
ON CONVERGENCE CRITERIA FOR FOURIER SERIES II

KENJI YANO

(Received March 10,1958, Revised July 7,1958)

1. Introduction. Let φ{t) be integrable in (0, ir), even, periodic of period
2ir, and let

φ(t) — — a0 + Σ an cos nt.
2 n=l

We write

= -^Hr [\t - uy-\φ(u) - s] du {a > 0),
Y{ct) J o

and sn = — a0 + Σ a^

F. T. Wang [1] has proved that if β > a > 0, φ{t) € L, Φa(t) = o(tβ) as
t —• 0 and if αn > — An~alβ, A > 0, then 5n-^5 as w->oo. In order to prove
this, Wang used the method of Riesz summability. In this paper we shall
give an alternative proof by a method of generalized de la Vallee Poussin
summability. In § 4 we shall refer to jump functions. This note is a con-
tinuation of K. Yano [5], but may be readed free from it.

DEFINITION l. We define g(χ) such as
1° g(x) > 0 for x > x0 > 0, 2° g(x) \ oo as x \ oo, and 3° H % g(x*)/g(x) S 1,
0 < S < 1 for all x > xQ, where H = H(δ) is a positive constant depending
on δ only.

Then we see easily that g(x) = o(x*) as α:->oo for every positive S. In
this definition we require no differentiability of g{x). We may take for g(x\
e.g.,

log x, (log xf log log x {a > 0) and logp x,

where logp denotes the ^-times iterated logarithm. For the sake of sim-
plicity we denote (g(x)Y by g(x)" throughout this paper.

THEOREM 1.° Let β>a>0 and let g{x) be unity or defined by
Definition 1. //

(1.1) f I Φ OO I du = o (^+7^(y)) (*

and if for any assigned positive S

1) φ(t) requires no integrability in Lebesgue sense.
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(1. 2) sn+v — sn> — S for v = 1, 2, ... , m, in > ne),

where

(1.3) m = lvn«lβ/g(nn v = S\

then sn-> s as n —> 00 ? z. ̂ . ίΛ^ Fourier series of φ{t) is convergent to sum

s at t = 0.

COROLLARY 1.1. Theorem 1 A<?/<& wλtfΛ ίλέ? condition (1.2) wώλ (1.3)

zs replaced by

(1. 4) * n > - An-Iβg(nylβ (n > T2O).
2)

This follows from Theorem 1 since (1. 4) implies an > — S^n'^^gin)1^

(n > we), which also does (1. 2) with (1.3). In the case g(x) = 1 this corolla-

ry coincides with the Wang's theorem stated above, and in the case β = a

it does with a result from the theorem due to K. Kanno [4], the function

g(x) being slightly different from the original.

Letting g(x) = (log x)rcύ we have the following corollary :

COROLLARY 1.2. If β ^ a > 0, r > 0 and

Φ β ( 0 =

and if

an> - An-al\\og rίf^, A>0,' (n ^ 2),

then sn-+ s as n —> oo.

In the case β ==. a this corollary is a theorem due to K. Kanno [3], and

if in addition r = 1/oL it is due to F. T. Wang [2].

2. Preliminary lemmas.

LEMMA 1. Let k be any positive integer, and let m = m(n) < k~ιn tend

to infinity with n and be as same order as or lower order than n. If

2
(2.1) - [ φ{i)χlt)dt = s + *(1) (n -* oo\

7Γ JQ

where

(2.2) Xπω = xKm, k, t) = ( f , f . ( 7 ^ 1 sinίn + \±\Km + 1)1 *,
wfc(2 sm (ί/ 2)) + L 2 2 J

and if for any assigned positive £

(2. 3) sn+v — sn> - S for v = 1, 2, ... , m, (n > Λe),

sn-+ s as n-+ oo 9 i,e. the Fourier series of φ(t) is convergent to sum

2) nQ may be expressed by xQ in Definition 1, and is an absolute constant depending on
the function g(x) only.
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s at t = 0.

PROOF. We use the following identities which are analogous to those
in L. S. Bosanquet [6] :

s = i - A-γ y y
m

wnere in — -

and

m
mm m

Ί

where In =
m

mm

2
mm

\Δ. O) Sn = In ΊΓ — / , / , •••
TΠ Vl=\ ^ = 1 vk=

mm m

where In =—ΓΣ Σ ••• Σ

Now if

(2. 6) lim In = lim Ẑ  = s,

and if (2. 3) holds, then from (2. 4) and (2. 5) we have

lim sup sn 5Ξ 5 and lim inf 5W >̂ 5

respectively, and then lim sn = s.

