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1. 1. DEFINITION. Let Sn denote the n-th partial sum of the series 2 an~

We write

1 + St + +^S

Then the series Σ <zn is said to be absolutely summable (R, log n, 1) or

summable \R, logn, 1| if the sequence {2?M} is of bounded variation, that

is to say, the infinite series

Σ \Rn — Rn+ί I

is convergent.

It has been pointed out by Bosanquet* that for the case \ n = log nr

this definition is equivalent to the definition of the summability | R, λn, 1 \

used by Mohanty [5], λw being a monotonic increasing sequence tending to

infinity with n.

1. 2. Let fit) be a periodic function with period 2τr and integrable (L)

over (— 7r, 7r). Without any loss of generality the constant term in the

Fourier series of f(t) can be taken to be zero, so that

(1. 2. 1) fit) ~ 2 (an cos nt + bn sin nί) = 2 An(t\

and

(1. 2. 2) f f(t)dt = 0.

We write

1. 3. It has been proved independently by Izumi [3] and Mohanty [5]

that summability ] R, log n, 11 of a Fourier series is not a local property of

the generating function. The question, naturally arises as to what conditions

* L. S. Bosanquet, Mathematical Review, 12 (1951), 254, see review of the paper of Izumi [3].
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should be satisfied by the general terms of a Fourier series at a point such

that its summability | R, log n, 11 may depend only upon the behaviour of

the generating function in the immediate neighbourhood of the point con-

sidered. The first answer to a question of this character is due to Izumi [3]

who proved that if

then the summability \R, log n, 1| of the Fourier series Σ A n ( 4 at t = x,

is a local property. More recently Mohanty and Izumi [6] have improved

upon this result and established the following theorem:

THEOREM A. / /

<1. 3. 1) Σ l A Λ x ) l log log n < oo,

n

then the summability | R, log n, 1| of Σ An(x) depends only upon a local

condition.

It is known [5, 7] that if Σ an is summable | i?, λn, J61, £ > 0, then

Σ tf n/λ£ is summable | i?, £*n, k | . Hence it follows that if Σ ΛW is summable

IR, log n, 11, then Σ αn/ log ^ is summable | R, n, 11 i. e. summable | C, 11,

£2]. Therefore, ty a well-known result of Kogbetliantz [4], it follows that

Σ \an\/\nlog n) < oo.

Thus it follows that the summability \R, logn, 1| of the Fourier series

necessarily implies that

(1. 3. 2) X\An(x)\/\nlogn] < oo.

In this paper we establish a theorem, more general than theorem A,

inasmuch as we assume, instead of the condition (1. 3. 1) the less stringent

condition (1. 3. 2) which is seen to be also the necessary condition of the

IR, log n, 11 summability of the corresponding Fourier series.

I take this opportunity to acknowledge my deep gratitude to Prof. B. N.

Prasad for his kind help and valuable suggestions during the preparation of

this paper.

2. 1. We prove the following theorem.

THEOREM. / /

%\An(x)\/\nlogn} < oo,

then the \ R, log n, 11 summability of Σ An(t) depends only on the behaviour

of the generating function' fit) in the immediate neighbourhood of the point

t = x.
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2. 2. We require the following lemma for the proof of the theorem.

LEMMA. // the series

ΣΓ.i |5,.|/{»log(« + l)}

is convergent then the sequence \ Sn) is summable \ R, log n, 1 [.

PROOF.

7? _ ί? —
7 1 " + 1

Y _

^ \ ŷ  ^ ^ *^w+i

logrc /ίlΐ y log(« + 1) n+ 1 '

where

Therefore

_ Λ

This completes the proof of the lemma.

2. 3. Proof of the theorem. We have
n

Six) = Σ, A£χ)
v = l

sin (» + •§-)«

sin --

s m 2
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1

?»(«) : To du\
Jr. sin u/2 I

1 Γ , r /sin,/2V)

sin u/2

sin ( n + ~

smu/2

(2. 3. 1) = ^ r [ ^ » + ί2»l say.

The sequence \Sn(x)\ will be summable |i?, log w, l | if the sequences
\Pn] and {Qw| are summable \R, log n, 1 | . We observe that, for positive η,
however small but fixed, the summability \R, log n, 11 of the sequence \Qn\
depends only upon the behaviour of the generating function f(t) in the
immediate neighbourhood of the point x, defined by (x — v, x + η). Hence
to prove the theorem it is sufficient to show that the sequence \Pn\ is
summable \R, \ogn, l | under the hypothesis of the theorem. By virtue of
the lemma, this will be satisfied if we prove that
(2. 3. 2) Σ |P n (*) | /Ulog(w + 1)! < o o .

We now proceed to prove (2. 3. 2). Let us define a function ξ(u), as
follows.

~2

sin y j sin — ( 0 S « S η)

(sin ^)~l {ηSuS TΓX

Then, for 0 S u S π, ξ(u) is of bounded variation and continuous, with
ξ( 4- 0) = 0. Also ξ'(u) is bounded and ξ (u) is integrable (L). Now, since
ξ(u) is of bounded variation in (0, 7r), by a well known result* we have>

setting

A-£x) = Alx) = Av,

n = \AQ fj(u) sin (n + y ) u du

+ Σ Av \ ξ(u) cos vu sin ( n + —Judu

Λ / 1 \
(w) sin \^n - v + y ) u du

* See Hobson [1], page 567.
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i Δ ϊ $ : ί

= --jΓ Σ Λv\ξ(u)
2 — ~ L

cos I n — v + -τr\u
*f(«) — ^ r ^ - du + O(\An\),

w h e r e Σ ' denotes s u m m a t i o n e x t e n d i n g over — O O < P >Γ?z— 1 a n d (n H- 1)

5" v < oo. L e t

Then we have

cos (

'- ' 2

= Pι+P2 + 0(\An\), say.

Thus we have

\AV\ .

and

r " + 2"f r-° 1

sinfn — v + —)«

where integration by parts is taken separately over the ranges (μ, y — 0)

and {η + 0, 7r)t Thμβ we have
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(» -
Hence

0 n-l oo n+

Σ + Σ + Σ + Σ
ί—ι Δ—i Z w Z .

= 0(1)[Mj + M2 + M3 + M4 + \An\l say.

Now in order to prove (2. 3. 2), it is sufficient to show that

(2. 3. 3) ZMr/\nlog(n + 1)}<°°, r= 1, 2, 3, 4,

since, by hypothesis

Σ |Aj/{rclog?z} < oo.

Let 0 < δ < 1, then we have

n»l v=0

as m -> oo.

Again
m-1 m

- 1 ^ ^ Σ"~2 Σ
n=2

m-1

s 7 ^

ΐ .X.»log(»

lί n'tr'+i (w ~ ") l°g (n — v + ί)

= O(l)

and

Σ

a s w —• oo.

Lastly

\nlog(n + 1)}-1M4 = Σ \n\og(n + I)}"1 X)
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+ i)r1 \Av+n\
m m

v=l n=l

m v m

= Σ"~2 Σ + Σ
= 2i + Σ2, say.

Now

= 0(1);

and

Σ =
2

= V " 2 V 1-A-+J ί (P + w)log(y + w) I
t l " »X1(«' + ») log (» + » ) ! »log(» + l) ί

= 0(1),

as m —> oo? s ince

(w + y ) log(« + y ) _ / w \ ί l o g ( 1 + j +

»log (n + 1) V »/ I log (» + 1)

for n ^ v -\- 1.

Thus we have established (2. 3. 3) and thereby (2. 3. 2). This completes

the proof of the theorem.
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