ON CONVERGENCE CRITERIA FOR FOURIER SERIES II

Kenji Yano
(Received March 10, 1958, Revised July 7, 1958)

1. Introduction. Let $\varphi(t)$ be integrable in $(0, \pi)$, even, periodic of period 2π, and let

$$
\varphi(t) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n t .
$$

We write
and

$$
\Phi_{\alpha}(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-u)^{\alpha-1}[\varphi(u)-s] d u \quad(\alpha>0)
$$

$$
s_{n}=\frac{1}{2} a_{0}+\sum_{\nu=1}^{n} a_{v} .
$$

F. T. Wang [1] has proved that if $\beta>\alpha>0, \varphi(t) \in L, \Phi_{\alpha}(t)=o\left(t^{\beta}\right)$ as $t \rightarrow 0$ and if $a_{n}>-A n^{-\alpha / \beta}, A>0$, then $s_{n} \rightarrow s$ as $n \rightarrow \infty$. In order to prove this, Wang used the method of Riesz summability. In this paper we shall give an alternative proof by a method of generalized de la Vallée Poussin summability. In $\S 4$ we shall refer to jump functions. This note is a continuation of K. Yano [5], but may be readed free from it.

DEFINITION 1 . We define $g(x)$ such as $1^{\circ} g(x)>0$ for $x \geqq x_{0}>0,2^{\circ} g(x) \uparrow \infty$ as $x \uparrow \infty$, and $3^{\circ} H \leqq g\left(x^{\delta}\right) / g(x) \leqq 1$, $0<\delta<1$ for all $x \geqq x_{0}$, where $H=H(\delta)$ is a positive constant depending on δ only.

Then we see easily that $g(x)=o\left(x^{e}\right)$ as $x \rightarrow \infty$ for every positive ε. In this definition we require no differentiability of $g(x)$. We may take for $g(x)$, e. g.,

$$
\log x,(\log x)^{\alpha} \log \log x(\alpha \geqq 0) \text { and } \log _{p} x \text {, }
$$

where $\log _{p}$ denotes the p-times iterated logarithm. For the sake of simplicity we denote $(g(x))^{\alpha}$ by $g(x)^{\alpha}$ throughout this paper.

THEOREM 1. ${ }^{1)}$ Let $\beta \geqq \alpha>0$ and let $g(x)$ be unity or defined by Definition 1. If

$$
\begin{equation*}
\int_{0}^{t}\left|\Phi_{\alpha}(u)\right| d u=o\left(t^{\beta+1} / g\left(\frac{1}{t}\right)\right) \quad(t \rightarrow 0) \tag{1.1}
\end{equation*}
$$

and if for any assigned positive ε

1) $\varphi(t)$ requires no integrability in Lebesgue sense.

$$
\begin{equation*}
s_{n+\nu}-s_{n}>-\varepsilon \text { for } \nu=1,2, \ldots, m, \quad\left(n \geqq n_{\epsilon}\right) \tag{1.2}
\end{equation*}
$$

where
(1.3)

$$
m=\left[\eta n^{\alpha / \beta} / g(n)^{1 / \beta}\right], \quad \eta=\varepsilon^{2},
$$

then $s_{n} \rightarrow s$ as $n \rightarrow \infty$, i.e. the Fourier series of $\phi(t)$ is convergent to sum s at $t=0$.

Corollary 1.1. Theorem 1 holds when the condition (1.2) with (1.3) is replaced by

$$
\begin{equation*}
a_{n}>-A n^{-\alpha / \beta} g(n)^{1 / \beta} \quad\left(n \geqq n_{0}\right) . .^{2)} \tag{1.4}
\end{equation*}
$$

This follows from Theorem 1 since (1.4) implies $a_{n}>-\varepsilon^{-1} n^{-\alpha / \beta} g(n)^{1 / \beta}$ ($n \geqq n_{\mathrm{E}}$), which also does (1.2) with (1.3). In the case $g(x)=1$ this corollary coincides with the Wang's theorem stated above, and in the case $\beta=\alpha$ it does with a result from the theorem due to K. Kanno [4], the function $g(x)$ being slightly different from the original.

