_* , the space of all σ -weakly continuous linear functionals when we represent **N** on a Hilbert space **H** so as **N** to be a W^* -algebra on **H**. We can consider $\sigma(\mathbf{N}, \mathbf{N}_*)$ -topology on **N**. If π is continuous in $\sigma(\mathbf{M}, \mathbf{M}_*)$ and $\sigma(\mathbf{N}, \mathbf{N}_*)$ -topologies we say also that π is σ -weakly continuous. Thus, π is σ -weakly continuous if and only if π is normal [2]. Moreover, we denote also the space of all

singular linear functionals on a represented W^* -algebra of **N** by \mathbf{N}_*^+ . If π satisfies the condition ${}^t\pi(\mathbf{N}_*) \subset \mathbf{M}_*^+$, π is also called singular. With these considerations we have

THEOREM 2. Let π be a projection of norm one from a W*-algebra **M** to its W*-representable *-subalgebra **N**, then there exist three central projections z_1, z_2, z_3 in **N** with $z_1 + z_2 + z_3 = 1$ such that if we put $\pi_i(a) = \pi(a)z_i(i = 1, 2, 3)$ for $a \in \mathbf{M}$, π_1 is a normal projection of norm one from **M** to $\mathbf{N}z_1$ and π_2 a singular one from **M** to $\mathbf{N}z_2$; z_1 and z_2 are maximal central projections having these properties.

PROOF. Put $V = {}^{t}\pi^{-1}(\mathbf{M}_{*}) \cap \mathbf{N}_{*}$, then V is an invariant subspace of \mathbf{N}_{*} . In fact, by [7; Theorem 1] $\pi(axb) = a\pi(x)b$ for every $a, b \in \mathbf{N}$ so that $\langle x, {}^{t}\pi(L_{a}R_{b}V) \rangle = \langle a\pi(x)b, V \rangle = \langle \pi(axb), V \rangle = \langle x, L_{a}R_{b}{}^{t}\pi(V) \rangle$

for every $a, b \in \mathbf{N}$ and $x \in \mathbf{M}$.

The polar V^0 of V in **N** is a $\sigma(\mathbf{N}, \mathbf{N}_*)$ -closed two-sided ideal. Hence there exists a central projection z_1 of **N** such that $V^0 = \mathbf{N}(1-z_1)$. Put $\pi_1(a) = \pi(a)z_1$ for all $a \in \mathbf{M}$, then $\langle a, \ {}^t\pi_1(\mathbf{N}_*) \rangle = \langle \pi(a)z, \mathbf{N}_* \rangle = \langle \pi(a), R_{\tau_1} \mathbf{N}_* \rangle = \langle \pi(a), V \rangle = \langle a, \ {}^t\pi(V) \rangle$ for all $a \in \mathbf{M}$, because $V = V^{00}$ (bipolar in $\mathbf{N}_*) = (\mathbf{N}(1-z_1))^0 = R_{\tau_1}\mathbf{N}_*$. Therefore ${}^t\pi_1(\mathbf{N}_*) \subset \mathbf{M}_*$ i.e. π_1 is normal. Moreover one can easily verify that π_1 is a projection of norm one from \mathbf{M} to $\mathbf{N}z_1$.

Next, suppose that there exists a central projection h such that if we put $\pi'_{1}(a) = \pi(a)h$, π'_{1} is a normal projection of norm one. Since ${}^{t}\pi'_{1}(\mathbf{N}_{*}) \subset \mathbf{M}_{*}$, an equality

 $\langle a, {}^{t}\pi'_{1}(\mathbf{N}_{*}) \rangle = \langle \pi(a)h, \mathbf{N}_{*} \rangle = \langle \pi(a), R_{h}\mathbf{N}_{*} \rangle = \langle a, {}^{t}\pi(R_{h}\mathbf{N}_{*}) \rangle$ implies $R_{h}\mathbf{N}_{*} \subset V = R_{c1}\mathbf{N}_{*}$. Hence $h \leq z_{1}$.

