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1. Introduction. Let ¢(z) be integrable in (0, 7), even, periodic of period
2, and let

o(2) ~% a, + > _a,cos nt.

n=1

We write

D) = s | (¢ — uyTp(u) — 5] du (@>0),

1
()

and Sy = %ao + > a.

v=1

F.T.Wang [1] has proved that if 8 > a >0, @(t) € L, () = o(t?) as
t—0 and if @, > — An"®®, A > 0, then s, — s as n— oo. In order to prove
this, Wang used the method of Riesz summability. In this paper we shall
give an alternative proof by a method of generalized de la Vallée Poussin
summability. In §4 we shall refer to jump functions. This note is a con-
tinuation of K. Yano [5], but may be readed free from it.

DEFINITION 1. We define g(x) such as
1°g(x) > 0 for =z, >0, 2°g(x) 1 o0 as £ 1 o0, and 3° H = g(2®)/g(x) < 1,
0 <8 <1 for all x = z,, where H = H(8) is a positive constant depending
on & only.

Then we see easily that g(x) = o(xF) as x — oo for every positive & In
this definition we require no difterentiability of g(x). We may take for g(x),
e g,

log z, (log x)* log log x (@ == 0) and log, =,
where log, denotes the p-times iterated logarithm. For the sake of sim-
plicity we denote (g(x))* by g(x)* throughout this paper.

THEOREM 1.V Let B=a > 0 and let g(x) be unity or defined by
Definition 1. If

1.1) fo | @u(w) | du= o (t"“/g(%)) (t = 0),

and if for any assigned positive &

1) o(t) requires no integrability in Lebesgue sense.
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(1.2) Spiv —Sp > — & forv=1,2,...,m, (n = n.),
where
(1.3) m = [nn*®/g(n)""f], n =&,

then s, — s as n— oo, i.e. the Fourier series of ¢(t) is convergent to sum
sat t=0.

COROLLARY 1.1. Theorem 1 holds when the condition (1.2) with (1.3)
is replaced by

(1. 4) ay > — An*Pg(n)'® (n = n,).2

This follows from Theorem 1 since (1.4) implies a, > — &7'n~*Fg(n)'/?
(n = n.), which also does (1.2) with (1.3). In the case g(x) = 1 this corolla-
ry coincides with the Wang’s theorem stated above, and in the case 8 =«
it does with a result from the theorem due to K.Kanno [4], the function
g(x) being slightly different from the original.

Letting g(x) = (log )'* we have the following corollary :

COROLLARY 1.2. If B=a >0, »r=0 and

@.(0) = of#*/10( 1)) (t—0),
and if
a, > — An~"f(log nY**, A >0, (n=2),

then s,— s as n— oo,

In the case 8 = a this corollary is a theorem due to K. Kanno [3], and
if in addition = 1/a it is due to F.T. Wang [2].

2. Preliminary lemmas.
LEMMA 1. Let k be any positive integer, and let m = m(n) < k™'n tend
to infinity with n and be as same order as or lower order than n. If
2.1) 2 [ gt = s + o) (n— o),
™ Jo

where

2.2)  x8) = xEm, b, £) = —2sin(me/2))

m*(2 sin (z, 2))F*
and if for any assigned positive &
(2.3) Spiv — Sp > — & forv=12,...,m, (n = n.),

then s,— sas n— <o, i.e. the Fourier series of @(t) is convergent to sum

sin[n + 1. Lk(m + 1)} z,
2 2

2) 2, may be expressed by z, in Definition 1, and is an absolute constant depending on
the function g(x) only.
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sat t=0.

PROOF. We use the following identities which are analogous to those
in L. S. Bosanquet [6]:

m

l m m
(2' 4) Sp = In - % Z Z . Z (s'n+vx+v2+...+v;, - Sn);
m v1=1vo=1 vg=1
Where In = lk Z Z . Z Sn+vitvat...+v.s
M- oy =1v;=1 vg=1
and
(2.5) PR AR S 3 SR DY C S
m vi=1 vo=1 vg=1
where I, = lk > e D Snevieva-...—vge
m vi=1ve=1 vp=1
Now if
2.6) lim I, =1lim I, = s,
N->co N->c0
and if (2.3) holds, then from (2.4) and (2.5) we have
lim sups, = s and liminfs, =s
N>eo ayoo

respectively, and then lim s, = s.
On the other hand, denoting by D,(¢) the n-th Dirichlet kernel, clearly

2 k4
sn+v1+v2+...+vk = ;f ¢(I)Dn+l1+v2+.‘ +vk(t)d,t
0

2 1N\ 1 ,
——f @(2) 2s1n;t) sin\n+ -+ v, + vy + ... +v,)¢ dt.
T Jy 2 2
Add both sides from v, = 1 to m, from v, =1 to m, ..., from v, =1 to m

successively, and divide them by ", then we have

2 (" (2sin(mz 2))¢ . 1,1 ]
I, =% (¢ + =+ ~km + 1) | tds.
w.[o P sin (/2)F Sm[" g T K )]