Letting $g(x)=(\log x)^{r^{\alpha}}$ we have the following corollary:
COROLLARY 1.2. If $\beta \geqq \alpha>0, r \geqq 0$ and

$$
\Phi_{\alpha}(t)=o\left(t^{\beta} / \log \left(\frac{1}{t}\right)^{r_{\alpha}}\right) \quad(t \rightarrow 0)
$$

and if

$$
a_{n}>-A n^{-\alpha / \beta}(\log n)^{r_{\alpha} / \beta}, A>0, \quad(n \geqq 2),
$$

then $s_{n} \rightarrow s$ as $n \rightarrow \infty$.
In the case $\beta=\alpha$ this corollary is a theorem due to K. Kanno [3], and if in addition $r=1 / \alpha$ it is due to F. T. Wang [2].

2. Preliminary lemmas.

Lemma 1. Let k be any positive integer, and let $m=m(n)<k^{-1} n$ tend to infinity with n and be as same order as or lower order than n. If

$$
\begin{equation*}
\frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \chi_{n}(t) d t=s+o(1) \quad(n \rightarrow \infty) \tag{2.1}
\end{equation*}
$$

where
(2.2) $\chi_{n}(t)=\chi_{n}^{ \pm}(m, k, t)=\frac{(2 \sin (m t / 2))^{k}}{m^{k}(2 \sin (t / 2))^{k+1}} \sin \left[n+\frac{1}{2} \pm \frac{1}{2} k(m+1)\right] t$, and if for any assigned positive ε

$$
\begin{equation*}
s_{n+\nu}-s_{n}>-\varepsilon \text { for } \nu=1,2, \ldots, m, \quad\left(n \geqq n_{\epsilon}\right), \tag{2.3}
\end{equation*}
$$

then $s_{n} \rightarrow s$ as $n \rightarrow \infty$, i.e. the Fourier series of $\varphi(t)$ is convergent to sum
2) n_{0} may be expressed by x_{0} in Definition 1, and is an absolute constant depending on the function $g(x)$ only.
s at $t=0$.
PROOF. We use the following identities which are analogous to those in L. S. Bosanquet [6]:

$$
\begin{gather*}
s_{n}=I_{n}-\frac{1}{m^{k}} \sum_{\nu_{1}=1}^{m} \sum_{v_{2}=1}^{m} \cdots \sum_{\nu_{k}=1}^{m}\left(s_{n+\nu_{1}+\nu_{2}+\ldots+\nu_{k}}-s_{n}\right), \tag{2.4}\\
I_{n}=\frac{1}{m^{k}} \sum_{\nu_{1}=1}^{m} \sum_{\nu_{2}=1}^{m} \cdots \sum_{\nu_{k}=1}^{m} s_{n+\nu_{1}+\nu_{2}+\ldots+\nu_{;}},
\end{gather*}
$$

and
where

$$
\begin{gather*}
s_{n}=I_{n}^{\prime}+\frac{1}{m^{k}} \sum_{\nu_{1}=1}^{m} \sum_{\nu_{2}=1}^{m} \cdots \sum_{\nu_{k}=1}^{m}\left(s_{n}-s_{n-\nu_{1}-\nu_{2}-\ldots-\nu_{k}}\right), \tag{2.5}\\
I_{n}^{\prime}=\frac{1}{m^{k}} \sum_{v_{1}=1}^{m} \sum_{v_{2}=1}^{m} \cdots \sum_{\nu_{k}=1}^{m} s_{n-\nu_{1}-\nu_{2}-\ldots-v_{k}} .
\end{gather*}
$$

Now if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} I_{n}=\lim _{n \rightarrow \infty} I_{n}^{\prime}=s \tag{2.6}
\end{equation*}
$$

and if (2.3) holds, then from (2.4) and (2.5) we have

$$
\lim _{n \rightarrow \infty} \sup s_{n} \leqq s \quad \text { and } \quad \liminf _{a \rightarrow \infty} s_{n} \geqq s
$$

respectively, and then $\lim s_{n}=s$.
On the other hand, denoting by $D_{n}(t)$ the n-th Dirichlet kernel, clearly

$$
\begin{aligned}
s_{n+\nu_{1}+\nu_{2}+\ldots+\nu_{k}} & =\frac{2}{\pi} \int_{0}^{\pi} \varphi(t) D_{n+1_{1}+\nu_{2}+. .+\nu_{k}}(t) d t \\
& =\frac{2}{\pi} \int_{0}^{\pi} \varphi(t)\left(2 \sin \frac{1}{2} t\right)^{-1} \sin \left(n+\frac{1}{2}+\nu_{1}+\nu_{2}+\ldots+\nu_{k}\right) t d t
\end{aligned}
$$

