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The relations between cohomology groups and different in the number
theory were already treated by A.Weil [11], Y.Kawada [6], A.Kinohara [7]
and M. Moriya [9] in cases of dimension 1 and 2. In the present paper we
shall treat the same subjects for general dimensions under a slight modifica-
tion.

In § 1 we shall explain the definitions and main results of this note. In
§ 2 we shall prove the equalities of the right-, left- and two sided homological
differents. § 3 and § 4 are preliminaries for the following sections. In § 5
we shall prove, essentially, that the homological different is noc zero, and
in § 6 we shall treat the reduccion to the local homological different. In § 7
we shall consider the local homological different and prove the different
theorem, and in § 8 we shall show the equality between homological diffe-
rents and the usual different.

1. Definitions and results. Let Rhe a Dedekind ring, Kits quotient field,
L a finite separable extension field over K and Λ the principal order (the
unique maximal order) of L over R. We regard Λ as an algebra over R.1} For
any two sided Λ-module A, the homology groups Hn{A,A) and the cohomology
groups ϋf*(Λ,A) are defined as usual [1] i.e.

An element λ* = Σλ X)/A of Λβ induces a Λe-endomorphism λβ of A

(1.2) K-.A-+A, V(Λ) = \βa

λ? induces an endomorphism \e of H(Λ,A)

Hn(A,A)-+Hn(A,A).

Therefore H(A, A) may be considered as a Ae-module. Using these endomor-

phisms λ.β, we define the ^-homological (cohomological) different of A/R.

DEFINITION 1. Left ^-homological and cohomological differents

Dι

tι(A/R) and Z>?(Λ/Λ):

Dln(A/R) = {λ e A|λ®l Hn(A, A) = 0 for all A},

D?(A/R) = {λ, € A |λg)l #*(Λ, A) = 0 for all A}.

1) In the following our mam objects are these algebras, which we shall quote
as "the number theoretical algebras'' or "the number theoretical cases".
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DEFINITION II. Right ^-homological and cohomological differents

Dr

n(Λ/A) and D'£A/R):

Dr

n(A/R) = {λ € Λ119)\Hn{A, A) - 0 for all A},

Dn(A/R) = {λ € Λ11$ΛJT*(Λ, A) = 0 for all A}.

DEFINITION III. w-homological and cohomological differents

D»(A/R) and Dn(A/R):

σn(A/R) = {Σλχ)/>t € Λ' |2λ® A*#»(Λ, A) = 0 for all A},

D&A/R) = {Σλ®ŷ  6 A«\ZX§μHn(A, A) = 0 for all A},

Z?«(A/Λ) = P(D'n(A/R)),

Dn(A/R) = p(D-(A/R)),

where /> is a Λδ-homomorphism of Λβ to Λ

(1.4) /O:A«-*A, p{\x)μ) = \μ.

Since Λ is commutative, p is also a ring homomorphism of Ae to Λ.

DEFINITION IV. Commutative #-homological and cohomological differents
Dn(A/R) and Dζ(A/jR). We denote by Ac the module in which λ « - β λ f o r
any a € A and λ € A.

DG
n(A/R) = {λ, € AI λ ^ l S»(Λ, Ac) - 0 for all Ac>,

ΰϊXA/S) = {λ € AI λ ^ l ^Λ(A, Ac) - 0 for all Ac>.

Since Dι

c(y/R) is the annulator of modules of derivations, this Def. IV
corresponds to the definition in [6]. We may easily construct the different
theory concerning Dι

c(A/R).
Obviously these differents are ideals in A. Now, we explain the main results.

I (Cor. 2.3)

D\A/R) - D (AJR) = D%AjR) = D»C(A/R),

Dn(A/R) - DXΛ/R) = D^AIR) = Dc

n(A/R).

II (Th.6.2)
Dn(A/R) Φ 0, Dn(A/R) Φ 0.

III (Th.7.5)

Lat β̂ be any prime in A, let n be a fixed integer # > 1. Then $ divides
Dn(A/R) if and only if $ is ramified or inseparable. The result is also true
for Dn(A/R),n > 1.

As a consequence of II and III, we know that, for any fixed n, Dn(A/R)
(or Dn(A/R)) plays the same role as the usual different.

IV (Th. 8,6)

The homological and cohomological diίferents of any dimension are all
equal to the usual different 2) defined by SpL\κ.

Though we may obtain II and III as an immediate consequence of IV, it
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is desirable to obtain them independent with the theory of the usual diffe-
rent 3). In the present paper we shall prove them using Dn of given dimen-
sion n only, independent from the other Dm and Φ.

As for the chain theorem, we may prove it by using the local cohomo-
logical O-different D°(AP/RP). But, since the proof is essentially dependent
with the theory of the usual different, we shall not state it here.

We also obtain a theorem similar to the theorem of Dedekind (Th.8.7).

2. D(Λ/R) = DΪ(Λ/R) = Dr(Λ/R). Let R be a commutative ring, Λ an

algebra over R, A a Λ"-module2) and Σ^ x)/** an element in the center

of Λβ (we denote it briefly by λ"). Similar to § 1, we have an induced

endomorphism λβ of H(A, A),

(1.3) λ?: H(Λ, A) -> H(A, A).

On the other hand, λβ is also considered as follows: Let

(2.D ΛIAXΛΛ—Λ-Uθ

be a Λβ-projective resolution of Λ. Since λ" = Σλ&ft* induces a Λβ-endomor-

phism λe of Λ

(2.2) λ?:Λ-+Λ,

V(*) = %λ>Ψ for x in Λ,

there exists an extended Λβ-endomorphism V of X over \\

(2.3) ir-.x-ϊX,

and any two such maps are homotopic. Therefore, the map (2.2) induces a
uniquely determined endomorphism of H{A, A),

(2.4) λ«: H{A, A) -> H(A, A).
We may take the following map as one of the extended maps in (2.3):

{2.5) i?.X-+X

since diQCXi) = \edi(Xi), Xi^Xi. The induced map of (2.5) is

(2 6) *if(x)) " f(^'{X)) " / ( V Λ Γ ) = V / W > Λ x ) € H o m UX'A)'
\\a$)x) = atgfλrx = Λ®Σλλr/A - Σaμtyx, a(&x€ A®ΛeX,

Λvhich is the induced map (1.3). Thus we have

PROPOSITION 2.1. The induced map Xβ of (2.2) is the same as the indttced

map iί o/(1.2)

COROLLARY 2.2 If λ fc an element in the center of A, the left operation
induced by X on H(A, A) coincides with the right operation induced by λ, i. e.

2) It will always be assumed that R and Λ have the unity element in com-
mon, and the unity element acts also as the identity on all modules.
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for any u in H(A, A).

PROOF. Indeed, λ ® l — l®λ* induces the O-endomorphism on Λ and the
O-endomorphism of X is one of its extended endomorphism.

COROLLARY 2.3. In the number theoretical case we have

Dn(A/R) = DftΛ/K) = ΪXHA/R),

Dn(A/R) = Dι

n(Λ/R) = D%AjR)

for n = 1,2,....