On the other hand, denoting by Dn(t) the w-th Dirichlet kernel, clearly

2 f *

= — ί ^(ί)(2sin —ί I sin(/ι+ — + ^! + *>2 + ... + i/A) t dt.

Add both sides from vγ = 1 to m, from Ϊ>2 = 1 to m, ... , from ẑ  = 1 torn
successively, and divide them by mk, then we have

7ΓJ0
+L + λ

2mk(2s\n(t/2))k+1 L 2 2

Similarly

Hence the condition (2. 6) coincides with (2. 1), and we get the lemma
since (2. 6) and (2. 3) imply sn -• 5.

LEMMA 2. 77^ kernel χn(t) = χκ(m, k, t) defined by (2. 2),
order as or lower order than n, possesses the following properties :

(2. 7)



ON CONVERGENCE CRITERIA FOR FOURIER SERIES II 57

and for μ = 0,1, ... ,

{O(n) (OS* Sir)

)
2j 1),

PROOF. By the definition of χn(t) = χϊ(m, k. t) we have
mm m

(2. 9) χn(t) = - V Σ Σ • Σ Dn+vl+Vί+...+Vk(t),

from which (2. 7) follows immediately since (2/τr) I Dn(i)dt ~ 1. The first re-

Λ
lation in (2. 8) follows from (2. 9) and (d/dt)μDn(t) = O(^ + 1 ) for 0 < / ^ TΓ.

The second relation does from (2.9) and (d/dtYDn(t) = O(nμ/t) for nt j> 1.

The third relation in (2. 8) follows from (2. 2) by developing the product
(2 sin (mi/2)f sin (w + 1/2 + k(m + l)/2>

into a linear combination of sines or cosines, and differentiating term by

term /Mimes.

It is analogous to the kernel χn(t) = χΰ(m, k, t), and we get the lemma.

3. Proof of Theorem 1. By Lemma 1, it is sufficient to show that

(3. 1) — Γφ{t)Xn(t)dt = s + o(l) (n -» 00),
7Γ J 0

where χn(t) is defined by (2. 2), i. e.

(2 sin (mt/2)Y . Γ . 1 . 1 ^

k being determined in a moment. Here we may suppose that 5 = 0 with no

loss of generality since (2, 'TΓ) I χn(t)dt = 1 by (2. 7). We take two integers

I and k such as

(3. 2) I - 1 ^ a < I and k > Iβ/a.

Then necessarily I > 1 since α: > 0. Observe that for μ, = 0,1,..., Φμ+1(0) = 0

and

\dt ) I 0(nμ/mk) (0 < δ < £ < TΓ),

by Lemma 2, and then that

τ)χnμ)(w)

'ra*), m = \*,ή*lβ

t

g{n)kίβ/nlcalβ''μ \
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which is o(l) for μ — 0,1, ••• , I — 1 since g(n) = o(ne) for every £ > 0 and

by (3. 2) £α//3 — μ > Z — (Z — 1) > 0. Then, applying integration by parts

Z-times to the left hand side integral in (3.1) we have

(3.3) Γφ{t)Xn(t)dt = ( - iy Γ Φuy&Ktyu + *(i).
Jo Jo

Further, since (1.1) and Z > cί imply

f I Φiu) I <fa = o(^+1+I--) = o{tM\
Jo

we have

(3. 4) f *ΦUy&XMt = θ(nι+ι Γ 11 ΦX/) 1 dt) = o(l).
Jo ^ Jo '

By (3. 3) and (3. 4), the proposition (3.1) is equivalent to

(3. 5) / Ξ= Γ Φlt)tfiXt)dt = o(l)
J w — 1

Using then the identity

W Γ T f^ uTΦcku)du,
Γ(Z - Λ) JO

and neglecting the factor 1/Γ(Z — ot\

1= Γ χliXήdt ϊ\t - u)ι-Ύ-*Φjίμ)du
(1 Cλ ^ °

= Λ J^ + ώ du = I, +
Jn—1 JQ JW"1 Jf-W""1

Exchanging the order of integration

Λ = f̂  κίfWΛ f"' ' u - u)ι-ι-«Φa(u)du
Jn-1 J()

(3.7) = dul dt + du dt

+ I ίiw dt = J, + J2

Now, for the sake of simplicity we write

U(t, u) = (t- uf-^j&Xt) ( l - l - a S

Then, when n'1 S u < ux < w2 < π, by the second mean-value theorem

and so by (2. 8) with μ = Z — 1



ON CONVERGENCE CRITERIA FOR FOURIER SERIES II 59,

(3.8) Γ u(t, u)dt = <*(«, - wΓ1-v-yMl) (»«, ̂  1),

(3. 9) f% U(t, u)dt = O((«i - u)ι-1-"n

t-1/mkuι

k+1) (««, > 1).