Add both sides from $\nu_{1}=1$ to m, from $\nu_{2}=1$ to m, \ldots, from $\nu_{k}=1$ to m successively, and divide them by m^{k}, then we have

$$
I_{n}=\frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \frac{(2 \sin (m t 2))^{k}}{m^{k}(2 \sin (t / 2))^{k+1}} \sin \left[n+\frac{1}{2}+\frac{1}{2} k(m+1)\right] t d t .
$$

Similarly

$$
I_{n}^{\prime}=\frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \frac{(2 \sin (m t / 2))^{k}}{m^{k}(2 \sin (t / 2))^{k+1}} \sin \left[n+\frac{1}{2}-\frac{1}{2} k(m+1)\right] t d t .
$$

Hence the condition (2.6) coincides with (2.1), and we get the lemma since (2.6) and (2.3) imply $s_{n} \rightarrow s$.

LEMMA 2. The kernel $\chi_{n}(t)=\chi_{n}^{ \pm}(m, k, t)$ defined by (2.2), m being as same order as or lower order than n, possesses the following properties:

$$
\begin{equation*}
\frac{2}{\pi} \int_{0}^{\pi} \chi_{n}(t) d t=1 \tag{2.7}
\end{equation*}
$$

and for $\mu=0,1, \ldots$,

$$
\left(\frac{d}{d t}\right)^{\mu} \chi_{n}(t)=\left\{\begin{array}{lr}
O\left(n^{\mu+1}\right) & (0 \leqq t \leqq \pi) \tag{2.8}\\
O\left(n^{\mu} / t\right) & (n t \geqq 1) \\
O\left(n^{\mu} / m^{k} t^{k+1}\right) & (m t \geqq 1),
\end{array}\right.
$$

as $n \rightarrow \infty$.
Proof. By the definition of $\chi_{n}(t)=\chi_{n}^{+}(m, k . t)$ we have

$$
\begin{equation*}
\chi_{n}(t)=\frac{1}{m^{k}} \sum_{\nu_{1}=1}^{m} \sum_{\nu_{2}=1}^{m} \ldots \sum_{\nu_{k}=1}^{m} D_{n+\nu_{1}+\nu_{2}+\ldots+\nu_{k}}(t), \tag{2.9}
\end{equation*}
$$

from which (2.7) follows immediately since $(2 / \pi) \int_{0}^{\pi} D_{n}(t) d t=1$. The first relation in (2.8) follows from (2.9) and $(d / d t)^{\mu} D_{n}(t)=O\left(n^{\mu+1}\right)$ for $0 \leqq t \leqq \pi$. The second relation does from (2.9) and $(d / d t)^{\mu} D_{n}(t)=O\left(n^{\mu} / t\right)$ for $n t \geqq 1$. The third relation in (2.8) follows from (2.2) by developing the product

$$
(2 \sin (m t / 2))^{k} \sin (n+1 / 2+k(m+1) / 2) t
$$

into a linear combination of sines or cosines, and differentiating term by term μ-times.

It is analogous to the kernel $\chi_{n}(t)=\chi_{n}^{-}(m, k, t)$, and we get the lemma.
3. Proof of Theorem 1. By Lemma 1, it is sufficient to show that

$$
\begin{equation*}
\frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \chi_{n}(t) d t=s+o(1) \quad(n \rightarrow \infty) \tag{3.1}
\end{equation*}
$$

where $\chi_{n}(t)$ is defined by (2.2), i. e.

$$
\chi_{n}(t)=\frac{(2 \sin (m t / 2))^{k}}{m^{k}(2} \frac{)^{k}(t / 2)\right)^{k+1}}{\sin } \sin \left[n+\frac{1}{2} \pm \frac{1}{2} k(m+1)\right] t,
$$

k being determined in a moment. Here we may suppose that $s=0$ with no loss of generality since $(2, \pi) \int_{0}^{\pi} \chi_{n}(t) d t=1$ by (2.7). We take two integers l and k such as

$$
\begin{equation*}
l-1 \leqq \alpha<l \text { and } k>l \beta / \alpha \tag{3.2}
\end{equation*}
$$