Next we consider the relations between Dn and D%. Lat Λ be a commu-

tative algebra over R and A any Λe-module.

PROPOSITION 2.4.

(2.7) HomΛβ(Λ, Hn(Λ, A))=H\A, A)

(2.8) Λ® Δ «ι(Λ, A ) s & ( A , A)

as A''-modules.2^

PROOF. For each u € Hn(A, A) the map l->u induces a Λ*-homomorphism
UQ of Λ to ZP(Λ, A) since λz/ = u\ for any λ in Λ. The mapping u->u0 is a
Λβ-eρimorphism of ^ ( Λ , A) to HomAβ(Λ, HU(A, A)) which is also an isomor-
phism. Similarly, the mapping u->l(g)u is a ΛMsomorphism of Hn(A,A) to
Λ®A«iί»(Λ, A) since \ u ~ u \ for any λ in Λ.

PROPOSITION 2.5. PF<£ /ίαz;̂  ί/?̂  ^xαcί sequences

(2.9) 0 -» HomAβ(Λ, W{A, A)) 4- fl*(Λ, Horn Aί(Λ, A)

(2.10) 0 -+ Λ®Δβ a.(Δ, A) -X ^ ( Λ , Λ®A βA),

where i and i' are A*-isomorphism. 2°

PROOF. Let X be a Λβ-projective resolution over Λ, then X®AeA =
A®Λ βX since Λβ-left modules are two sided Λ module and also considered to
be Λβ-right modules. X is considered as Aβ left-Λe right module since Λ is
commutative, so we have

HomAe(Λ, HomA<!(X, A)) ^ HomAβ(X®^βΛ, A) ^ HomAe(X, Hom^(Λ, A)).

From this isomorphism we have the first half of the assertion.
Similarly, we have the second part from the isomorphism

Λ® A e(A® AβX) = (Λ® A*A)® XβX

where A is considered as Λβ-Λβ two sided module.
The last part is obvious from the definition of the operations.

2) Let A and B be two sided Λ-modules. Since Λ is commutative, the operator
λβ of A induces an operator on HomAe(#>A) and £® A β A as follows:

( ® * ) ® / ( 6 ) / ( £ ) ( ® * ) (b®) =b ® μa\= (b®a) (λ®,u*).

It also induces the operation λ§V on Hn(A A) and Hn(Λ, A) (cf (1.3)). Combining
these process we have the operations on modules in (2.7) ̂ -(2.10).
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COROLLARY 2.6.

DRA/K) =

PROOF. Obviously DRA/R) zz> Dn(A/R). Conversely, by (2.9) and (2.7) we
have Dn(A/R)> =D Dζ(A/R) since HomAe(Λ,A) is one of the Ac.

2/) Similarly we
have D°n(A/R) = Dn(A/R) by (2.10) and (2.8)

3. Preliminaries about symmetric algebras. In this section we shall
explain some properties about symmetric algebras. As for the details we
refer [3] and [8].

Let R be a commutative ring and A an i?-module, then we denote the
dual i?-module KomR(A,R) by A0. If A is an algebra over R and A is a left
Λ-module, then A0 is a right A-module. If A is a two sided Λ-module, then
A0 is a two sided Λ-module; in particular, Λ° is also a two sided Λ-module.

Let Λ be an i?-algebra, ϋ?-projective and finitely /^-generated. Then Λ
is called a Frobenius algebra when there exists an isomorphism Φ of Λ to Λ°
as left Λ-modules. We say that Λ is a symmetric algebra when there exists
an isomorphism Φ of Λ to Λ° as two sided Λ-modules.

If Λ is a Frobenius algebra over R, φ = Φ(l) is an /Miomomorphism of
Λ to R and

(3.3) [Φ(r)](λ) = φ(Xr), for any r, λ in Λ.

Conversely, starting from an i?-homomorphism φ of Λ to R, we may define
a left Λ-homomorphism Φ of Λ to Λ° by (3.3). Then the conditions that Φ
is isomorphic and onto are equivalent respectively to the following conditions:
(/. 1) if φ(Xr) = 0 for all λ in Λ then / = 0,

(/. 2) for any / in Λo there exists r in Λ such that

f{X) = φ{Xr).

The condition that Φ is two sided Λ-homomorphism is reduced to

(s) φ(Xr) = <p(rh), for any r, X in Λ.

We coonsider an R-ίree Frobenius algebra Λ over R. Let uh — , un be
a linearly independent basis of Λ over R, then there exists a linearly in-
dependent basis vu — , vn of Λ such that

(3.4) φfavj) = δij.

The left regular representation of Λ by uh — , un is the same as the right
regular representation by vl9 — , vn, i.e.

(3.5) X{ui) = (ut)(at,\

PROPOSITION 3.1. Let A be an R-free algebra over R and uλ. . . . . , un a lineaήy
independent basis of A over R. If there exists R-homomorphism φ of A to R and
a system of elements Vi, . . . . , υn of Λ such that φ(uιυj) = φ(VjUi) = δ^, then A
is symmetric over R.
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PROOF, φ satisfies (/. 1), (/. 2) and (s). If φ{rX) = 0 for an element \ =
and any r in Λ, then at = φ(pC2flίu5) = 0, so λ = 0. For any / in Hom^Λ, R)

we have f(r) = φir^

Division algebras and full matric algebras over R are symmetric; tensor
products over R of symmetric algebras over R are also symmetric.

Lat Λ be an /?-free symmetric algebra over R, (uh — , un), (vu — ,vn)
dual basis of Λ over R and A a two sided Λ-module. We may consider the
standard complete complex of A with augmentation [11];

d\ do d—i

(3.6). Xi * Xo *• X-ι -X-3
^ \ /&

A -> Λ°
Φ

We define as usual

(3.7) HKA, A) = H\\lom^{X, A)), n^ . . . . , - 1,0,1,

The 0 and — 1 dimensional cohomology groups are

H\A, A) = AA/[Σut ® vt*)A,
(3.8) /

-ff-KΛ, A) = Λf^^*VΔA,

where AΔ = {a € A |λ Λ - a λ for all λ € Λ}>

(3.9) (2

ΔA = submodule of A generated by Xa — a\ a € A, λ € Λ.

The other negative dimensional cohomology groups coincide with the homology
groups of Λ over A, i.e. there exists an isomorphism

(3.10) σ : H-n(A, A) ^ Hn-i(A, A), n - 2,3, . . . .

If T is a Λ^homόήiorphism of A into B,

T.A^B,

then the diagram

H-n{AyA)-1^H-n(A1B)
(3.11) σi r σi

Ά-i(A, A) • Hn-ΛA, B)

is commutative for n = 2,3,

If A', A and A" are Λβ-modules and

is an exact sequence of Λ^-homomorphisms, then the sequence

(3.12) -+ #»(A, A') -> ZΓW(Λ, Aj -> Hn(At A") -• i^+1(Λ, A0
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is exact.

From the definition we have

PROPOSITION 3.2. If I is a Ae4njective module then

Hn(Λ, /) = 0

for any integer n.

PROOF. HomAβ( , /) is an exact functor.