Using (3. 8) with uλ = w + w"1, i. e. I C/(ί, w)ώ = O(ri*/u)9

j , = Γ '"" lφm(μ)du f U(t, u)dt =θ(n« Γ ' I Φβ(«) i M-yM) .

Hence, by the assumption

(1.1) jΓ'l Φ.(«) I rf« = o(t^/g(j)),

and integrating by parts, and using the property of g(x),

), m

Next, by (1.1) and (3. 9) with «x = m"1 > u + Λ"1, i. e. / I7(ί,

J2 = Γ" "" Φa{u)du Γ U(t, u)dt = θ(rfm Γ \ Φβ(«) | At

= o(n«/mβg(m)) = o(l).

Further, by (3. 9) with ux = u + rΓ\ i. e. Γ U(t, u)dt = O(n"/mkulc+1\

J 3 = Γ"" ΦΛ(u)du Γ U(t, u)dt = θ(rfmΓk Γ | Φβ(«) | u-*+

Observing that /3 < k by (3. 2), using (1.1) and integrating by parts,

J3 = o{n«m-\m-1)e-lcg(myl)

Hence, J's are all o(l), and then /, = o(l) by (3. 7).

Concerning 72, exchanging the order of integration,

/. = Γ y£Xt)dt f (ί - uy-ι-'Φa(μ)du
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= 1 α & I dt + I du i dt + I du I dt

+ Γ J M [*ώ = κλ + K, + κ3 + κA,

say. Then observing that

_ ( (Knι/t) (nt > 1)
Xn W " 1 O(nι/mktk+1) {mt > 1),

by Lemma 2, we see that £"'s are all o(l), and then I2 = o(l) by the same

argument as above.

Thus /j = o(l), I2 = o(l), and (3. 6) yields (3. 5) which completes the

proof.

4. Jump Functions. Let ψ(t) be integrable in (0,τr), odd, periodic of

period 2 TΓ, and let

We write

~Σ>« s i n

n=l

Then, corresponding to Theorem 1 we have the following theorem:

THEOREM 2. Let β >̂ a > 0 <zwd to g O) fe wmYy or defined by Defini-

tion 1 in § 1. 1° / /

f\Ψa(u)\du = o(^+ 1/^(i)) (ί-> 0),

ΛWJ 2° if for any assigned positive 8

tn+v — tn > — Sn for v = 1,2, ... , m, (n > we),

where m = [ε2nΛlβ/g(n)1 β~\, or simply if

bn > - Λ/z-Λ/7^(^)1/β, ^ > 0, (n > Λ o ) ,

/Â w ίΛ^ sequence \nbn) is summable (C, 1) to 2 Z/7Γ.

REMARK. Observing that if / = 0 and the series Σ bn is summable in Abel

sense then tn = o(n) implies the convergence of Σ bn, the above theorem may

be easily transferred to a convergence theorem for the allied Fourier series

of ψ(t) at t = 0.

PROOF. Using the identity



n
where
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i"n r
mm m

V*. -U *n ( ' v k 2-/ 2-j "'2—, tn+ιi+V2+...+vk>

and its analogue, it is sufficient to show that

(4.2) in = AL
7Γ

by Lemma 1. Here observe that

v = l 7Γ 0

Substituting this replaced rc by w + vγ + z/2 + ... + vk into (4.1) we have
m

ΣΣ - Σ

ΊΓ Jo n + 1 at

where χn(t) = χ*(m, k, t) coincides with that in (2. 2), i. e.

And (« + l)'\d/dt)χn(t) has all the properties of χn(t) in (2.8), i. e.

O(nμ+ι) ( 0 < ί S

(4.4) (JLfί-l^ -± Xn(t)) = O(nVί) («t ^ 1)
\ d t / \ n + 1 d t / [ , , , . , . ,

{ O ( n * / m k t k + 1 ) (mt ^ 1),
for /* = 0,1,... . Now, 7n in (4. 3) is

ΊΓ Jo n + 1 at
(4-5)

TΓ Jo w + 1 αί

say. Then using (4. 4) we see that Kι = o(l) under the assumptions in the

theorem quite analogously as the proof of Theorem 1. Concerning K2

x
9 Γ W + 1 7 Γ W

TΓ n + 1 L 2 2 »]
7Γ
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Hence, (4. 2) follows from (4. 5) and the theorem is proved.
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