Then necessarily $l>1$ since $\alpha>0$. Observe that for $\mu=0,1, \ldots, \Phi_{\mu+1}(0)=0$ and

$$
\chi_{n}^{(\mu)}(t)=\left(\frac{d}{d t}\right)^{\mu} \chi_{n}(t)=\left\{\begin{array}{lr}
O\left(n^{\mu+1}\right) & (0 \leqq t \leqq \pi) \\
O\left(n^{\mu} / m^{k}\right) & (0<\delta \leqq t \leqq \pi),
\end{array}\right.
$$

by Lemma 2, and then that

$$
\begin{aligned}
{\left[\Phi_{\mu+1}(t) \chi_{\imath}^{(\mu)}(t)\right]^{\pi}=0 } & =\Phi_{\mu+1}(\pi) \chi_{n}^{\left(n^{\prime}\right)}(\pi) \\
& =O\left(n^{\mu} / m^{k}\right), \quad m=\left[r \cdot n^{\alpha / \beta} / g(n)^{1 / \beta}\right], \\
& =O\left(\eta^{-k} g(n)^{k / \beta} / n^{k \alpha / \beta-\mu}\right),
\end{aligned}
$$

which is $o(1)$ for $\mu=0,1, \ldots, l-1$ since $g(n)=\mathrm{o}\left(n^{\varepsilon}\right)$ for every $\varepsilon>0$ and by (3.2) $k \alpha / \beta-\mu>l-(l-1)>0$. Then, applying integration by parts l-times to the left hand side integral in (3.1) we have

$$
\begin{equation*}
\int_{0}^{\pi} \boldsymbol{\varphi}(t) \chi_{n}(t) d t=(-1)^{t} \int_{0}^{\pi} \Phi_{l}(t) \boldsymbol{\chi}_{n}^{(l)}(t) d t+o(1) \tag{3.3}
\end{equation*}
$$

Further, since (1.1) and $l>\alpha$ imply

$$
\int_{0}^{t}\left|\Phi_{l}(u)\right| d u=o\left(t^{\beta+1+l-\alpha}\right)=o\left(t^{l+1}\right)
$$

we have

$$
\begin{equation*}
\int_{0}^{n^{-1}} \Phi_{l}(t) \chi_{n}^{(l)}(t) d t=O\left(n^{l+1} \int_{0}^{n-1}\left|\Phi_{l}(t)\right| d t\right)=o(1) \tag{3.4}
\end{equation*}
$$

By (3.3) and (3.4), the proposition (3.1) is equivalent to

$$
\begin{equation*}
I \equiv \int_{n^{-1}}^{\pi} \Phi_{l}(t) \chi_{n^{(1)}(t) d t=o(1) \quad(n \rightarrow \infty) . . \quad(n) .} \tag{3.5}
\end{equation*}
$$

Using then the identity

$$
\Phi_{l}(t)=\frac{1}{\Gamma(l-\alpha)} \int_{0}^{t}(t-u)^{l-1-\alpha} \Phi_{\alpha}(u) d u
$$

and neglecting the factor $1 / \Gamma(l-\alpha)$,

$$
\begin{align*}
I & =\int_{n^{-1}}^{\pi} \chi_{n}^{(l)}(t) d t \int_{0}^{t}(t-u)^{L-1-\alpha} \Phi_{\alpha}(u) d u \\
& =\int_{n^{-1}}^{\pi} d t \int_{0}^{t-n-1} d u+\int_{n^{-1}}^{\pi} d t \int_{t-n^{-1}}^{t} d u=I_{1}+I_{2} \tag{3.6}
\end{align*}
$$

Exchanging the order of integration

$$
\begin{align*}
I_{1}= & \int_{n^{-1}}^{\pi} \chi_{n}^{(l)}(t) d t \int_{0}^{t-n^{-1}}(t-u)^{l-1-\alpha} \Phi_{a}(u) d u \\
= & \int_{0}^{m^{-1-n^{-1}}} d u \int_{u+n^{-1}}^{m^{-1}} d t+\int_{0}^{m^{-1}-n^{-1}} d u \int_{m^{-1}}^{\pi} d t \tag{3.7}\\
& \quad+\int_{m^{-1-n^{-1}}}^{\pi-n^{-1}} d u \int_{u+n^{-1}}^{\pi} d t=J_{1}+J_{2}+J_{3}
\end{align*}
$$

