ON CONVERGENCE CRITERIA FOR FOURIER SERIES II

Kenji Yano

(Received March 10, 1958, Revised July 7, 1958)

1. Introduction. Let $\varphi(t)$ be integrable in $(0, \pi)$, even, periodic of period 2π , and let

$$\varphi(t) \sim \frac{1}{2} a_0 + \sum_{n=1}^{\infty} a_n \cos nt.$$

We write

$$\Phi_{\alpha}(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-u)^{\alpha-1} [\varphi(u) - s] du \qquad (\alpha > 0),$$
$$s_n = \frac{1}{2} a_0 + \sum_{\nu=1}^n a_{\nu}.$$

F. T. Wang [1] has proved that if $\beta > \alpha > 0$, $\varphi(t) \in L$, $\Phi_{\alpha}(t) = o(t^{\beta})$ as $t \to 0$ and if $a_n > -An^{-\alpha/\beta}$, A > 0, then $s_n \to s$ as $n \to \infty$. In order to prove this, Wang used the method of Riesz summability. In this paper we shall give an alternative proof by a method of generalized de la Vallée Poussin summability. In § 4 we shall refer to jump functions. This note is a continuation of K. Yano [5], but may be readed free from it.

DEFINITION 1. We define g(x) such as $1^{\circ} g(x) > 0$ for $x \ge x_0 > 0$, $2^{\circ} g(x) \uparrow \infty$ as $x \uparrow \infty$, and $3^{\circ} H \le g(x^{\delta})/g(x) \le 1$, $0 < \delta < 1$ for all $x \ge x_0$, where $H = H(\delta)$ is a positive constant depending on δ only.

Then we see easily that $g(x) = o(x^{\epsilon})$ as $x \to \infty$ for every positive ϵ . In this definition we require no differentiability of g(x). We may take for g(x), e.g.,

$$\log x$$
, $(\log x)^{\alpha} \log \log x \ (\alpha \ge 0)$ and $\log_p x$,

where \log_p denotes the *p*-times iterated logarithm. For the sake of simplicity we denote $(g(x))^{\alpha}$ by $g(x)^{\alpha}$ throughout this paper.

THEOREM 1.¹⁾ Let $\beta \ge \alpha > 0$ and let g(x) be unity or defined by Definition 1. If

(1.1)
$$\int_0^t |\Phi_{\alpha}(u)| \ du = o\left(t^{\beta+1}/g\left(\frac{1}{t}\right)\right) \qquad (t \to 0),$$

and if for any assigned positive &

¹⁾ $\varphi(t)$ requires no integrability in Lebesgue sense.

(1.2)
$$s_{n+\nu} - s_n > - \varepsilon \text{ for } \nu = 1, 2, ..., m,$$
 $(n \ge n_{\epsilon})_{r}$

where

(1.3)
$$m = [\eta n^{\alpha/\beta}/g(n)^{1/\beta}], \qquad \eta = \mathcal{E}^2,$$

then $s_n \to s$ as $n \to \infty$, i.e. the Fourier series of $\varphi(t)$ is convergent to sum s at t = 0.

COROLLARY 1.1. Theorem 1 holds when the condition (1.2) with (1.3) is replaced by

$$(1.4) a_n > -An^{-\alpha/\beta}g(n)^{1/\beta} (n \ge n_0)^{2}$$

This follows from Theorem 1 since (1.4) implies $a_n > -\mathcal{E}^{-1}n^{-\alpha/\beta}g(n)^{1/\beta}$ $(n \ge n_{\epsilon})$, which also does (1.2) with (1.3). In the case g(x) = 1 this corollary coincides with the Wang's theorem stated above, and in the case $\beta = \alpha$ it does with a result from the theorem due to K. Kanno [4], the function g(x) being slightly different from the original.