Similarly

270" (2 sin (me/2))F . 1 1
Li=2[o@- 1 1, 1| zas.
WL PO o sin (/o) Sm[" Ty Tk )} tdt

Hence the condition (2. 6) coincides with (2.1), and we get the lemma
since (2. 6) and (2. 3) imply s, — s.
LEMMA 2. The kernel x.(t) = Xi(m, k,t) defined by (2.2), m being as

same order as or lower order than n, possesses the following properties :

@.7) 2 [ ")t = 1,
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and for p=0,1, ...,

PRy O(n**") ()
(2.8) (g) X2) = 1 O(n*/2) (nt>1)
O(n*/m"¢**") (mt = 1),

as n—> ©o,

PROOF. By the definition of x.(¢) = xi(m, k.£) we have

m m m

(2.9) xXo(8) = n: 3 Y Duvnpnne @),

vy =1 vo=1 vp=1

from which (2.7) follows immediately since (2/7T>fﬂDn(t)dt = 1. The first re-
0

lation in (2. 8) follows from (2.9) and (d/dt)“D,(t) = O(n**") for 0 < 1 < =r.
The second relation does from (2.9) and (d/de)*D,(t) = O(n*/t) for nt = 1.
The third relation in (2. 8) follows from (2. 2) by developing the product

(2 sin (mt/2))f sin (n + 1/2 + k(m + 1)/2)¢
into a linear combination of sines or cosines, and differentiating term by

term M-times.
It is analogous to the kernel x,(¢) = x:(m, &, ¢), and we get the lemma.

3. Proof of Theorem 1. By Lemma 1, it is sufficient to show that
(3.1) 2 f D)t = s + o(1) (n— o),
T Jo
where yx.(t) is defined by (2.2), i.e.

(2 sin (mt/2))F . [ 1,1 }

() = = SIBVRLE)) il 4 & = k(m + 1) ¢,
X2 m*(2 sin (¢/2))F+ 2 2 (m )

% being determined in a moment. Here we may suppose that s = 0 with no

loss of generality since (2, 'w)jn X(£)dt = 1 by (2.7). We take two integers
0

I and % such as
3.2) l—1=a<!land k> IB/a.
Then necessarily 7 > 1 since a > 0. Observe that for p =0, 1,..., ®,.,(0) =0

and
wig) =4\ - O(*™) O=t=m
xe) <dt ) X®) i O(n*/m*) 0<ést=m,
by Lemma 2, and then that
(@ a@OX D20 = Bpia(mx ()
= O(n*/m"), m = [ n*"%/g(n)"?],

= O(n~"g(n)"*/n**P»),
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which is o(1) for p=0,1,..., I — 1 since g(n) = o(n°) for every € >0 and
by (3.2) ka/B — u >1— (I — 1) > 0. Then, applying integration by parts
l-times to the left hand side integral in (3.1) we have

(3.3) ﬂﬂmw&a—m[wmmw+m>

Further, since (1.1) and / > a imply
[ 10001 du= o) = o),
we have
1 n=1

3.4) f SO = O f | @] dt) = o(D)
By (3.3) and (3. 4), the proposition (3.1) is equivalent to

(3.5) 1=[" @@node = o1) (n— o).

Using then the identity

YO pp— a) f (¢ = wf e, (wdu,

T —
and neglecting the factor 1/T(/ — a),

T t
— %) _ I-1-g
I fn X (&)dt fo t— w D, (u)du

=f” dtft—n—ldu+fﬂ dzf’ du =1, + I,
1 0 n1 t-n"1

Exchanging the order of integration

I = f T X f

t
0

(3.7) = fom—l—"—ldu fm—l ds +f0m_'_"_ldu T

u+n—1

(3.6)

_n—1

(& — w)}t ' o®(u)du

m™1
z-n"1 ] )
+f duf dt =J, + J, +J,
m—l-n—1 u+n"1

Now, for the sake of simplicity we write
U, u) = @t — w) 7 *xP(2) l—-1—-a=0).