Now, for the sake of simplicity we write

$$
U(t, u)=(t-u)^{l-1-\alpha} \chi_{n}^{(l)}(t) \quad(l-1-\alpha \leqq 0)
$$

Then, when $n^{-1} \leqq u<u_{1}<u_{2} \leqq \pi$, by the second mean-value theorem

$$
\left|\int_{u_{1}}^{u_{2}} U(t, u) d t\right| \leqq\left(u_{1}-u\right)^{l-1-\alpha} \sup _{u_{1}<t<u_{2}}\left|\chi_{n}^{(1-1)}(t)\right|,
$$

and so by (2.8) with $\mu=l-1$

$$
\begin{equation*}
\int_{u_{1}}^{u_{2}} U(t, u) d t=O\left(\left(u_{1}-u\right)^{l-1-\alpha} n^{l-1} / u_{1}\right) \quad\left(n u_{1} \geqq 1\right) \tag{3.8}
\end{equation*}
$$

$$
\begin{equation*}
\int_{u_{1}}^{u_{2}} U(t, u) d t=O\left(\left(u_{1}-u\right)^{l-1-\alpha} n^{l-1} / m^{k} u_{1}^{k+1}\right) \quad\left(m u_{1} \geqq 1\right) . \tag{3.9}
\end{equation*}
$$

Using (3.8) with $u_{1}=u+n^{-1}$, i. e. $\int_{u_{+n^{-1}}}^{m^{-1}} U(t, u) d t=\mathrm{O}\left(n^{\alpha} / u\right)$,

$$
J_{1}=\int_{0}^{m^{-1}-n^{-1}} \Phi_{\alpha}(u) d u \int_{u+n^{-1}}^{m^{-1}} U(t, u) d t=O\left(n^{\alpha} \int_{0}^{m^{-1}}\left|\Phi_{\alpha}(u)\right| u^{-1} d u\right)
$$

Hence, by the assumption

$$
\begin{equation*}
\int_{0}^{t}\left|\Phi_{\alpha}(u)\right| d u=o\left(t^{\beta+1} / g\left(\frac{1}{t}\right)\right) \tag{1.1}
\end{equation*}
$$

and integrating by parts, and using the property of $g(x)$,

$$
\begin{aligned}
J_{1} & =o\left(n^{\alpha} / m^{\beta} g(m)\right)+o\left(n^{\alpha} \int_{0}^{m^{-1}} u^{\beta-1} g\left(\frac{1}{u}\right)^{-1} d u\right) \\
& =o\left(n^{\alpha} / m^{\beta} g(m)\right)=o\left(n^{\alpha} / m^{\beta} g(n)\right), m=\left[\eta n^{\alpha / \beta} g(n)^{-1 / \beta}\right], \\
& =o\left(\eta^{-\beta}\right)=o(1) .
\end{aligned}
$$

Next, by (1.1) and (3.9) with $u_{1}=m^{-1} \geqq u+n^{-1}$, i. e. $\int_{m^{-1}}^{\pi} U(t, u) d t$

$$
\begin{aligned}
& =O\left(\left(m^{-1}-u\right)^{l-1-\alpha} n^{l-1} m\right)=O\left(n^{\alpha} m\right), \\
& J_{2}=\int_{0}^{m^{-1}-n^{-1}} \Phi_{\alpha}(u) d u \int_{m^{-1}}^{\pi} U(t, u) d t=O\left(n^{\alpha} m \int_{0}^{m^{-1}}\left|\Phi_{\alpha}(u)\right| d u\right) \\
& =o\left(n^{\alpha} / m^{\beta} g(m)\right)=o(1) .
\end{aligned}
$$

Further, by (3.9) with $u_{1}=u+n^{-1}$, i. e. $\int_{u+n^{-1}}^{\pi} U(t, u) d t=O\left(n^{\alpha} / m^{k} u^{k+1}\right)$,

$$
J_{3}=\int_{m^{-1}-n^{-1}}^{\pi-n^{-1}} \Phi_{a}(u) d u \int_{u+n^{-1}}^{\pi} U(t, u) d t=O\left(n^{\alpha} m^{-k} \int_{m^{-1}}^{\pi}\left|\Phi_{\alpha}(u)\right| u^{-(k+1)} d u\right)
$$

Observing that $\beta<k$ by (3.2), using (1.1) and integrating by parts,

$$
\begin{aligned}
J_{3} & =o\left(n^{\alpha} m^{-k}\left(m^{-1}\right)^{\beta-k} g(m)^{-1}\right) \\
& +o\left(n^{\alpha} m^{-k}\left(\int_{m^{-1}}^{m^{-\delta}}+\int_{m^{-\delta}}^{\pi}\right) u^{\beta-k-1} g\left(\frac{1}{u}\right)^{-1} d u\right), 0<\delta<1, \\
& =o\left(n^{\alpha} / m^{\beta} g(m)\right)=o(1) .
\end{aligned}
$$

