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The purpose of the present note is to clarify certain ambiguities which
appear in the usual treatment of the fundamental theorem of curves in 3-
dimensional Euclidean space. The theorem in its classical form may te stated
in the following two parts.

THEOREM I. Given a curve in Euclidean space which is defined by xι =
xXs)^, where xι are functions of class C3 on an interval L = [0, χ] and s is
the arc-length measured from the initial point xι(0), there exists a family of
ortho-normal vectors et(s) which satisfy the Frenet equations

deι/ds = ke2

dejds — — keι + we3 (1)

dejds = — we2

where ex, and e2 e3 are the tangent, principal normal and binormal unit vectors
respectively and k, w are the curvature and torsion respectively. It is as-
sumed, however, that the curvature k(s) {defined to be the length of the
derivative dejds of the unit tangent vector ex) does not vanish anywhere
on L.

THEOREM II. Given a function k(s) of class C1 and a continuous func-
tion w(s) on an interval L, there exists a curve of class C3 which admits a
family of ortho-normal vectors el9 e2 and e3 satisfying the equations (1) with
given functions k and w, where eλ is the unit tangent vector. Such a curve
is uniquely determined by k and w within to a motion of the space.

The question of weakening differentiability requirements of the curve in
Theorem I and of the functions k and w in Theorem II has been studied
by P. Hartman and A. Wintner2). What we wish to take up here is the as-
sumption usually made for Theorem I that the curvature k does not vanish
anywhere on the whole interval L; the other extreme case is that of a line
segment for which k is constantly zero. This assumption of non-vanishing
curvature is not satisfactory in view of Theorem II in which the given func-

1) Throughout the paper, the suffix i runs from 1 to 3.
2) P. Hartman and A. Wintner, On the fundamental equations of differential geometry, Amer.

J. Math, 72 (1950); A. Wintner, On the infinitesimal geometry of curves, Amer. J. Math.
75 (1953).
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tions k and w are quite arbitrary. What is then a necessary and sufficient
condition for a given curve to admit a family of ortho-normal vectors eγ

( = unit tangent vector), e2 and e3 which satisfy (1) with suitably chosen
functions k and w ? A partial answer to this problem and its applications
to the theory of surfaces have been given by A. Wintner3).

In this note, we assume that the functions xι(s) defining the curves are
of class C°° and analyze conditions for establishing the Frenet equations
without requiring that the function k(s) is non-negative.

1. Regular, normal and Frenet curves. Let xι be rectangular co-
ordinates in Euclidean space R. By a parametrized curve of class C°°, we
mean a mapping/ of a certain interval L = [a, b] into R defined by xί = xί(t),
aStSb, where x\t) are functions of class C°° on Z/}. Two parametrized

curves of class C°°/: xi = xi{t), a^tSb, and J:xi = x\t), a t b, are said to be
equivalent if there exists a diffeomorphism t — φ{t) of class C°° of [a,b] onto
[a,b] such that φ{a) = a,φ[b) = b and xKt) = x\φ{t)) for every t in \μjb\ Each
equivalence class of parametrized curves of class CΛ will be called an orient-
ed curve of class C°° or simply a curve.

Let C be a curve defined by xι = x\t\ a^t^b. If Σ]mi (dxι/dt)2 =)= 0
for every t, then C is called a regular curve. Of course, this notion is in-
dependent of the choice of a parametrized curve xι = x\t) which represents
the curve C. If C is a regular curve, then we may introduce the arc-length

s — \ v Σ u i ^ ' / ^ 2 ^ k y m e a n s °f which we can represent Cin the form
•'a

xι = xι(s), 0 S s ^ X, where % is the total length of C From now on, we
consider only regular curves which are represented in this form. The vector
e\(s) — (dxi/ds) of length 1 is called the unit tangent vector at the point
x%s).

A regular curve will here be called normal if it satisfies the following
condition: for every s0 € L, there exists an integer m = m(s0) such that the
m-th derivative (dme1/dsmXs0) at s0 is not zero. It is clear that an analytic
curve is normal unless it is a line segment.