'<u<wu < u, <, by the second mean-value theorem

Then, when n~

1

[ v e = o~ e sup 1),

Uy

and so by (2.8) with p=17-—1
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3.8) [ U, wde = O — wy=-en=/u) (nu, = 1),
3.9) f " UG, wdt = O, — w)' 7 "*n' " /m*u,**") (mu, = 1).
Using (3.8) with u, = u + n7}, i.e. f ” U(t, w)dt = O(n®/w),

n= [T e [T U wde = 0 [ 1 @) 7).
0 0

cu+n—1

Hence, by the assumption

t
@D [1@idu=o(e/s(1))
and integrating by parts, and using the property of ¢(x),
J, = o(n®/mPg(m)) + o(n“fm_lu's’lg(i)—xdu)
0 u
= o(n®/mPg(m)) = o(n*/mg(n)), m = [nn*"Pg(n) "],
= o(n™*) = o(1).
Next, by (1.1) and (3.9) with v, =m™* > u + n7', i e.fﬂ U(t, w)dt

= O((m™ — w)' %2 'm) = O(n*m),

J, = fo T W [ "

—1

Ult, wdt = O(n””m J; m—ll D, (u)| du)

= o(n*/mPg(m)) = o(1).

Further, by (3.9) with «, = u + »7}, i. e.f U(t, w)dt = O(n®/mFu**),

u+n—1

L= wwae[" UG wd=0(wm [ @]t da).

Observing that B < £ by (3.2), using (1.1) and integrating by parts,
Js = o(n*m™ (m™")°"g(m)™)

_ m—S £ o 1 -1

o k B-k~1 +

+o<nm (fm_l+fm_s>u g<u> du>,0<8<1,
= o(n*/mPg(m)) = o(1).

Hence, J’s are all o(1), and then I, = o(1) by (3.7).

Concerning I,, exchanging the order of integration,

I, = f " Ode f Y= Wb (w)du
n—1 t—n—1
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n—1 u4+n"1 m—1 u+n—1 z-n""1 u+n=1
=f @f dt + ﬁJ ﬂ+f @f dt
0 n— 3 u m—1 u

n—1
+f &J&=&+m+m+m
x-n—1 w

say. Then observing that
O(n'/¢t) (nt =1)

X = | O ) (mt = 1),

by Lemma 2, we see that K’s are all o(1), and then I, = o(1) by the same
argument as above.

Thus I, = o(1), I, = o(1), and (3.6) yields (3.5) which completes the
proof.

4. Jump Functions. Let () be integrable in (0,#), odd, periodic of
period 2, and let

‘I’(ﬂ"*ibn sin nt.

n=1

We write
() = %a) [ (= W W) — Ddu (@< o),
and t, = i vb,.

Then, corresponding to Theorem 1 we have the following theorem:

THEOREM 2. Let B=a >0 and let g(x) be unity or defined by Defini-
tion 1in §1. 1° If

ftl‘I’a(u) |du = o<t8“/g<%~>> (z—0),
0
and 2° if for any assigned positive &
tyww — by > — &n for v=1,2,..., m, (ngne)’
where m = [&n*f/g(n) Bl, or simply if
b, > — An~*®/g(n)"'?, A >0, (n = o),

then the sequence |nb,} is summable (C,1) to 21/m.

REMARK. Observing that if / = 0 and the series % &, is summable in Abel
sense then ¢, = o(n) implies the convergence of = b,, the above theorem may
be easily transferred to a convergence theorem for the allied Fourier series

of Y(¢) at t = 0.
PROOF. Using the identity
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m m m

t 1
___ZL___=I” TN T Lnrviaw +vg — Ln)s
i1 o D 2= 2, %Zﬂ( S )
where
4'. 1 I’IL eee tn+l vet...+Vgs
“.1) <+1m ;%; 2 fevasrron
and its analogue, it is sufficient to show that
4.2) L=-2% 4 51) (n— o0),
T

by Lemma 1. Here observe that

n

%=zm=—%[w»%mwh

v=1

Sukbstituting this replaced #» by #n + v, + vy, + ... + vk into (4.1) we have

d
D+v1+v2+ .
«.3) O B R o
f‘!’( )—_{:"1— E“Xn(t)dt

where x,.(¢) = x/(m, k, t) coincides with that in (2.2), i.e.
XA(t) = _(Zsin(me/2)f sin [n +é + —%k(m + 1)}

m (2 sin (£/2))¢+!
And (n + 1)7'(d/dt)x.(t) has all the properties of x,(¢) in (2.8), i.e.
< d ) < ) O@="*) O=t=m)
(4.4) Ayl Ay { O(n*/t) (nz = 1)
itk dn O/ 2:*7) (mt = 1),

for u=0,1,.... Now, I, in (4.3) is

__ 21 _ 1
I, = -l [(Y(w) — 7] T x,.(t)dt

(4.5)

2. " 1
_ et . ()dt = K K,,
Ln_” dtx() L+ K,

say. Then using (4.4) we see that K, = o(1) under the assumptions in the
theorem quite analogously as the proof of Theorem 1.Concerning K,

27 1 1 - 2,(0)

K,= —2¢t
11 [ 11 J
. + 141 1
per L S

_ 21 + o(1).
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Hence, (4. 2) follows from (4.5) and the theorem is proved.
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