PROPOSITION 3.3. If P is Λe-projective then Hn(A, P) = 0 (n =t= 0,1).

PROOF. It is sufficient to prove the prop, for Λβ-free F.

For n < - 1 : We have Hn(Λ, P) ^ Tαr£n(P, Λ) = 0.

For n>Q:F~Aβ®H where H is an /?-free /?-module.

Then [3, Prop. 7]

JEΓ CΛ, Λ* ® *ff) ^ Ext" e(Λ, Λ* <&RH\ ^ Ext^Λ, ίΓ),

where ExtJ(Λ, //*) = 0 because Λ is /?-projective.

4. The element 2 ^ ^ . As we have explained above,

of symmetric algebras plays the same role as the norm of groups. If A = ΛΔ

i.e. λ a = Λ λ for all ^ € A and λ, ^ Λ, then it reduces to ^UiV{. In this

section we prepare some propositions about spitVt.

Lat Λ be an i?-free commutative symmetric algebra over R, let φ be a
defining i?-homomorphism of Λ to R and let {ul} ...., un) and (̂ 1, , vn) be
the dual basis of Λ over R.

PROPOSITION 4.1. If u[, , un is another {linearly independent) basis of

Λ over R and v[, ...., υn is its dual basis with respect to φ, then

(4.1) Σ«i«>ι=Σ«#

PROOF. Lat (ai}) be the matrix in R such that uΊ = Σ α * J w J a n c ^ Φu) ^ e

inverse matrix of {atj) then ^ί, — , υ'w v'k = Σ ^ f c ^ ^ s ^ e ^ u a ^ basis of (^ .

. .,«;): For

φ(uvk) = 'Σaijbih Σ

Hence

PROPOSITION,, 4 2. Z^ί 'Ψ1 6β another R-homomorphism of K to R satisfying
(/. 1) and (/. 2\ «wi to ^, , v'n be the dicaϊ basis of uu , un with respect

o ψ. Then we have
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where λ is a regular element in Λ.

PROOF. In this case, there exist λ and X in Λ such that <p(x) = ψ(xX),
ψ(x) = φ(xX). Therefore φ(x) = ψ(xX) = φ(xλX) for all x in Λ, so<p(#) — φ{xXX)
= φ(x(l — XX) = 0. From (/. 1) we conclude 1 — λλ/ = 0 λ is regular in Λ.
Now, if we put v\ = vt λ then ψ(UiVf

f) = φ{uιVJλX) = δo This shows that

#ί, — » #w is the dual basis of uu un with respect to ψ. Λ

is obvious.

PROPOSITION 4.2'. Z#£ A be a commutative R-free symmetήc algebra over R,
let φ be the defining R-homomorphism of A to R, let (ulf , un) and (vu vn),
be the dual basis of A with respect to φ. Assume, further, that R and A are
both integral domains and the quotient field L of A is separable over the quotient

field K of R. Let ψ be any non zero K-homomorphism of L to K; let (u[, u^)

be a basis of L over K in A and let (v19 , v'J be the dual basis of (aQ of L

with respect to ψ. If (v[, v'n) is aho contained in Λ, then

'Σu'tv € (Σutvt) A.

PROOF. In this case, L = Λ®j?ϋΓ, i?-homomorphism φ can be extended

naturaly to a iί-homomorphism φ of L to K. The dual basis of («i, , un)

with respect to φ is also (vl9 . . . . , vn). By definition of symmetric algebra

L/K, there exists an element a in L such that φ(x) = ψ(xa). Then the dual

basis of (#i, — , un) with respect to ψ is {vxa} — , vna). If we put

*Σ aί3 € R then v'j = 2^ijV< ^ where (^j) is the inverse matrix

of (atJ). Moreover, if we put a = ^CiUίf ct € K then Φ{avt) = cί? so

*Σbtj<p(vta)= 'ΣbijCi. Therefore 2 jφ(Pj)aJt = 2 C A ^ « = c«» where

?̂(̂ ί) € i?. This shows that ct ^ R and α € Λ We have, by the same argu-

ment in Prop. 4.2, t h a t ^ ^ = (^UtV^a.

PROPOSITION 4.3. Let A,R,<p,Ui and vt be as above, A, R integral domains

and L and K their quotient fields, respectively. Then, ^u£Vi Φ 0 if and only

if L is separable over K.

REMARK. It is already known [10] that for any Frobenius algebra L over

a field K the ideal{2 u^vi |λ € Z } of 'the center C of L is equal to C if

and only if L is separable over K. But 2 W ^< m a y ^ e z e r o e v e n ^ ^ is a

total matrix algebra over a field K. For example, if charac' eristic of K is

p > 0 and L = (#)„ then 2 * ^ = 0.
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PROOF OF PROP. 4.3. uu , un is also a linearly independent basis of

L/K. i?-homomophism φ of to R is extended to a ϋΓ-homomorphism φ of L to
K. L is a symmetric algebra over K and (tιlf , un), (vu — , vn) are also

dual bases of Z over K. So, we may consider 2 ^ v « i n L- Then the property

Φ 0 is unaltered when we take another basis ul or another ϋΓ-homomor-

phism^(Prop. 4.1, 4.2).
Case 1. Z = K(θ), where θn + axθ

n-χ + — +tfw = 0 is the defining equa-
tion of 0 in K. We take 1,0,02, . . . . , 0n~1 as a basis of L/K and a map
ψ:ψ(βn-1) = 1, ψ (0O = O(/Φίi — 1) as a defining ϋΓ-homomorphism of Z to ϋΓ.
Then

Vt = 0' ' 1 + d ^ " 2 + ..

is the dual basis of ut{ = 0*-1) and

So we proved the proposition for Case 1.
Case 2. If Z is not simple over K, we take a chain of fields as follows:

£ = Zr ZD ZDLO - K, Li I Li-1 simple, and prove it by in-

duction. r = 1 is Case 1. Assume that it is proved for r — 1 . We consider

two steps L/Lι and £i/if. Let <?>i, ψo be Z r and Zo-homomorphisms of L to
Zi and Zi to K, respectively, and (Uu , £/», (wi, , un) are their bases
and (Vu , VN\ (VU , wn)are corresponding dual bases concerning to ψίf ψ0,

respectively. Then φ = ψ^ψi is a Z0-homomorphism of Z to ϋΓ and vtVj is

the corresponding dual basis of ut Ujf which is a basis of L/K. So φ is a

defining map of the symmetric algebra Z over K. Therefore,

ij J i

is a considering element of L/K. This proves the proposition for r.

PROPOSITION 4.4. Z#ί K be a field, L a finite separable extension of K and
Uι, , un a basis of L over K. It is a symmetric algebra. If we take SpL\κ as

the defining map φ, then the corresponding element, *ΣUίVi~l> tvherevu . . . . ,vn

is the dual basis af' ul9 , un with respect to SpLικ.

PROOF. We take a normal closure L of Z over K and consider an algebra

L(&κL over Z which is contained in the full matrix ring of degree n over Z.