A regular curve xι = xι(s) will be called a Frenet curve if there exists
a family of vectors e2(s) and e3(s), s € L, such that5)

1) for each 5, e^s), e2(s) and e3(s) are ortho-normal (that is, they are
mutually orthogonal unit vectors) and the matrix We^s) e2(s) e3(s)\\ is of de-

3) A. Wintner, On Frenet's equations, Amer. J. Math. 78 (1956).
4) By a O-function on a closed interval L, we mean a function which may be extended to

a C°°-function on an open interval containing L.
5) In accordance with 4), we assume that ei(s) can be extended to an open interval contain-

ing L so as to satisfy the following conditions there.
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terminant 1
2) e2(s) and e3(s) are of class C°° with respect to s;
3) these vectors satisfy the Frenet equations (1) with suitably chosen

functions k and w.
Such a family (el9 e2, e3) is called a Frenet family of moving frames on

the Frenet curve C The family of unit tangent vectors e^s) is of course of
class C°°. The functions k and w, which are equal to the inner product
(de^/ds, e2) and — (dejds, e2) respectively, are automatically of class C°°. The
Frenet family of moving frames of a Frenet curve C may not be unique as
the case of a line segment clearly illustrates (here k is constantly zero, but
we may choose e2 and e3 so that w may be an arbitrary pressigned function
of class C°°). The absolute value of the function k(s) is uniquely determined
as the length of dex/ds the function w(s) is unique if we choose one fixed
family of moving frames.

We denote by ^/m) the m-th derivative dmejdsm of e^s). Applying the
Leibniz formula to the first equation of (1), we see that if eΊ = . . . = e 1

( m ) = 0
and ei

(m+ί)=^0 at a point s = s0, then k(so)= ...=fcm-ιKs0) = 0 and £(m)G>o)=f=O.

2. Main results. Our main results are the following.

THEOREM. A normal curve of class C°° is a Frenet curve. The function
k(s) which appears in the Frenet equations of C is unique up to a sign and
the function w(s) is uniquely determined.

COROLLARY 1. Let C be a normal curve of class C°°: xι = x\s\ s € L
= [0, %]• For each s0 € L, denote by m(s0) the first integer m such that
<?i(7Π)(so) is not zero. If m(s0) is odd, the function k(s) does not change its
sign at s = s0, while if m(s0) is even, k(s) changes its sign at s = s0.

The geometric meaning of Corollary 1 will be explained later. We define
k(s) or —k(s) as the curvature of C and the function w(s) as the torsion of
C.

COROLLARY 2. An analytic curve is always a Frenet curve.

The proof of the theorem is preceded by the following lemmas.

LEMMA 1. Let f(s) be a C™-function of s defined on a certain interval
L. If a sequence of points sn € L with f(sn) = 0 converges to a point s0 € L,
then the derivatives of all orders /(m)(^0) are zero.

PROOF. That f(s0) = 0 is obvious. In order to prove that f'(s0) = 0, we
may assume that sn converges to sQ monotonely,say, Si > s2 >...>$».... By
Rolle's theorem, there exists a sequence of points tn such that f'(tn) = 0 and
sn > ta > Sn+ι for all 7Z. Then tn converge to s0 and hence f'(s0) = 0. By
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repeated application of this argument,we have /(m)(s0) = 0 for all m.

Lemma 1 is valid also for a vector-valued function els) — (dxi/ds) of
a regular curve of class C°°. Thus we get

LEMMA 2. Let C be a normal curve of class C°° represented by xί = xί(s),
s € L. Then the set N of points s € L where eΊ(s) = O consists of isolated
points and hence is finite (N may be empty).

LEMMA 3. {Taylor theorem for Cx-functions). Let f(s) be a function of
class C°° defined in a neighborhood U of s0. For each integer m 2̂  1, there
exists a C°°-function g(s) on U such that

As) =Aso) + (s - so)/(*o) + - + ^f-fm)(so) + (s~so)
m+ig(s)

m I
for all s in U.

PROOF. This follows from the following well known fact. If f(s) is a
C°°-functon such that f(s0) = 0, then there exists a C°°-function g(s) such that
f(s) = (s-so)g(s).

With these preparations we are now in a position to prove our theorem.
By. Lemma 2. eΊ(s) vanishes on a finite set N= {si9 s2,---,sp} of L . W e

assume that 0 < Si < s2 < ••• < sp < χ (the case where s, = 0 or sp = % can
be handled in a similar way). Let us define the vectors e2(s) and the func-
tion k(s) on L in the following manner. For 0 S s < sl9 we define

els) = els)/\\e[{s)\\ and k(s) = U(s)\\,

where || || denotes the length.
In the case where m = m(sλ) is odd, we define

ez(s1) = erXsί)/\\eΓKs1)\\ and k(Sl) = 0,
and for Sj < s < 52

els) = eχs)/\\e[(s)\\ and k(s) = \\eΊ(s) ||.