Letting $g(x) = (\log x)^{r_{\alpha}}$ we have the following corollary:

COROLLARY 1.2. If
$$\beta \ge \alpha > 0$$
, $r \ge 0$ and
 $\Phi_{\alpha}(t) = o\left(t^{\beta}/\log\left(\frac{1}{t}\right)^{r_{\alpha}}\right)$ $(t \to 0)$,

and if

$$a_n > -An^{-\alpha/\beta}(\log n)^{r_\alpha/\beta}, A > 0,$$
 $(n \ge 2),$

then $s_n \rightarrow s$ as $n \rightarrow \infty$.

In the case $\beta = \alpha$ this corollary is a theorem due to K. Kanno [3], and if in addition $r = 1/\alpha$ it is due to F. T. Wang [2].

2. Preliminary lemmas.

LEMMA 1. Let k be any positive integer, and let $m = m(n) < k^{-1}n$ tend to infinity with n and be as same order as or lower order than n. If

(2.1)
$$\frac{2}{\pi}\int_0^{\pi}\varphi(t)\chi_n(t)dt = s + o(1) \qquad (n \to \infty),$$

where

(2.2)
$$\chi_n(t) = \chi_n^{\pm}(m, k, t) = \frac{(2\sin(mt/2))^k}{m^k(2\sin(t/2))^{k+1}} \sin\left[n + \frac{1}{2} \pm \frac{1}{2}k(m+1)\right]t,$$

and if for any assigned positive &

(2.3) $s_{n+\nu} - s_n > -\varepsilon$ for $\nu = 1, 2, ..., m$, $(n \ge n_{\varepsilon})$, then $s_n \to s$ as $n \to \infty$, i.e. the Fourier series of $\varphi(t)$ is convergent to sum

²⁾ n_0 may be expressed by x_0 in Definition 1, and is an absolute constant depending on the function g(x) only.

s at t = 0.

PROOF. We use the following identities which are analogous to those in L. S. Bosanquet [6]:

(2.4)
$$s_n = I_n - \frac{1}{m^k} \sum_{\nu_1=1}^m \sum_{\nu_2=1}^m \dots \sum_{\nu_k=1}^m (s_{n+\nu_1+\nu_2+\dots+\nu_k} - s_n),$$

where $I_n = \frac{1}{m^k} \sum_{\nu_1=1}^m \sum_{\nu_2=1}^m \dots \sum_{\nu_k=1}^m s_{n+\nu_1+\nu_2+\dots+\nu_k},$

where

$$I_n = \frac{1}{m^k} \sum_{\nu_1 = 1}^m \sum_{\nu_2 = 1}^m \cdots \sum_{\nu_k = 1}^m s_{n+\nu_1+\nu_2+\cdots+\nu_k}$$

and

(2.5)
$$s_n = I'_n + \frac{1}{m^k} \sum_{\nu_1=1}^m \sum_{\nu_2=1}^m \dots \sum_{\nu_k=1}^m (s_n - s_{n-\nu_1-\nu_2-\dots-\nu_k}),$$

where $I'_n = \frac{1}{m^k} \sum_{\nu_1=1}^m \sum_{\nu_2=1}^m \dots \sum_{\nu_k=1}^m s_{n-\nu_1-\nu_2-\dots-\nu_k}.$

Now if

(2.6)
$$\lim_{n\to\infty} I_n = \lim_{n\to\infty} I'_n = s,$$

and if (2.3) holds, then from (2.4) and (2.5) we have

$$\limsup_{n\to\infty} s_n \leq s \qquad \text{and} \qquad \liminf_{a\to\infty} s_n \geq s$$

respectively, and then $\lim s_n = s$.