The SPHK of an element in Z coincides with the trace of the corresponding

element in L(&κL regarding as a matrix over L. So (uu — , un) and (vl9 ..

. .vn) are also dual bases of L&L over Z with respect to Sp. Since 2 « Λ is

independent to the choice of uu — , un (Prop. 3.1), we may choose the most

suitable one. We decompose 1 of L(%)L in the direct components of Z ® Z =
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#i, 0W is a basis of Z ® Z overL and their dual basis with respect to
is also £i, — e n . Therefore,

In the preceding section we prove Prop. 3.3 for n =fc 0, — 1. Here, we prove
it for principal orders of fields, which is sufficient for our purpose.

PROPOSITION 4.5. Let A be an R-free symmetric algbera over R, both A and
R be integral domains. Assume that the quotient field of A is separable ovet
the quotient field R. Then for any Ae-projectiυe module P we have

mA,P)=0, H'KA, P)=0,

PROOF. It is suficient to prove it for Λβ-free modules, especially for Λβ.
We devide the proof in three lemmas.

LEMMA 1.

(4.3) (Ae)*=(Σui(g)vi*)A«.

PROOF. Let λ be any element in Λ and let (atJ) be its right regular re-

presentation by ui, un. Since (λ® 1) ( 2 ^ ® Όί) (p® /Ό = ( 2

i i

(μφμf), the right hand side of (4.3) is contained in the left hand side.

Let ^PpijUi φvj be an element of (Λe)Δ, i.e.

«ί = Σ ( Σ «**</)

» ; ) = Σ ( 2 X ajt) tH ® v*;
j u j

so we have^buaji=^aijbn, for ut (&vf is a linearly independent basis of

Ae over R. In other words, the square matrix (b(J) commutes with any matrix
iβij) which is the right regular representation of an element in Λ by the basis
« b un; therefore, {bi3) commutes with any matrix which is the right re-
gular representation of an element of the quotient field Q(A) of Λ, and it
belongs to fhe same set of matrices of the representation. So there exists an

element μ in Q(A) such that μ{ui) = (uiχbij).Put μ = ̂ Λcίvi, cL <Ξ Q(R), then

ϊ-Ci. On the other hand, since / ^ = Σ u5bi5 belongs to A, φiμui) is

in R so μ € Λ. Thus we have

which proves the Lemma.
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LEMMA 2. ΔΛβ in (3.8) is the kernel of the map p:Ae~-±A in (1.4).

PROOF. Obviously, the kernel of p contains ΔΛβ. On the other hand, we
decompose the map p in two parts

(4.4) p : Ae - ^ Λβ/ΔΛδ — ^ Λ

though each part of (4.4) is Λe-homomorphism, it suffices to consider them
as homomorphisms without operators. We also consider modules as additive
groups without operators. Then, A β= (Λ ® 1, ΔΛe), Λe/ΔΛe s Λ ® 1/Λ <g) 1Π ΔΛe

p maps the subgroup Λ ® 1 of Λ ® Λ isomorphically onto Λ so we have
Λ ® 1 Π ΔΛβ=0 and p2 is isomorphic.
This shows that kern, p = ΔΛβ.

LEMMA 3. (Λe)SMi®Wl* = ΔΛβ

PROOF. SinceΓ£u t (x) v*)ΔΛβ = 0, (Λβ)2w'®υί* r> ΔΛβ.

Conversely, if ( 2 ui ® υί) (2/* ® v*) = °> w e m a P e a c n t e r m o f t n ί s ^y
the homomorphism p. Since Λ is commutative, p is a ring homomorphism.
Therefore

On the other hand, by Prop. 4 .3 ,2 M * v< φ 0 i n Λ S o W e n a v e

5. An annulator of H(A, A). In this section we show that there exists
a non trivial annulator of i7(Λ, A) in our number theoretical case. Our homo-
logical and cohomological ^-differents are, consequently, non zero ideals in
Λ.

THEOREM 5.1. Let R be an integral domain, K its quotient field, Λ an R
projectiυe algebra over R. If L=A®RK is a Frobenius algebra over K with

finite dimension, then there exists an element ^\(g)μ* in the center of Ae such

that

2 ® A flrn(Λ,A)=0,
(5.1)

for any Ae-module A and any n > 1.
More precisely, if we take dual bases (uu un), (vu vn) of L/K from

A, then

is one of the elements.

PROOF. In the present case any element of L is the form λ/r, λ € Λ, r £ R,
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and we may take a basis (uu — , un) of L/K from Λ. Let φ be a defining
K homomorphism of the Frobenius algebra A/R and (vjs, , vn/s), vit £ Λ,
s € R be the dual basis of (uu , un) with respect to φ. Then the ̂ -homo-
morphism <po(x) = φ{xs'1) satisfies the defining conditions (/.I), (1.2) in §1.
The dual basis of (u) with respect to φQ is (vlf — , vn); so we may always
take dual bases (uu , un) and (vu , vn) of L/K from Λ. In the fol-
lowing proof we use u and v in this sense.

For any Λβ-module A we consider the following sequence of homomorphism:

(5.2) A - ^ HomAβ(Λβ, A) — ^ Hom*(Λ«, A)
(*) £ 3

*- Ae
 ®RA —^ Ae ®Ae A • A,

where i, j are connonicil Λβ-isomorphism, v is the cannonical Λβ-mono-
morphism, ξ is the cannonical Λe-epimorphism and the map (*):Hom*(Λβ, A) -•

A is defined as follows;

(5.3) ή

Obviously, (*) is an Λ-homomorphism, Moreover, we have

LEMMA. (*) is a Ae'-homomorphism.

PROOF. Case 1: A is /?-free. Let υtX = 2 ^ ' * Vk a n c ^ ^UJ = 2 M A i t) e t l i e

regular representation of λ' and λ for any X <g) λ* in Λβ. There exists an
element d in R such that J ^ and dbt5 are all in R(i,j,k,l=l, , n). Then

2 J) (V

( 5 . 4 ) ^ *»*

= 2 Wλ

fc,ί

Since A is i?-free and Ae is i?-projective, Λβ ® B A is also i?-projective so it
is torsion free over R. We have, therefore, from (5.4),

(*) [(V ® λ*/] - (V ® λ*)[(*)(/p)]=0.

Case 2: A is not i?-free. We consider A as an i?-homomorphic image of
R-free module F,

(5.5) 0->C->-F->A->0 (exact).

From this, using the fact that Λβ is #-projective, we have the following com-
mutative diagram:
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0 -+ Horn* ( M C) -> Horn* (Λβ, F) -» Horn* (Λβ, A) -> 0 (exact)

[ [[
0 *- Aβ®RC -• Λβ® * F * Λ®'*A -> 0 (exact),

where all horizontal maps and (*)F are Λβ-homomorphism. This shows that
the mapping (*)A is also Λβ-homomorρhism, which is the conclusion of the
lemma.