Hence, J 's are all $o(1)$, and then $I_{1}=o(1)$ by (3.7).
Concerning I_{2}, exchanging the order of integration,

$$
I_{2}=\int_{n^{-1}}^{\pi} \chi_{n}^{(l)}(t) d t \int_{t-n^{-1}}^{t}(t-u)^{l-1-\alpha} \Phi_{\alpha}(u) d u
$$

$$
\begin{aligned}
& =\int_{0}^{n^{-1}} d u \int_{n^{-}}^{u+n^{-1}} d t+\int_{n^{-1}}^{m^{-1}} d u \int_{u}^{u+n^{-1}} d t+\int_{m^{-1}}^{\pi-n^{-1}} d u \int_{u}^{u+n^{-1}} d t \\
& +\int_{\pi-n^{-1}}^{\pi} d u \int_{u}^{\pi} d t=K_{1}+K_{2}+K_{3}+K_{4},
\end{aligned}
$$

say. Then observing that

$$
\chi_{n}^{(l)}(t)=\left\{\begin{array}{lr}
O\left(n^{l} / t\right) & (n t \geqq 1) \\
O\left(n^{l} / m^{k} t^{k+1}\right) & (m t \geqq 1),
\end{array}\right.
$$

by Lemma 2, we see that K 's are all $o(1)$, and then $I_{2}=o(1)$ by the same argument as above.

Thus $I_{1}=o(1), I_{2}=o(1)$, and (3.6) yields (3.5) which completes the proof.
4. Jump Functions. Let $\psi(t)$ be integrable in $(0, \pi)$, odd, periodic of period 2π, and let

$$
\psi(t) \sim \sum_{n=1}^{\infty} b_{n} \sin n t .
$$

We write
and

$$
\begin{gathered}
\Psi_{\alpha}(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-u)^{\alpha-1}[\psi(u)-l] d u \quad(\alpha<0) \\
t_{n}=\sum_{\nu=1}^{n} \nu b_{\nu}
\end{gathered}
$$

Then, corresponding to Theorem 1 we have the following theorem:
THEOREM 2. Let $\beta \geqq \alpha>0$ and let $g(x)$ be unity or defined by Definition 1 in §1. 1° If

$$
\int_{0}^{t}\left|\Psi_{\alpha}(u)\right| d u=o\left(t^{3+1} / g\left(\frac{1}{t}\right)\right) \quad(t \rightarrow 0)
$$

and 2° if for any assigned positive ε

$$
t_{n+\nu}-t_{n}>-\varepsilon n \text { for } \nu=1,2, \ldots, m, \quad\left(n \geqq n_{\mathrm{e}}\right),
$$

where $m=\left[\varepsilon^{2} n^{\alpha / \beta} / g(n)^{1}\right]$, or simply if

$$
b_{n}>-A n^{-\alpha / \beta} / g(n)^{1 / \beta}, \quad A>0, \quad\left(n \geqq n_{0}\right),
$$

then the sequence $\left\{n b_{n}\right\}$ is summable $(C, 1)$ to $2 l / \pi$.
REMARK. Observing that if $l=0$ and the series Σb_{n} is summable in Abel sense then $t_{n}=o(n)$ implies the convergence of Σb_{n}, the above theorem may be easily transferred to a convergence theorem for the allied Fourier series of $\psi(t)$ at $t=0$.

Proof. Using the identity

$$
\frac{t_{n}}{n+1}=I_{n}-\frac{1}{(n+1) m^{k}} \sum_{\nu_{1}=1}^{m} \sum_{v_{\mathbf{3}}=1}^{m} \ldots \sum_{\nu_{k}=1}^{m}\left(t_{n+v_{1}+\nu_{\mathbf{a}}+\ldots+\nu_{k}}-t_{n}\right),
$$

where

$$
\begin{equation*}
I_{n}=\frac{1}{(n+1) m^{k}} \sum_{\nu_{1}=1}^{m} \sum_{\nu_{2}=1}^{m} \ldots \sum_{\nu_{k}=1}^{m} t_{n+t_{1}+\nu_{2}+\ldots+\nu_{k}} \tag{4.1}
\end{equation*}
$$

and its analogue, it is sufficient to show that

$$
\begin{equation*}
I_{n}=\frac{2 l}{\pi}+o(1) \quad(n \rightarrow \infty) \tag{4.2}
\end{equation*}
$$

by Lemma 1. Here observe that

$$
t_{n}=\sum_{\nu=1}^{n} \nu b_{\nu}=-\frac{2}{\pi} \int_{0}^{\pi} \psi(t) \frac{d}{d t} D_{n}(t) d t
$$