On the other hand, denoting by $D_n(t)$ the *n*-th Dirichlet kernel, clearly

$$s_{n+\nu_{1}+\nu_{2}+...+\nu_{k}} = \frac{2}{\pi} \int_{0}^{\pi} \varphi(t) D_{n+\nu_{1}+\nu_{2}+...+\nu_{k}}(t) dt$$

= $\frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \left(2\sin\frac{1}{2}t\right)^{-1} \sin\left(n+\frac{1}{2}+\nu_{1}+\nu_{2}+...+\nu_{k}\right) t dt.$

Add both sides from $\nu_1 = 1$ to m, from $\nu_2 = 1$ to m, \dots , from $\nu_k = 1$ to msuccessively, and divide them by m^k , then we have

$$I_n = \frac{2}{\pi} \int_0^{\pi} \varphi(t) \frac{(2\sin(mt/2))^k}{m^k (2\sin(t/2))^{k+1}} \sin\left[n + \frac{1}{2} + \frac{1}{2}k(m+1)\right] t dt.$$

Similarly

$$I'_{n} = \frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \frac{(2\sin(mt/2))^{k}}{m^{k}(2\sin(t/2))^{k+1}} \sin\left[n + \frac{1}{2} - \frac{1}{2}k(m+1)\right] t dt.$$

Hence the condition (2.6) coincides with (2.1), and we get the lemma since (2.6) and (2.3) imply $s_n \rightarrow s$.

LEMMA 2. The kernel $\chi_n(t) = \chi_n^{\pm}(m, k, t)$ defined by (2.2), m being as same order as or lower order than n, possesses the following properties:

(2.7)
$$\frac{2}{\pi}\int_0^{\pi}\chi_n(t)dt=1,$$

and for $\mu = 0, 1, ...,$

(2.8)
$$\left(\frac{d}{dt}\right)^{\mu} \chi_{n}(t) = \begin{cases} O(n^{\mu+1}) & (0 \le t \le \pi) \\ O(n^{\mu}/t) & (nt \ge 1) \\ O(n^{\mu}/m^{k}t^{k+1}) & (mt \ge 1), \end{cases}$$

as $n \to \infty$.

PROOF. By the definition of $\chi_n(t) = \chi_n^+(m, k, t)$ we have

(2.9)
$$\chi_n(t) = \frac{1}{m^k} \sum_{\nu_1=1}^m \sum_{\nu_2=1}^m \cdots \sum_{\nu_k=1}^m D_{n+\nu_1+\nu_2+\ldots+\nu_k}(t),$$

from which (2.7) follows immediately since $(2/\pi) \int_0^{\pi} D_n(t) dt = 1$. The first relation in (2.8) follows from (2.9) and $(d/dt)^{\mu}D_n(t) = O(n^{\mu+1})$ for $0 \le t \le \pi$. The second relation does from (2.9) and $(d/dt)^{\mu}D_n(t) = O(n^{\mu/t})$ for $nt \ge 1$. The third relation in (2.8) follows from (2.2) by developing the product

$$(2\sin(mt/2))^k \sin(n+1/2+k(m+1)/2)t$$

into a linear combination of sines or cosines, and differentiating term by term μ -times.

It is analogous to the kernel $\chi_n(t) = \chi_n(m, k, t)$, and we get the lemma.

3. Proof of Theorem 1. By Lemma 1, it is sufficient to show that

(3.1)
$$\frac{2}{\pi}\int_0^{\pi}\varphi(t)\chi_n(t)dt = s + o(1) \qquad (n \to \infty),$$

where $\chi_n(t)$ is defined by (2.2), i.e.

$$\chi_n(t) = \frac{(2\sin(mt/2))^k}{m^k (2\sin(t/2))^{k+1}} \sin\left[n + \frac{1}{2} \pm \frac{1}{2}k(m+1)\right]t,$$

k being determined in a moment. Here we may suppose that s = 0 with no loss of generality since $(2/\pi) \int_0^{\pi} \chi_n(t) dt = 1$ by (2.7). We take two integers l and k such as

$$(3.2) l-1 \leq \alpha < l \text{ and } k > l\beta/\alpha$$

Then necessarily l > 1 since $\alpha > 0$. Observe that for $\mu = 0, 1, ..., \Phi_{\mu+1}(0) = 0$ and