Now we continue the proof of Th. 5.1. Operating i, η, (*), ξ, and j suc-
cessively, we have an endomorphism of H{A, A):

(5.7) H(Λ, A) -> H(A, Homκ(Λ«, A)) -+ H(Λ, Ae®.RA) -+ H(A, A).

vd (*) j£

Let X be a Λδ-projective resolution of Λ. It may be also considered as an

i?-projective resolution of Λ. Then, we have [1, Ch.II, Prop. 5.2]

H'XA, Hom*(Λβ, A))=Hn(HomAe(X, Hom^ίA^, A)))
(5.8) ^ ^ ( H o m B ( X , A))=Eχtff«(Λ, Λ)=0,

Hn(A, A°®RA)=Hn{(A*®RA)®χeX)=Hn(A<8)RX)=Torξ(A, Λ)=0,

since Λ is P-projective. In both case, therefore, the endomorphism (5.7) is
the 0 endomorphism.

On the other hand the explicit from of the map j°ξQ(*)<>η°i is

(5.9) J ξ {*) *l Hfl) = [ΣuiVi <& v*u*]a.
hi

v*ιή belongs to the center of Λβ, it induces an endomorphism of

IRA, A), (§ 1), which is, by (5.8), the zero endomorphism.

REMARK: s i n c e ^ ] ^ * belongs to the center of Λ, the operations on

H (Λ, A) induced by its left-and right mutiplication to A are the same one

(Cor. 2.2), so we may take

(5.10) ( 2 > ^ ) 2 ( S > 1

a s the seeking element in Prop. 5.1. This may be zero even if L is a separable

algebra over K. But in our number theoretical case, L is a separable ex-

tension field over K so we h a v e 2 w ^ « =t= 0 in £ (Prop. 4.3). Thus (5.10) is a

non trivial annul ator of H(A, A).

6. T h e homological and cohomological difFerents. Let R be a Dede-
kind ring, K its quotient field, L a finite separable extension over K and Λ
the principal order of L over R. We have already defined homological pdiffe-
rents Dn(A/R), Dι

n(A/R\ Dr

n(A/R) etc. and proved that Dn(A/R) = Dι

n(A/R) =
Όnr(A/R).

PROPOSITION 6.1. In the above case A is R-projectiυe.

PROOF. Since R is a Dedekind ring,/?*is hereditary [l Ch. VII, Prop. 3.2].
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On the other hand Λ is an i?-submodule of an R-free module, so Λ is
jective [1 I, Th. 5.4].

THEOREM 6.2. For any n>l, Dn(A/R) Φ 0, Dn{Λ/R) Φ 0.

PROOF. It follows immediately from Prop. 6.1, Th.5.1 and the remark to
Th. 5.1.

Next we consider the local factors of D(Λ/R). Let p be any prime in
R, Rp and Λp be the quotient ring of R and Λ by p respectively. ΛB is the
principel order of L over Rp. For any ideal D of Λ the ideal Dp =DAV may
identify with the p-component of D. Since this case is also the number the-
oretical case, we may consider D(AP/RV) etc. We shall prove

THEOREM 6.3. Dn(A/R)p = Dn(AJRΛ Dn(A/R)v = Dn(AP/Rv) for n>l.

To prove the theorem we prepare several lemmas. At first, for any Λβ-
module A we denote Ap the quotient module of A by p. It is also Av ® RPA*

-module.3)

LEMMA 1. For any R-module A, we have

A®RRP ~ A P .

Moreover, if A is a A-module then the above is a An® Rχ> isomorphism. (So
Ap-isomorphism by lemma 3)

PRODF. We consider the mappings

φ:A®RRp -•A,,, φiβ ® (r, s)) = (ar, 5)4>

ψ:Ap-*A ®*i?p, Ψίa, s) = a® (1, 5),

which are both i?p-homomorphism and are inverse maps each other. The
second part of the lemma is obvious.

LEMMA 2. For any R-modules A and B, we have

Moreover, if A and B are A-modules then the above is a (Λ ®n A) ®RRV-isomor-
phism (so (Apy-isomorphism3^ by lemma 3).

PROOF. In general, for any commutative rings S and R, SZDR which
have the unity element 1 in common, we have an canonical isomorphism

The second part of the lemma is obvious.

LEMMA 3. The isomorphism in lemmas 1 ani 2 are ring isomorphisms if
A, B are both Λ, /. e.

A ®RRP = Ap (ring isomorphism).
Ae ®RRP ^ Λp ®up Λ* (ring isomorphism).

3) We shall denote ΛP(g)Ep\* briefly by (Λp>.
4) The element of Λp is represented by a pair (a.s), where a e A and s

In the following we use these representations of elements of Ap and RP.
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PROOF. In lemma 1, ψ is a ring homomorphism if A is Λ. The isomorphism
in Lemma 2 is also a ring isomorphism, so we have the later part of the
lemma using the first part of it,

LEMMA 4. If

. . . . -• X1 ->• Xo ~> A -> 0

is the standard complex of the algebra Λ over R, then

....-+X1®RRV-+XO®RRP~+ Λ®«Rp -*0

is the standard complex of the algebra AP over Rp.

PROOF. From lemmas 1, 2 and 3 we see that the second modules are
identical with the standard complex of AP over RP as (Λp)

β-modules. And
induced differen ial operators coincide with those of standard complex, too.

Now, if AP is a (ΛP )
e-module, we may also consider AP as a Λβ-module.

So we may consider H(A/R,AP) as well as H(AP/RP,AP). Since Ap ZD A, Ae

operates on both H(A/R,AP) and H(Av/RP,Ap).

LEMMA 5. For any (Ap)
e-module AP, we have a A?-isomorphism

H(AP, Ap)^mA, AP\

Hn (Άp ,Av)^Hn (Λ, Av).

PROOF. We have [1, Ch II. Prop. 5.2] a Λe-isomorphism

HomAea*,, {X®χe Ae®RP, AP) ^ HomAβ(X HomAe®Bi> (Λβ ® Rp, ^ ) )
where (x) means the tensor product over R. The left hand side is Hom(Ap)«
(X®Rp,Ap) (lemma 3) the right hand side is isomorphic to HomAβ(X, Ap),
since Horn Aβ ®Kp (Ae ® Rp, A?) ^ A*. From this and lemma 4 the first half of
the lemma δfollows immediately.

Similarly, the Λβ-isomorphism

- X®Ae(Ae®ERp(®Ae$EP A ^ X®AeAp

gives the second part of the lemma.

PROPOSITION 6.4. We have

Dn(Ap /RP) =D D\A1R\ Dn(Ap /RP) n> Dn(A/R)

for n > 1.

PROOF. We may consider the left differents only. So we consider the left
operations of Λ on H(A, Ap). Then the proposition follows immediately
from lemma 5.

LEMMA 6. For any Ae-module A, we have a A?-isomorphism

Hn(A, A) ®RRΨ S JH*(A, A ®RRP ),

H\A} A) ®κRp ̂  Hn(A, A ®BRp) forn> 0.

PROOF. Let X be the standard complex of Λ over R. We consider a
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Λ^-homomorphism

φ: HomΛe(X, A) ® RP ->HoπUβCX", A®RP)
φ[f®(r,s)](x)=f(x)®(r,s).