As for ${}^{t}\pi^{-1}(\mathbf{M}_{*}^{+}) \cap \mathbf{N}_{*}$ we proceed the same computation and get $\pi_{2}(a) = \pi(a)z_{2}$ where $({}^{t}\pi^{-1}(\mathbf{M}_{*}^{+}) \cap \mathbf{N}_{*})^{0} = \mathbf{N}(1-z_{2})$

Now it is clear that z_1 and z_2 are orthogonal. We set $z_3 = (1 - z_1)(1 - z_2)$ and define $\pi_3(a) = \pi(a)z_3$ for all $a \in \mathbf{M}$. This yields the decomposition of π described in our theorem.

REMARK. If $\pi_3 \neq 0$ we can further decompose this projection into normal part and singular part and both are non-zero **N**-modul linear homomorphisms but these are no more projections of norm one from **M** to certain direct summands of **N**. Moreover the normal part is an onto-mapping. But we omit all these proofs here.

3. The continuity of the projection of norm one. We begin with the following

LEMMA 3. Let \mathbf{M} , \mathbf{N} , and π be the same as in above discussions, then we have ${}^{\tau}\pi^{-j}(\mathbf{M}_*) \subset \mathbf{N}_*$.

PROOF. ${}^{t}\pi^{-1}(\mathbf{M}_{*})$ is a closed invariant subspace of \mathbf{N}^{*} as shown in the proof of Theorem 2, hence

$${}^{t}\pi^{-1}(\mathbf{M}_{*}) = {}^{t}\pi^{-1}(\mathbf{M}_{*}) \cap \mathbf{N}_{*} \oplus {}^{t}\pi^{-1}(\mathbf{M}_{*}) \cap \mathbf{N}_{*}^{+}$$

Take a positive element φ of ${}^{t}\pi^{-1}(\mathbf{M}_{*}) \cap \mathbf{N}_{*}^{*}$. then ${}^{t}\pi(\varphi)$ is a normal linear functional of **M**. Therefore if $\{a_{\alpha}\}$ is a bounded increasing directed set of self-adjoint elements of **N** and $a_{0} = \sup a_{\alpha}$ in **M** we have $\sup < a_{\alpha}, \varphi > = \sup < \pi(a_{\alpha}), \varphi > = \sup_{\alpha} < a_{\alpha}, {}^{t}\pi(\varphi) > = \stackrel{\alpha}{<} a_{0}, {}^{t}\pi(\varphi) > = <\pi(a_{0}), \varphi >$. We get, however, $\pi(a_{0}) = \sup_{\alpha} a_{\alpha}$ in **N**, so that φ is normal on **N** and this implies $\varphi = 0$.

Hence we get ${}^{t}\pi^{-1}(\mathbf{M}_{*}) \cap \mathbf{N}_{*}^{+} = 0$ by [4: Theorem 1], which leads to ${}^{t}\pi^{-1}(\mathbf{M}_{*}) \subset \mathbf{N}_{*}$.

THEOREM 3. Let **M** be a W*-algebra, **N** a W*-representable *-subalgebra, π a projection of norm one from **M** to **N** and $\pi = \pi_1 + \pi_2 + \pi_3$ is the decomposition mentioned above. Then

 $1^{\circ} \pi$ is normal if and only if $\pi^{-1}(0)$ is σ -weakly closed;

2° $\pi_1 = 0$ if and only if $\pi^{-1}(0)$ is σ -weakly dense in **M**.

PROOF. 1º It suffices to prove the sufficiency. Put $V = {}^{t}\pi^{-1}(\mathbf{M}_{*})$ and let $\pi^{-1}(0)^{0}$ be the polar of $\pi^{-1}(0)$ in \mathbf{M}^{*} . Then we have, by the classical theorem of Banach space, $\pi^{-1}(0)^{0} = {}^{t}\pi(\mathbf{N}^{*})$. Therefore $\pi^{-1}(0)^{0} \cap \mathbf{M}_{*} = {}^{t}\pi(\mathbf{N}_{*}) \cap \mathbf{M}_{*} = {}^{t}\pi(V)$.