$$\boldsymbol{\chi}_{n}^{(\boldsymbol{\mu})}(t) = \left(\frac{d}{dt}\right)^{\boldsymbol{\mu}} \boldsymbol{\chi}_{n}(t) = \begin{cases} O(n^{\boldsymbol{\mu}+1}) & (0 \leq t \leq \pi) \\ O(n^{\boldsymbol{\mu}}/m^{k}) & (0 < \delta \leq t \leq \pi), \end{cases}$$

by Lemma 2, and then that

$$\begin{split} [\Phi_{\mu+1}(t)\chi_{n}^{(\mu)}(t)]_{i=0}^{\pi} &= \Phi_{\mu+1}(\pi)\chi_{n}^{(\mu)}(\pi) \\ &= O(n^{\mu}/m^{k}), \qquad m = [n^{\alpha/\beta}/g(n)^{1/\beta}], \\ &= O(\eta^{-k}g(n)^{k/\beta}/n^{k\alpha/\beta-\mu}), \end{split}$$

which is o(1) for $\mu = 0, 1, ..., l-1$ since $g(n) = o(n^{\epsilon})$ for every $\varepsilon > 0$ and by (3.2) $k\alpha/\beta - \mu > l - (l-1) > 0$. Then, applying integration by parts *l*-times to the left hand side integral in (3.1) we have

(3.3)
$$\int_0^{\pi} \varphi(t) \chi_n(t) dt = (-1)^l \int_0^{\pi} \Phi_l(t) \chi_n^{(l)}(t) dt + o(1).$$

Further, since (1.1) and $l > \alpha$ imply

$$\int_0^t | \Phi_i(u) | du = o(t^{\beta+1+l-\alpha}) = o(t^{l+1}),$$

we have

(3.4)
$$\int_0^{n^{-1}} \Phi_i(t) \chi_n^{(l)}(t) dt = O\left(n^{l+1} \int_0^{n^{-1}} | \Phi_i(t) | dt\right) = o(1).$$

By (3.3) and (3.4), the proposition (3.1) is equivalent to

(3.5)
$$I \equiv \int_{n^{-1}}^{\pi} \Phi_l(t) \chi_n^{(\prime)}(t) dt = o(1) \qquad (n \to \infty).$$

Using then the identity

$$\Phi_{l}(t) = \frac{1}{\Gamma(l-\alpha)} \int_{0}^{t} (t-u)^{l-1-\alpha} \Phi_{\alpha}(u) du,$$

and neglecting the factor $1/\Gamma(l-\alpha)$,

(3.6)
$$I = \int_{n^{-1}}^{\pi} \chi_n^{(l)}(t) dt \int_0^t (t - u)^{l - 1 - \alpha} \Phi_\alpha(u) du$$
$$= \int_{n^{-1}}^{\pi} dt \int_0^{t - n^{-1}} du + \int_{n^{-1}}^{\pi} dt \int_{t - n^{-1}}^t du = I_1 + I_2$$

Exchanging the order of integration

$$(3.7) I_{1} = \int_{n^{-1}}^{\pi} \chi_{n}^{(l)}(t) dt \int_{0}^{t^{-n^{-1}}} (t - u)^{t^{-1} - \alpha} \Phi_{\alpha}(u) du = \int_{0}^{m^{-1} - n^{-1}} du \int_{u + n^{-1}}^{m^{-1}} dt + \int_{0}^{m^{-1} - n^{-1}} du \int_{m^{-1}}^{\pi} dt + \int_{m^{-1} - n^{-1}}^{\pi - n^{-1}} du \int_{u + n^{-1}}^{\pi} dt = J_{1} + J_{2} + J_{3}$$

Now, for the sake of simplicity we write

$$U(t, u) = (t - u)^{l-1-\alpha} \boldsymbol{\chi}_n^{(l)}(t) \qquad (l - 1 - \alpha \leq 0).$$