Conversely, any homogeneous element in Hoπuβ(X, A ® RP) we may take an
element/in HomAβ(X, A) such that g(x) =f[x) ® (1,5) for all x in X, since Xw

is finitely generated over Ae. We put, then,

and have a Λβ-homomorphism ^ of HomA(X> A®/?,,) to Honu«(X, A.)®i?P.
Since φ and Ψ* are inverse mapping each other, they are both ΛMsomorphism.
Obviously, both φ and ψ commute with the differential operator d of X.
This shows the first half of the theorem.

As for the second part, it is obvious since we have

(A ®AβX) <& Rp ̂  (A ® RP ) ® Λ eX

LEMMA 7. For Λ /ιy Aβ-module A, ̂ ^ ^ Λ ^ α Λβ-isomorphism

H*{A, A) ®/?i?P ^ i^(ΛP, A 0 ^ )

Hn(A, A) ®RRp ̂  i^(Λ,, A 0 ^ )

/or w > 0.

PROOF. It is obvious from lemmas 5 and 6.

LEMMA 8. Let A be any R-module. For any element a of A we take an
element of ΠPAP, the each component of which is (a,l) in AP. Then the map-
ping

is an R-isomorphism of into Ylp AP.
Moreover if A is a Ae-module, the above mapping is a Af -isomorphism.

PROOF. Let a be a non zero element in A. The annulators of a forms an
ideal α of R. If p is any prime divisor of a, then (a, 1) in AP for, (a, 1) = 0
in Ap if and only if there exists 5 in R such that sa = 0 and s <ζ p, that is, p
does not divide α.

REMARK. If A has a non trivial annulator, then ΐlPAp is reduced to a di-
rect sum of finite number of factors and into isomorphism is reduced to onto.

PROPOSITION 6.5. If an element X of A is contained in D(AP/RP) for all p,
then λ is contained in D{A/R)

PROOF. We consider X as a left operator of H(A, A). Then the proof
follows immediately from Lemmas 7 and 8.

PROOF OF THEOREM 6.3. Prop. 6.4. and 6.5 constitute the proof.

7. The different theorem. At first we prove two lemmas, the proofs
of which are almost obvious.

LEMMA 1. Let A be a commutative ring, *R a subήng of A and ir any element
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in R. Then we have a ήng isomorphism
Ae/τrAe ^ (Λ/τrΛ) ®Λ/Λ«(Λ/9ΓΛ).

LEMMA 2. Let R be a comnutative ring, TΓ any element in R and A,B
R-modules. Then we have an isomorphism

(A ®RB)/τr(A ®RB) ^ (A/πA)®Bj*άB/πB).

PROOF OF LEMMAS 1 AND 2. Since the lemma 2 is proved by the same

method as lemma 1 we prove lemma 1 only. We have the desired isomorphism

from the following ring homomorphism:

φ : Λ ®/?Λ -> (Λ/τrΛ)

φ{\1 ® λ2) = (λi mod τr)®(λ2 mod TΓ),

the kernel of which is τr(Λ®#Λ).

PROPOSITION 7.1. Let A be an R-projective commutative R-algebre, TΓ any

element in R and X the standard complex of A with the differential operator d

and the homotopy map s. We denote residue rings RjnτR and Λ/τrΛ by R and Λ,

respec tively. If A is R-projective then ΊC^XlπX is the standard complex of

the algebra~A overR with the differential operator d=d mod 7r and the homotopy

map s = s mod 7r.

PROOF. From lemma 2 we have

(7.2) Xn = XJτrXn = (Λ ® a. . . . ®βΛ)/τr(Λ ®R .. . ®RA)

where dn mod TΓ : λ 0 ®....®λ». + 1

Sw mod τ

which are the original differential and homotopy maps of the standard complex

of Λ over R.

PROPOSITION 7.2. Let A be an R-projective commutative R-algebra, TΓ any

element in R} and let Λ=Λ/7rΛ and R=R/πR be residue ήngs. If A is R-

projective} then for any Ae~moduel A we have

PROOF. If we take the standard complex X of Λ over R, then we have

(7β 3) Komie(X,A) =

which proves the proposition.

Now we consider the number theoretical algebras: at first, the local case.
If we take Λp, Rp and a prime element TΓ of p in R as Λ, R and TΓ in Prop.
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7.2, respectively, then R=R/π R is a field and A is #-projective so the as-
sumption of prop. 7.2 is satisfied in this case.

PROPOSITION 7.3 If p is unmmified ani separable in AP/RV, then

dim Ap = 0, w. dimΛe Λ* = 0.
P

If p is ramified or inseparable in Λp /Rp, then

dim AP = oo, v. dimAβΛp = oo,
P

i. e. for any integer n^l there exist Ap -modules A and A! such that

Hn(R, A) Φ 0, Hn(A, A!) Φ 0.

PROOF. The first assertion is obvious.
Let p=$J ι ^ζ be the decomposition of p in ΛP (For the simplicity we

omit the suίϊix p). Then we have the direct decomposition of A

So we have [1 Ch. IX, Th. 5.3]

(7.4) H(A, A) ^ H(A/W> Λ) + . . . .

where A, = ~AtAAt, At = Λ/pf- + . . . . +A/'ψir1

ι +

Hence the proof is sufficient to do with Λ/$J*. (We shall also omit the suffix

i).
If 3̂ is inseparable, then the algebra Λ/^over a field R/p has the radi-

cal 5p/?5*. Moreover if dim Λ/^e < oo then(Λ/ββ)/(^/ίββ)(=A/^ )is separable over
/?/5l[21 which is not the present case.

When 3̂ is separable and ramified, we assume that dim A/̂ β* < oo and
deduce a contradiction. Under such assump ion we have [2]

(7.5) dim A/^e = / d i m A m Λ/*β.

We may construct a suitable A/^3β-resolution of (A/^-left module)

(7.6) -> X3 ^ X2 % Xι X Xo 4 A/ψ -+ 0

where Xn=A/φ,

6: natural homomorphism

(7r is a prime element of $ in A). Then we have

, A) = #*(HomA l ¥ eCχ , A))

J

where A11*-1 = {Λ € A| Π 6 " 1 <z = 0}

= {Πa\aζ A}
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Since e > 1, we may choose a suitable A such that

for any n (for example A = A/'φ). So we have

which contradicts (7.5) and the assumption.
Since Λ is finite rank over R/πR and Ae is Noetherian so we have [1

Ch. VI, p. 122] w. dimΛeΛ = dim A = 00 in both cases.

THEOREM 7.4. Let n be a fixed integer > 1. Then, Hn{A, A) == 0 for any
A\-module A if ani only if p is unramified and separable in Av/Rp.

The similar theorem holds for Hn(A, A), n > 1.