In the case where m = m(Si) is even, we define

*,(*,) = - erKsJ/WerKsJW and K.Sl) = 0,
and for Sj < s < s2

els) = - el(s)/U(s)\\ and k(s) = - Uis) ||.

We continue this process of defining e2(s) and k(s) successively on each
subinterval (st, st+1) and at the points st in such a way that the function k(s)
does not char ge its sign at s = st if m(s^) is odd ard charges its sign at
s = Si if W(Λ) is even. After defining els) on the whole interval L, we set
els) — els) X e2(s) for every s. We shall prove that els), els) and els) form
actually a Frenet family of moving frames of C

First observe that {eueλ) = 1 implies 0 1 ? eί) = 0, which shows that els)
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and e2(s) are orthogonal to each other for 5 € L — N. If sf € N, we have
e[ = ... = ef^"1 = 0 at s = 54. Further differentiation of (e1? ̂  = 1 gives
(e^eΐ^) = 0 at 5 = 5ί Hence £i(s£) and e2GO are orthogonal to each other.
This shows that eλ(s) and e2{s) are unit vectors orthogonal to each other for
every s so that ex(s), e2(s) and e3(s) satisfy condition 1) of the Frenet moving
frames. If we know that they are differentiate, then the classical argument
establishes the Frenet equations by suitably denning w(s).

It remains therefore to show that e2(s) is of class C°°. Since eλ(s) is of
class C~, that will imply that e3(s) is of class C°°. On each subinterval
(si9 sί+ι), e2(s) is clearly of class C°°. It suffices therefore to show that e2(s)
is of class C° in a neighborhood of each point s% of N.

Let st € N and let U = (si-u si+ι). We introduce the following nota-
tions : m = m(sd, h = s~ st(s € U\ e[(s) = (ξ\h)\ e^Ksd = ( O - 1) ! a1).
By Lemma 3, there exist C"°-functions v\h) such that

ξ\h) = hm'lal + hmv\h) (2).

First consider the case where m is odd. We shall assume that e2(s)=e[(s)/\\eΊ(s)\\
for Sf-i < 5 < 5ί? since the case of the opposite sign may be treated similarly.
Then we have

t-th component of els) = ( Σ ^ ( Λ » - V + A V ( Λ ) ) y - (3)

for Si-ι < s < Si. As m is odd, we have

0/ els) =

for Sι-i < s < st. Now by definition of e2(si) and e2{s) for 5£ < 5 < si+1 for
the case where m = m(sι) is odd, (4) holds at s = 5έ(Λ = 0) and for st < s < si+1

(h > 0) as well. This shows that the z'-th component of e2(s) is given by the
right hand side of (4) which is of class C°° in the neighborhood U of st.

Next we consider the case where m — m(sι) is even. We shall assume that
e2(s) is given by (3) for ŝ -i < s < st. As w is even this time, we get

^ + k η\h) ,c Ncomponent of e2{s) = - τ=?> .

for Si-1 < s < 5ί(A = s — Si < 0). By our rule of defining e2(s), (5) holds for
Si < s < sί + ι(h > 0) and at 5 = s^h = 0) as well. Thus the z'-th component
of e2(s) is given by the right hand side of (5) which is of class C°° in the
neighborhood U of st. We have concluded the proof that e2{s) is of class C°°
on the whole interval L.

We finally show that the vector function e2(s) is uniquely determined up
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to a sign on the whole interval L this will prove that the function

k(s) = (eΊ(s), e2(s)) is unique up to a sign and that the function wis) is

uniquely determined by C since w(s) = — (e2(s), e^s)) does not change if

we change e2is) into — e2(s). Now assume that we have e2(s), e^s) = e^s)

X e2(s) such that Frenet equations

βι = k e2

eλ = — keλ + we3

e'3 = — w e2

for suitably chosen functions k and w. From the first equation we have

\Ks)\ — \\e[{s)\\ = \Ks)\. On each subinterval (s*, si+ί), neither k(s) nor k(s)

has a zero point. According as k(s) > 0 or k(s) < 0 on G>i? s i+1), we have

e2(s) = eί(s)/||eί(s)|| or e2(s) = — e\(s)/\\eΊ(s) ||. The situation is similar for

e2(s). Thus if k(s) and k(s) have the same sign on (sί9 sί+1), we have e2(s) =

e2(s), otherwise, e2(s) = — e2(s). At s = st we have either e2(Ό — e2(si) or ^2

(si) = — e2(si). From the continuity we have e2(s) = ^2(^) o n -̂  o r ^(s) = ~

^2(^) on L, concluding the whole proof of our theorem.