Then, when $n^{-1} \leq u < u_1 < u_2 \leq \pi$, by the second mean-value theorem

$$\left|\int_{u_1}^{u_2} U(t, u) dt\right| \leq (u_1 - u)^{l-1-\alpha} \sup_{u_1 < t < u_2} |\chi_n^{(l-1)}(t)|,$$

and so by (2.8) with $\mu = l - 1$

(3.8)
$$\int_{u_1}^{u_2} U(t, u) dt = O((u_1 - u)^{l-1-\alpha} n^{l-1}/u_1) \qquad (nu_1 \ge 1),$$

(3.9)
$$\int_{u_1}^{u_2} U(t, u) dt = O((u_1 - u)^{l-1-\alpha} n^{l-1} / m^k u_1^{k+1}) \qquad (mu_1 \ge 1).$$

Using (3.8) with $u_1 = u + n^{-1}$, i. e. $\int_{u+n^{-1}}^{m^{-1}} U(t, u) dt = O(n^{\alpha}/u)$,

$$J_{1} = \int_{0}^{m^{-1}-n^{-1}} \Phi_{\alpha}(u) du \int_{u+n^{-1}}^{m^{-1}} U(t, u) dt = O\left(n^{\alpha} \int_{0}^{m^{-1}} |\Phi_{\alpha}(u)| u^{-1} du\right).$$

Hence, by the assumption

(1.1)
$$\int_0^t |\Phi_a(u)| du = o\left(t^{\beta+1}/g\left(\frac{1}{t}\right)\right),$$

and integrating by parts, and using the property of g(x),

$$J_{1} = o(n^{\alpha}/m^{\beta}g(m)) + o\left(n^{\alpha}\int_{0}^{m^{-1}}u^{\beta-1}g\left(\frac{1}{u}\right)^{-1}du\right)$$

= $o(n^{\alpha}/m^{\beta}g(m)) = o(n^{\alpha}/m^{\beta}g(n)), \ m = [\eta n^{\alpha/\beta}g(n)^{-1/\beta}],$
= $o(\eta^{-\beta}) = o(1).$

Next, by (1.1) and (3.9) with $u_1 = m^{-1} \ge u + n^{-1}$, i. e. $\int_{m^{-1}}^{\pi} U(t, u) dt$ = $O((m^{-1} - u)^{l^{-1-\alpha}} n^{l^{-1}} m) = O(n^{\alpha} m)$, $J_2 = \int_0^{n^{-1-n^{-1}}} \Phi_a(u) du \int_{m^{-1}}^{\pi} U(t, u) dt = O\left(n^{\alpha} m \int_0^{m^{-1}} |\Phi_a(u)| du\right)$ = $o(n^{\alpha} / m^{\beta} g(m)) = o(1)$.

Further, by (3.9) with $u_1 = u + n^{-1}$, i. e. $\int_{u+n^{-1}}^{\pi} U(t, u) dt = O(n^{\alpha}/m^k u^{k+1})$,

$$J_{3} = \int_{m^{-1}-n^{-1}}^{\pi-n^{-1}} \Phi_{a}(u) du \int_{u+n^{-1}}^{\pi} U(t, u) dt = O\left(n^{\alpha}m^{-k}\int_{m^{-1}}^{\pi} |\Phi_{a}(u)| u^{-(k+1)} du\right).$$

Observing that $\beta < k$ by (3.2), using (1.1) and integrating by parts,

$$\begin{aligned} J_{3} &= o(n^{\alpha}m^{-k}(m^{-1})^{\beta-k}g(m)^{-1}) \\ &+ o\left(n^{\alpha}m^{-k}\left(\int_{m^{-1}}^{m^{-\delta}} + \int_{m^{-\delta}}^{\pi}\right)u^{\beta-k-1}g\left(\frac{1}{u}\right)^{-1}du\right), \ 0 < \delta < 1, \\ &= o(n^{\alpha}/m^{\beta}g(m)) = o(1). \end{aligned}$$

Hence, J's are all o(1), and then $I_1 = o(1)$ by (3.7).