PROOF. If p is ramified or inseparable in A/R (we shall omit the suffix
$), there exist by Prop. 7.3, two sided Λ-module A and A' over R such that

H\A, A) Φ 0, Hn(A, A') Φ 0,

where Λ, R are residue rings Λ/7rΛ, i?/7ri? respectively, and 7r is a prime
•element of p in R. So we have, from Prop. 7.2,

H'KA, A) = Hn(A, A) Φ 0

When p is unramified and separable in A/R, for any Λβ-module A we
consider two exact sequences:

(7.7) 0 -> 7r A U A -+ A/τr A -> 0 (exact),

<7.8) 0 -+ A' -> A 4 7r A -• 0 (exact)

where A' = {a € A|7r« = 0}. From these sequences we have

iP(Λ, TΓA) -^ ̂ M(Λ, A) -+ iϊw(Λ, A/τr A) (exact)

Hn(A, A) 4 7fw(Λ, 7r A) -• ^ίi+!(Λ, A') (exact)
where, by Prop. 7.3 and Prop. 7.2, the third modules in both sequences are
0. Hence the product

(7.9) ioπ: Hn(A, A) -+ Hn(A, A)

is a homomorphism onto. Since this is the same map as π in (1.3), we have

πH\A, A) = H\A, A).

Therefore, for any positive integer s,

Hn(A, A) = π" Hn (Λ, A),

and the right hand side is 0, by Prop. 6.2, for sufficiently large s.

From (7.7) and (7.8) we have also

Hn(A, 7r A) 4 Hn(A, A) -• Hn(A, A/TΓ A) (exact)

Hn(A, A) 4 Hn{A, 7r A) -> J^-^A, AO (exact),
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and for n > 1 the third modules in both sequences are 0.
The remaining part of the proof goes similarly as above.

Now we consider the global case and prove the following main theorem.

THEOREM 7.5. L et n be any fixed integer > 1. Then a prime ideal *$ in A
divides the n-cohomological different Dn(A/R) if and only if ψ is ramified or in-
separable in A/R.

The similar reults hold for the n-homological different Dn(A/R),n > 1.

PROOF. Th.6.3 shows that it suffices to prove the theorem for the local
case. So we only consider the local case and write Λ and R instead of Λp.
and Rp throughout the proof.

Sufficiency: Let $ be ramified or inseparable in A/R and let p=^3β2ί, ($,
2ί) = 1 be the decomposition of p in Λ. We take a prime element ir of p in R,
then we have

(7.10) Λ/TΓΛ-^/TΓΛ + SI/wΛ (direct),

ΨlπA ^ Λ/2Γ, sΆ/τrA^A/ψ (ring isomorphism)

where Λ,$, 21 are Λ/77-Λ, φ/πA, 9J/ 7rΛ respectively. Since e > 1 or Λ/$ is in-

separable over R, the proof of Prop. 7.4 shows that there exists two sided

Λ/φe-module A such that Hn(A/'W} A) Φ 0. In the decomposition (7.10) we

define the operations of Λ/21 on A as 0 operator, then A is a two sided Λ-

module. Thus [1, Ch. IX, Th. 5.3]

, A) = Hn(A/Έ, 0) + Hn(Aβe, A)

= Hn(A./ψ', A) Φ 0

and, by Prop. 7.2,

Hn(A9Ά)=Hn(A9A).

So the annulator Π of Hn(A, A) does not contain 1. Since, by Prop. 6. 2,.
Π ID ψ and, by the definition Π ZD Dn(A/R\ we have Π =D {$*, Dn(A/R)}.
Thus we have Ϊ I D D ' D ( ψ , D n ( A / R ) ) ZDDn(A/R).

Necessity: Let φ be unramified and separable in A/R and let $ = $ 2ί,
(21, $) = 1 be the decomposition of p in Λ. If we take sufficiently large power

τrd of the prime element TΓ of p, then, by Prop. 6.2,7r*ίP>(Λ, A)=0 for any Λβ-
module Λ. We prove that %2aHn(A, A)=0 for any A, which implies the neces-
sity, since Dn(A/R)ZD%M, so (Dn(A/R),ψ)=l.

Case 1. For modules A such that τrA=0, we have %Hn(A, A)=0.

Since Λ = % 4- S-P we have

Hn(A, A) = Hn(% %A%) + Hn(ψ, ψA%

where 2ί is separable as an R/{ΊT) algebra, for s)i = 2l/7rΛ ^A/% So we have

# » ( ¥ , ¥ A T 0 = 0 and Hn(A, A)=H"(A,A)=Hn(%VAψ).Ύhns VLH%A,A) = Obe-

cause (ψAψβί = 0.
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Case 2. If A has an annulator ir\ then WHn(A, A) = 0.

We prove it by induction, i — 1 is the Case 1.

Assume it for * — 1. From the exact sequence of homomorphisms

0 -> TΓA -> A -* A/TΓ A -* 0,

we have the exact sequence

Hn(Λ, TΓA) - ^ Hn(A, A) — ^ fΓ»(Λ, A/τrA).

For any ^ in /7n(A, A) and any α in A, 9>(£m) = αr̂ (w) = 0 in ϋP^Λ, A/7Γ A)
so there exists u' in Hn(A, nτ A) such that ψ(u') — ecu. From the assumption
of the induction, we have a'u' — 0 for any a' in Si'"1. Thus we have

a'a u — a'ψίu') = ψ(a'u') = 0

where a! and a are any elements in Ψ'1 and %t respectively, and 2 a!a

runs over ίί*.
Case 3. For general A, consider the exact sequences

(7.11) 0 ί ^ A - ^ A A/ΊT^A ^ 0,

(7.12) 0 -A' ^A-^+T^A -0,

where A' is the module of all elements in A such that π^a = 0 Then we

have

(7.13) Hn(Λ, TΓ^A) - ^ Hn(A, A) Hn(A, A]ifΆ) = 0 (exact)

(7.14) #*(Λ, A) - ^ Hn(A, TΓ^A) Hn+1 (Λ, Ar) = 0 (exact),

Let a, a' be arbitrary elements in %d and let u be any class in Hn(A, A)
Since au = 0 in i/n(Λ, A/τr'*A) in (7.13), there exists «' in ^n(Λ, τr'7A) such
that i{u') = au. Since a'u' = 0 in /ΓZ+1(A, Ar) in (7.14), there exists w" in
ZP(Λ, A) such that TΓ\U") — a'u'. Operating i and τrΛ successively, we have

i^oi{u") = a'au.

On the other hand, as an endomorphism of Hn(A, A), the mapping i<> if* is

the same as ira in (1.3), which is the zero endomorphism. Therefore, a'au

= 0 for any a, a' in 91* and u in i7n(Λ, A), where 2 α α : ' r u n s o v e r ^2<i

The similar proof holds for Hn(A, A), except for n = 1.

Summalizing the above arguments, we have

THEOREM 7.6. £#£ # fe any fixed positive integer. Then, using Dn(A/R)
only, we have the fίniteness of the ramification. The theorem also holds for
Dn(A/R) n>l.

8. Relations between various diίFerents Dn, Df, D? etc. and the
usual different. © Lat R, Λ, L and iΓ be the same as in § 7. We have already
proved that

DRA/R) - Dn

r(A/A) = D"(Λ/R), =
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Dι

n(A/R) = Dr

n(A/R) = Dn(A/R) = D&A/R)

for n > 0. We consider the relations between differents of various dimen-
sions.

THEOREM 8.1.