3. Remarks. We first give an example of a curve of class C°° which is

neither normal nor a Frenet curve. Let f(t) be a C°°-function defined by

fit) = e~llt2 for t < 0 and /(*) = 0 for t ^ 0. Similarly, let fl(ί) be defined by

git) = 0 for t % 0 and #0) = έΓ1"2 for £ > 0. We define a curve C by ^ ( ί ) =

fit), x\t) = t, x\t) = git) for — 1 t 1. C is a regular curve of class C°°

but not normal (the point corresponding to t = 0 is singular). It is easy to

see that C is not a Frenet curve (for t < 0, the vector e3is) is perpendicular

to the α ^-plane, while for £ > 0 it is perpendicular to the .r2.r3-plane so

that it is impossible to define e3is) at the point = 0 to get a continuous

vector family e3(s) on the whole L).

On the other hand, given arbitrary functions kis) and wis), both of class

C°° on an interval L, there exists a Frenet curve of class C°° for which the

Frenet equations are valid with given functions k and w. This curve, unique

within to a motion in the space, may not le normal. In fact, by taking a

function kis) which vanishes together with all its derivatives at a certain

point, we get a Frenet curve which is not normal.

Although a pair of functions kis) and wis) determine a Frenet curve C,

we should be cautioned against defining wis) to be the torsion of C. If k is

constantly zero, the curve C will be a line segment whatever function wmay

be, while it is geometrically natural to define the torsion of a line segment

to be zero. The same remark is to be applied to any line segment which
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may be contained in the curve C In this connection, the following remark
is a consequence of our results. If the function k(s) satisfies the condition
that for each sQ € L, there is an integer m such that the ra-th derivative
£ ( m ) (Ό is not zero, then the Frenet curve determined by k(s) and an
arbitrary function w(s) is normal and hence the Frenet family of moving
frames is essentially unique by the theorem. This shows that the function
w(s), uniquely determined by the curve C as a function which appear in the
Frenet equations of C, may be defined to be the torsion of C without any
ambiguity.

We finally give a geometric meaning of the change of sign of k(s) in
Corollary 1. Let C be a normal curve of class C°°. If k(s0) =j= 0 and w(s)
=f= 0, then the curve C lies on different sides of the osculating planes in a
neighborhood of the point s = sQ, as is known in the classical theory. When
k(s0) = 0, the osculating plane is still defined to be the plane determined by
e^So) and e2(s0). Now assume that k(s0) = 0 but w(s0) =ή= 0. If m(s0) is odd,
the situation is the same as the case where k(s0) ==f= 0, while if m(s0) is even,
the curve C lies on one side of the osculating plane in a neighborhood of
the point. This follows from the following argument. Let m = m(s0) and let
us expand x(s) = (xι(s)) in the form

x(s) = x(s0) + (s- s0) ei(so) + (s- so)
m+1/(m + 1) ! e[m\sQ)

+ {s - so)
m+*Am + 2) ! \eίm+iXs0) + 8},

where £ —>• 0 as 5 —> sΌ.

W e see t h a t t h e inner p r o d u c t (JO(S) — sc(s0), e3(s0)) is equal t o (s — so)
m+2/

(m + 2)1 \(e[m+1)(s0), e3(s0)) + S}. O n t h e o t h e r h a n d , differentiating(eί,έ? s) = 0

m times, we get m(e[m)(s0\ e',(so)) + (e[m+lXso\ ez(s0)) = 0 so that (eim+1\s0\e3(s0))

= — m(eΊm)(s0), ei(s0)) = m{e[m\s0), w(so)e2(so)) =f= 0 since e2(s0) is equal to the

unit vector in the same direction as eim\s0) and w(s0) =f= 0 by assumption.
Thus we have

(*(*) - x(so\ e3(s0)) = (s-so)
m+\α + £")

where α =f= 0 and S" -> 0 as s -> s0, from which our assertion is clear.
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