Concerning I_2 , exchanging the order of integration,

$$I_{2} = \int_{n-1}^{\pi} \chi_{n}^{(l)}(t) dt \int_{t-n-1}^{t} (t-u)^{l-1-\alpha} \Phi_{\alpha}(u) du$$

K. YANO

$$=\int_{0}^{n^{-1}} du \int_{n^{-1}}^{u^{+n^{-1}}} dt + \int_{n^{-1}}^{m^{-1}} du \int_{u}^{u^{+n^{-1}}} dt + \int_{m^{-1}}^{\pi^{-n^{-1}}} du \int_{u}^{u^{+n^{-1}}} dt + \int_{u^{-1}}^{\pi^{-n^{-1}}} du \int_{u}^{u^{+n^{-1}}} dt + \int_{u^{-1}}^{\pi^{-n^{-1}}} du \int_{u}^{u^{+n^{-1}}} dt = K_{1} + K_{2} + K_{3} + K_{4},$$

say. Then observing that

$$m{\chi}_{n}^{(l)}(t) = \begin{cases} O(n^{l}/t) & (nt \ge 1) \\ O(n^{l}/m^{k}t^{k+1}) & (mt \ge 1), \end{cases}$$

by Lemma 2, we see that K's are all o(1), and then $I_2 = o(1)$ by the same argument as above.

Thus $I_1 = o(1)$, $I_2 = o(1)$, and (3.6) yields (3.5) which completes the proof.

4. Jump Functions. Let $\psi(t)$ be integrable in $(0, \pi)$, odd, periodic of period 2π , and let

$$\Psi(t) \sim \sum_{n=1}^{\infty} b_n \sin nt.$$

We write

$$\begin{split} \Psi_{\alpha}(t) &= \frac{1}{\Gamma(\alpha)} \int_{\sigma}^{t} (t-u)^{\alpha-1} [\psi(u) - l] du \qquad (\alpha < 0), \\ t_{n} &= \sum_{\nu=1}^{n} \nu b_{\nu}. \end{split}$$

and

Then, corresponding to Theorem 1 we have the following theorem:

THEOREM 2. Let $\beta \ge \alpha > 0$ and let g(x) be unity or defined by Definition 1 in § 1. 1° If

$$\int_0^t |\Psi_{\alpha}(u)| \, du = o\left(t^{3+1}/g\left(\frac{1}{t}\right)\right) \qquad (t \to 0),$$

and 2° if for any assigned positive \mathcal{E}

$$t_{n+\nu}-t_n>-\mathfrak{E}n \ for \ \nu=1,2,\ldots,m,$$
 $(n\geq n_{\epsilon}),$

where $m = [\mathcal{E}^2 n^{\alpha/\beta}/g(n)^{1/\beta}]$, or simply if $b_n > -A n^{-\alpha/\beta}/g(n)^{1/\beta}$, A > 0, $(n \ge n_0)$,

then the sequence $\{nb_n\}$ is summable (C, 1) to $2l/\pi$.

REMARK. Observing that if l = 0 and the series $\sum b_n$ is summable in Abel sense then $t_n = o(n)$ implies the convergence of $\sum b_n$, the above theorem may be easily transferred to a convergence theorem for the allied Fourier series of $\Psi(t)$ at t = 0.

PROOF. Using the identity

$$\frac{t_n}{n+1} = I_n - \frac{1}{(n+1)m^k} \sum_{\nu_1=1}^m \sum_{\nu_2=1}^m \dots \sum_{\nu_k=1}^m (t_{n+\nu_1+\nu_2+\dots+\nu_k} - t_n),$$

where

(4.1)
$$I_n = \frac{1}{(n+1)m^k} \sum_{\nu_1=1}^m \sum_{\nu_2=1}^m \cdots \sum_{\nu_k=1}^m t_{n+1+\nu_2+\cdots+\nu_k},$$

and its analogue, it is sufficient to show that

(4.2)
$$I_n = \frac{2l}{\pi} + o(1) \qquad (n \to \infty),$$

by Lemma 1. Here observe that

$$t_n = \sum_{\nu=1}^n \nu b_\nu = -\frac{2}{\pi} \int_0^\pi \Psi(t) \frac{d}{dt} D_n(t) dt.$$