PROOF. For any Aβ-module A we take a AMnjective module 7 contain-
ing A,

(8.1) 0->A->7-+A'-+0 (exact).
Then, for any element λ € A we have the commutaive diagram

0 - Hn(A, 7) -* Hn(A, A) -* Hn+ \A, A)-+Hn+1 (A, 7) - 0 (exact)

x®i I λ®i I λ®i I
0 = Hn(A, 7) -• Hn(A, A) -> Hn+ !(A, A)-+Hn+ι (A, 7) = 0 (exact).

Therefore, if λ € Dn = Dn then \®l Hn*1 (A, A) = 0 for any A, i.e.

As for Dn, we consider A as a homomorphic image of a Ae-projective
module P,
(8.2) 0-> A / r->P-^ A-+0 (exact).
Then we have, instead of (8.1),

Hn (A, p) ( = 0) -> «.(Λ, A) -> £Γ»-!(Λ, A'O -> Hn-i (A, P) ( = 0) (exact)

I

«ι(Λ, P) ( = 0) -> fl"«(Λ, A -> fli-xίΛ, Λ'O->fli-i (A, P)(= 0) (exact).

So if λ € Dι

n_x then λ ® 1 jfiΓ»(Λ, A) = 0 for any A.

Now we consider local theory. Let f) be a prime ideal in R, AP and RP

be the quotient rings of A and 7? by p, respectively (as § 6). This is also
our number theoretical case; so A, is RP-projective. Moreover we have

PROPOSITION 8.2. The algebra AP over Rp is a symmetήc algebra (§2).

PROOF. Since AP is the principal order of L over Rp and L is separable
over the quotient field K of RP, Λp is 7^-free and RP -finitely generated. We
take a non zero 7f-homomorphism φ' of L to K. Let (uu , «„) be a linearly
independent basis of AP over Rψ, (vu ,vn) be the dual basis of (uu

un) with respect to φ', as a basis of LjK. Then the Λp-module {x € L\φ\Apx)
€ RP} is generated by vu , vn over 7?,,. So it is a fractional ideal of AP,
it is, therefore, a principal ideal (df). If we put ψ(x) = φ'{xd'\ then φ is also
a non zero Tί-homomorphism of L to 7Γ, and the dual basis of u with respect
to φ is Vi/d'j which belongs to Ap. So ψ is considered an 7?p-homomorphism
of AP to Rχ> and satisfies all the assumption of Prop. 3.1. Therefore, Ap is
a symmetric algebra over 7?*.
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Prop. 8.2 shows that we may apply the results of §3 to AP/RP. In
particular, if we define Dfn as

(8.3) Dfn(Λp /Up) = {X € AP \X® 1 H~n(Ap , i ) = 0 for all Λj-module A}

for n > 1, then

(8.4) Dn (Ap JRP) = Dr-1 (Λp //?„)

by virtue of (3.11). We may also define, analogously, D%AP/RP) and A'XAp

IRP) by using (3.8). D? and Df1 are not zero ideals, since 2 M^ί * s a n o n

trivial annulator of H° and ff-1 by (3.8).

PROPOSITION 8.3. In the local case Ap /i?P, ^^ have

/or all integer n.

PROOF. Let A be any Λ^-two sided modul. We take a Λ*-injective module
/ and consider the exact sequence (8.1), then we have, by (3.11) and Prop.
3.2, DfczD^1 entirely same as the proof of Th. 8.1.

Conversely, if we consider the exact sequence (8.2) and use Prop. 3.3
and Prop 4.5, then we have D^ ZD Dη

L

+1. The proof is also the same as in
Th. 8.1.

COROLLARY 8.4. In the local case A* jRv, we have
D"(Ap/Rp) = (2uivί)Ap

where (uίy ...., us) is a linearly independent basis of ΛP over RP arid (υu . . . . ,
vg) is a dual basis of (uu ...., us).

PROOF. From (3.8) it is obvious that D°(AP/RP) ^ XuiVi. Conversely, if λ
belongs to D°(AP/RP), then for the Λ^-module ΛP we have λΛp c (ΣuiV^Λp
in particular λ 1 € (Σ^« vΰ AP.

THFOREM 8.5. The homological and cohomological differents of υaήous
dimensions are all equal each other.

PROOF. It follows immediately from Prop. 8.3 and Th.6.3.

Now we consider the relations between the different © in ordinary sense
and our homological differents. It is sufficient, by Th.6.3, to compare the
^-component of two differents.

THEOREM 8.6. The homological (cohomological) different is equal to the
usual different.

PROOF. It is sufficient to prove for the ^-component. In the local case
Ap/Rp, let (δ) be the inverse different defined by SpL\κ. Then the proof of
Prop. 8.2 shows that φ(x) = Sp (xS) is the defining homomorphism of the
symmetric algebra AP/RP. Let (u) be a basis of AP over Rp and (v), (v') be
the dual bases of (u) with respect to Sp and φ, respectively. From Prop 4.2
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we have 2 uv' — ^ 2 uv)^"1- But by Prop. 4.4, 2 ^ ~ *• Thus we have .

mAp/JRp) = D°(AP/RP) = (Zuv')Λp = (S'OA, = Φ(Λ,/Λ,).

As for the connections between the elements 2 ***>< a n ( * t n e usual dif-
ferent, we have the following theorem something like to that of Dedekind.

THEOREM 8.7. The different Φ(Λ//f) is the greatest common divisor of all
the elements

where (u[ , un) is a basis of LJK contained in A and (v[, , v£ is the dual
basis of (u[, .. .un) with respect to some K-homomorphism of L to K and also
belong to A.

PROOF. It follows from Prop. 4.2' that ^utv^D0(AP/RP) = $(ΛP/Rp).

It is sufficient, therefore, to prove that there exists one of above elements

2 ^ ' # ; such that f)-component of the principal ideal ( 2 * ^ 0 * s ^°(Λp/A)
Let q» be the defining 7?P-homomorphism of the symmetric algebra Λp/Rp,

(uι, , un) and (υXi , vn) a dual bases of Ap over RP with respect

to φ. We extend φ to a ϋf-homomorphism φ of L to ϋΓ. Since Wi, . . . . , un

are p-integral, their denominators are prime to p, even if they do not belong
to Λ. So we may take au , an in R, all prime to p, and («i«i, «2̂ 2, ,
Wn̂w) is a (linearly independent) basis of ΛP/RP contained in Λ. The dual
basis of («««<) is (v{a7ι). Since (at, p) = 1, ^αf1 are all p-integral. There
exists, therefore, an element b in R, (b,p) = 1, such that t^jf1 ^ are all in

Λ. Now we take if-homomorphism ~φr defined by φ'(x) = φ{xb~ι). Then the
dual basis of («* at) with respect to ψ' is (^ar1 )̂» t n i s is t n e basis in the
present proposition. On the other hand, as b is a f)-unit, 99' induces an Rp-
homomorphism φ' of Ap to i?P which is also a defining map of the symmetric
algebra Ap/Rp. Thus we have

2 («* <*) (»* βΓ

which proves the proposition.
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