Now, from the hypothesis, $(\pi^{-1}(0)^0 \cap \mathbf{M}_*)^* = \mathbf{M}/\pi^{-1}(0)$ (the factor space of **M** by $\pi^{-1}(0)$) because $\pi^{-1}(0)^0 \cap \mathbf{M}_*$ is the polar of $\pi^{-1}(0)$ in \mathbf{M}_* . We represent an element of $\mathbf{M}/\pi^{-1}(0)$ by \overline{a} for $a \in \mathbf{M}$.

If we assume, for some $a \in \mathbf{N}$, $\langle a, \varphi \rangle = 0$ for all $\varphi \in V$ then $\langle a, \varphi \rangle = \langle \pi(a), \varphi \rangle = \langle a, {}^{t}\pi(\varphi) \rangle = \langle \overline{a}, {}^{t}\pi(\varphi) \rangle$ for all $\varphi \in V$. Hence $\overline{a} = 0$ i.e. $a \in \pi^{-1}(0)$ which implies a = 0. Therefore V is $\sigma(\mathbf{N}_{*}, \mathbf{N})$ -dence in \mathbf{N}_{*} by Lemma 3. On the other hand V is a closed subspace of \mathbf{N}_{*} , whence $V = \mathbf{N}_{*}$. This completes the proof.

2°. If $\pi_1 = 0$ then z_1 in Theorem 2 is zero, so that $(V \cap \mathbf{N}_*)^0 = V^0 = \mathbf{N}$. Hence V = 0 and this implies ${}^{\tau}\pi(V) = \pi^{-1}(0)^0 \cap \mathbf{M}_* = 0$. Therefore $\pi^{-1}(0)$, the σ -weak closure of $\pi^{-1}(0)$, is **M** for $\pi^{-1}(0) = (\pi^{-1}(0)^0 \cap \mathbf{M}_*)^0 = \mathbf{M}$.

The above argument is invertible so we get the sufficiency of 2° .

At the last, we summarize the conditions for the continuity of a projection of norm one. For the convenience we assume that N is a W^* -subalgebra of M.

THEOREM 4. Let π be a projection of norm one from a W*-algebra **M** to its W*-subalgebra **N**. Then the next six conditions are equivalent;

1° π is σ -weakly continuous;

 2° π is strongest continuous;

 3^{0} (resp. 4^{0}) π is σ -weakly (resp. weakly) continuous on the unit sphere of **M**;

 $5^{\circ}(resp. 6^{\circ})$ π is strongestly (resp. strongly) continuous on the unit sphere of **M**.

PROOF. 1° implies 2° by 3° of Theorem 1 in [7]. $1^{\circ} \rightleftharpoons 3^{\circ} \rightleftharpoons 4^{\circ}, 2^{\circ} \rightleftharpoons 5^{\circ} \rightleftharpoons 6^{\circ}$ are trivial ones.

Take a σ -weakly continuous linear functional φ of **N**, then φ is strongly continuous on the unit sphere of **N**, so that if π is strongly continuous on the unit sphere of **M** ${}^{\prime}\pi(\varphi)$ is strongly continuous on the unit sphere of **M**. Therefore ${}^{\prime}\pi(\varphi)$ is σ -weakly continuous on **M**, that is, π is σ -weakly continuous. Hence 6⁰ implies 1⁰. Thus all proofs are completed.

References

- [1] S. BANACH, Théorie des opérations linéaires, Warszawa (1932).
- [2] J. DIXMIER, Les algèbres d'opérateurs dans l'espace hilbertien, Paris, 1957.
- [3] R.V.KADISON, Operator algebras with a faithful weakly closed representation, Ann. Math., 64(1956), 175-181.
- [4] S.SAKAI, On topological properties of W*-algebras, Proc. Japan Acad., 33(1957), 439-444.
- [5] M. TAKESAKI, On the direct product of W*-factors, Tôhoku Math. Journ., 10 (1958), 116-119.
- [6] M. TAKESAKI, On the conjugate spaces of operator algebras, This Journ. 194-203.
- [7] J. TOMIYAMA, On the projection of norm one in W*-algebras, Proc. Japan Acad., 33(1957), 608-612.

MATHEMATICAL INSTITUTE, TÔHOKU UNIVERSITY.