Substituting this replaced n by $n + \nu_1 + \nu_2 + ... + \nu_k$ into (4.1) we have

(4.3)
$$I_n = -\frac{2}{\pi} \int_0^{\pi} \psi(t) \frac{1}{(n+1)m^k} \sum_{\nu_1=1}^m \sum_{\nu_2=1}^m \dots \sum_{\nu_k=1}^m \frac{d}{dt} D_{n+\nu_1+\nu_2+\dots+\nu_k}(t) dt$$
$$= -\frac{2}{\pi} \int_0^{\pi} \psi(t) \frac{1}{n+1} \frac{d}{dt} \chi_n(t) dt,$$

where $\chi_n(t) = \chi_{\kappa}^+(m, k, t)$ coincides with that in (2.2), i.e.

$$\chi_n(t) = \frac{(2\sin(mt/2))^k}{m^k (2\sin(t/2))^{k+1}} \sin\left[n + \frac{1}{2} + \frac{1}{2}k(m+1)\right]t$$

And $(n + 1)^{-1}(d/dt)\chi_n(t)$ has all the properties of $\chi_n(t)$ in (2.8), i.e.

(4.4)
$$\left(\frac{d}{dt}\right)^{\mu}\left(\frac{1}{n+1},\frac{d}{dt}\chi_{n}(t)\right) = \begin{cases} O(n^{\mu+1}) & (0 \le t \le \pi) \\ O(n^{\mu}/t) & (nt \ge 1) \\ O(n^{\mu}/m^{k}t^{k+1}) & (mt \ge 1), \end{cases}$$

for $\mu = 0, 1, ...$. Now, I_n in (4.3) is

(4.5)
$$I_{n} = -\frac{2}{\pi} \int_{0}^{\pi} [\Psi(u) - l] \frac{1}{n+1} \frac{d}{dt} \chi_{n}(t) dt \\ -\frac{2l}{\pi} \int_{0}^{\pi} \frac{1}{n+1} \frac{d}{dt} \chi_{n}(t) dt = K_{1} + K_{2},$$

say. Then using (4.4) we see that $K_1 = o(1)$ under the assumptions in the theorem quite analogously as the proof of Theorem 1. Concerning K_2

$$K_{2} = -\frac{2l}{\pi} \frac{1}{n+1} [\chi_{n}(t)]_{t=0}^{\pi} = o(1) + \frac{2l}{\pi} \cdot \frac{1}{n+1} \chi_{n}(0)$$

= $o(1) + \frac{2l}{\pi} \cdot \frac{1}{n+1} \left[n + \frac{1}{2} + \frac{1}{2} k(m+1) \right]$
= $\frac{2l}{\pi} + o(1).$

K. YANO

Hence, (4.2) follows from (4.5) and the theorem is proved.

REFERENCES

- [1] F. T. WANG, On Riesz summability of Fourier serier (II), Journ. London Math. Soc. 17(1942), 98-107.
- [2] F. T. WANG, On Riesz summability of Fourier series (III), Proc. London Math. Soc.
 (2), 51(1947), 215-231.
- [3] K. KANNO, On the Riesz summability of Fourier series, Tôhoku Math. Journ. (2), 8 (1956), 223-234.
- [4] K.KANNO, On the Riesz summability of Fourier series (II), Bull. of the Yamagata University, 4(1958), 323-331.
- K. YANO, On convergence criteria for Fourier series I, Proc. Japan Acad. 34(1958), 331– 336.
- [6] L.S. BOSANQUET, Notes on convexity theorems, Journ. London Math. Soc. 18(1943), 239-248.

MATHEMATICAL INSTITUTE, NARA WOMEN'S UNIVERSITY, NARA.