Substituting this replaced n by $n+\nu_{1}+\nu_{2}+\ldots+\nu_{k}$ into (4.1) we have

$$
\begin{align*}
I_{n} & =-\frac{2}{\pi} \int_{0}^{\pi} \psi(t) \frac{1}{(n+1) m^{k}} \sum_{v_{1}=1}^{m} \sum_{v_{2}=1}^{m} \cdots \sum_{v_{k}=1}^{m} \frac{d}{d t} D_{n+v_{1}+v_{2}+\ldots+v_{k}}(t) d t \tag{4.3}\\
& =-\frac{2}{\pi} \int_{0}^{\pi} \psi(t) \frac{1}{n+1} \frac{d}{d t} \chi_{n}(t) d t
\end{align*}
$$

where $\chi_{n}(t)=\chi_{\pi}^{+}(m, k, t)$ coincides with that in (2.2), i.e.

$$
\chi_{n}(t)=\frac{(2 \sin (m t / 2))^{k}}{m^{k}(2 \sin (t / 2))^{k+1}} \sin \left[n+\frac{1}{2}+\frac{1}{2} k(m+1)\right] t
$$

And $(n+1)^{-1}(d / d t) \chi_{n}(t)$ has all the properties of $\chi_{n}(t)$ in (2.8), i. e.

$$
\left(\frac{d}{d t}\right)^{\mu}\left(\frac{1}{n+1} \frac{d}{d t} \chi_{n}(t)\right)=\left\{\begin{array}{lr}
O\left(n^{\mu+1}\right) & (0 \leqq t \leqq \pi) \tag{4.4}\\
O\left(n^{\mu} / t\right) & (n t \geqq 1) \\
O\left(n^{\mu} / m^{k} t^{k+1}\right) & (m t \geqq 1)
\end{array}\right.
$$

for $\mu=0,1, \ldots$. Now, I_{n} in (4.3) is

$$
\begin{align*}
I_{n}= & -\frac{2}{\pi} \int_{0}^{\pi}[\psi(u)-l] \frac{1}{n+1} \frac{d}{d t} \chi_{n}(t) d t \\
& -\frac{2 l}{\pi} \int_{0}^{\pi} \frac{1}{n+1} \frac{d}{d t} \chi_{n}(t) d t=K_{1}+K_{2} \tag{4.5}
\end{align*}
$$

say. Then using (4.4) we see that $K_{1}=\mathrm{o}(1)$ under the assumptions in the theorem quite analogously as the proof of Theorem 1 . Concerning K_{2}

$$
\begin{aligned}
K_{2} & =-\frac{2 l}{\pi} \frac{1}{n+1}\left[\chi_{n}(t)\right]_{t=0}^{\pi}=o(1)+\frac{2 l}{\pi} \cdot \frac{1}{n+1} \chi_{n}(0) \\
& =o(1)+\frac{2 l}{\pi} \cdot \frac{1}{n+1}\left[n+\frac{1}{2}+\frac{1}{2} k(m+1)\right] \\
& =\frac{2 l}{\pi}+o(1)
\end{aligned}
$$

Hence, (4.2) follows from (4.5) and the theorem is proved.

References

[[1] F.T. Wang, On Riesz summability of Fourier serier (II), Journ. London Math. Soc. 17(1942), 98-107.
[[2] F. T. Wang, On Riesz summability of Fourier series (III), Proc. London Math. Soc. (2), 51(1947), 215-231.
[3] K. Kanno, On the Riesz summability of Fourier series, Tôhoku Math. Journ. (2), 8 (1956), 223-234.
[4] K. Kanno, On the Riesz summability of Fourier series (II), Bull. of the Yamagata University, 4(1958), 323-331.
[5] K. Yano, On convergence criteria for Fourier series I, Proc. Japan Acad. 34 (1958), 331336.
[6] L.S. BosAnQUET, Notes on convexity theorems, Journ. London Math. Soc. 18(1943), 239-248.

Mathematical Institute, Nara Women's University, Nara.

