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1. Introduction. The main purpose of the present paper is to prove
the following

THEOREM. Let M be a compact complex manifold whose first Chern
class c{(M) is negative definite. Then the group G of all holomorphic trans-
formations of M is finite.

For the case dim M = 1 (i.e., a compact Riemann surface of genus>1),
this theorem has been known for a long time. In fact,

(A) H. A. Schwarz proved that G is discrete. [16].
(B) In 1882, F. Klein proved, in his letter to H. Poincare, that G is

finite, (cf. pp. 15-17 of [14]).
(C) A. Hurwitz proved that the order of G is not greater than 84 (p—

1), where p is the genus of M. [9].
For the case dim M = 2, we have the following theorem of A. An-

dreotti.1'
(D) If M is a non-singular irrational algebraic surface of linear genus > 1 ,

then G is finite. [2].
Observe that the assumption cx(M) < 0 is stronger than that of (D).
For the case of an arbitrary dimension, a special case of our theorem

has be3n proved by Bochner [5], Hawley [8] and Sampson [15]. Namely,
(E) If M is a compact complex manifold whose universal covering space

is a bounded domain in Cn, than G is finite.
In 1946, Bochner proved that
(F) If M is a compact Kaehler manifold whose Ricci tensor is negative

definite, then G is discrete. [4].
Making use of a result of Akizuki-Nakano [1], Nakano generalized the

result of Bochner as follows, (cf. p. 386 [12]).
(G) If M is a compact complex manifold with cx(M) < 0, then G is dis-

*) The author was supported by the National Science Foundation.
1) For algebraic surfaces, Andreotti gave estimates on the order of G and on the periods

of elements of G. Cf. Sopra le superficie algebriche che posseggono transformazioni
birazionali in se, Univ. Roma Inst. Naz. Alta Mat. Rend. Mat. e Appl. 9(1950)255-279.
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crete.
Our theorem, therefore, strengthens the theorem of Nakano.

A. Andreotti wrote us that he has another proof for our theorem. He
proves that G is algebraic and, by virtue of the theorem of Nakano, derives
the fact that G is finite. He has pointed out that the fact that G is an
algebraic group follows also from a result of Matsusaka. [13].

We prove first that G is compact. In the course of proof, we prove im-
plicitly that G is an algebraic group, of which we became aware only after
we had read the letter of Andreotti. In fact, our lemma 3 states that there
exists an imbedding of M into a projective space such that G is isomorphic
to the group of projective transformations which send M into itself From
the compactness of G and from the theorem of Nakano, it follows that G
is finite. However, as we shall show in the proof, our method will permit
us to obtain the final result without making use of Nakano's result.

We can apply our result to a problem of complex fibre bundles. Let E
be a complex analytic fibre bundle over B with fibre F. More precisely,

(1) E, B and F are complex manifolds.
(2) There exists a holomorphic map p (called the projection) of E onto B.
(3) For every point x of B, there exists a neighborhood U of x such

that p~ι(U) is a trivial bundle i. e., there exists a holomorphic homeomor-
phism fjj of p'KU) onto U X F such that

where p : U x F-> U is the natural projection.
In this paper, we consider only the case where F is compact. The group

G of all holomorphic transformations of F will be the structure group of
fibre bundle E, although we do not mention it explicitly. As a direct conse-
quence of our theorem, we shall obtain the following

COROLLARY. Let (E, B, F, p) be a complex fibre bundle such that F
is compact and c^F) < 0. Then

(1) If B is Kaehlerian (compact or not), so is E.
(2) If B is algebraic (i. e., projective), so is E.

Kodaira proved in [11] that E is Kaehlerian (resp. algebraic) if B is
compact Kaehlerian (resp. algebraic) and if F is a complex projective space.
Borel and Kodaira [3] generalized the result to the case where F is an
algebraic manifold with b^F) = 0 (bι is the first Betti number) and the
structure group is connected. It is of some interest to note that c^F) > 0
implies bx(F) = 0, whereas we are considering the case cx(F) < 0. Blanchard
proved in his thesis [3] theorems similar to that of Borel-Kodaira without
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any restriction on the first Betti number of F but with a certain assumption

on the topological structure of the fibering. The proof of our corollary

does not rely on the result of Blanchard and is very elementary.

Observe the following general fact. Let (E, B, F, p) be a complex fibre

bundle with structure group H. (H is necessarily a subgroup of G). Sup-

pose there exists a projective model of F such that H can be represented

by a group of projective transformations. Then a similar statement as our

corollary holds. (This is an immediate consequence of Kodaira's result). Our

corollary can be derived also from this general fact and from Lemma 3.

However, the finiteness of G makes the proof much simpler.

2. Proof of Theorem. Let K be the canonical line bundle over M. If

cάM) < 0, then there exists a positive integer k such that the line bundle

kK admits a sufficiently many holomorphic cross-sections so that these sec-

tions determine an imbedding of M into a complex projective space. More

precisely, let T(kK) be the vector space of all holomorphic sections of kK

over M. It is finite dimensional as M is compact. Let / 0 , fi9 ,/V be a

basis for T(kK). Our conclusion is that

v & ̂  UoV*/) Ji\zJ) IJN\Z)) Z £Z IVly

defines an imbedding of M into the complex projective space PN(C) of di-

mension N. This follows from a result of Kodaira. (Observe how he obtains

β in Theorem 3 of [11]). Conversely, if there exists such a positive integer

k, then cx{M) < 0. However, we shall not make use of this fact.

Every holomorphic transformation φ of M can be lifted, in a natural

way, to a holomorphic automorphism φ of the canonical line bundle K and,

consequently, to a holomorphic automorphism φ" of kK = K§ζ) ® K.

(Note that the fibre of K over z is ί\nTt, where T? is the complex co-tan-

gent space to M at z n = dim M — dim T*). Therefore, <p induces a linear

transformation £>* of Γ(kK). Let ̂  be the projective transformatipn of PN(C)

induced from the linear transformation φ* of V(kK). From the definition of

η and φ, it follows that

LEMMA 1. φoη = ηoφ.

In other words, the imbedding η :M-> PAjC) allows us to represent G

by a group of projective transformations of PJJ2).

Define

p(φ) — φ* and σ ( ^ ) — ψ-

Then p (resp. σ) is a representation of G into the group of linear transfor-

mations of T(kK) (r^sp. the group of projective transformations of
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From the fact that η is injective and from Lemma 1, it follows that σ is
faithful. Hence,

LEMMA 2. Both σ and p are faithful.

We shall prove the following

LEMMA 3. σ*(G) consists of exactly those projective transformations of
PΛC) which send μ(M) into itself

Every element of cr(G) sends η(M) into itself (Lemma 1). Let T be a
projective transformation of PN(C) which sends η{M) into itself. Let φ be
the restriction of T to η(M). As η is an imbedding, φ can be considered
as a holomorphic transformation of M. Now, it suffices to show that
T = <r(φ). The restriction of T to η(M) (i. e., φ) agrees with <r(φ) on η(M)
(Lemma 1). In other words, σ(φ)°T~ι is a projective transformation of PJAC)

which induces the identity transformation on η(M). The proof of Lemma 3
is reduced to that of the following

LEMMA 4. If T is a projective transformation of PN(C) which induces
the identity transformation of v(M), then T is the identity transformation
of PΛC).

Let T be a linear transformation of T(kK) which induces T. We shall
show that T = cl, where c is a complex number and I is the identity trans-
formation of T(kK). From T°η = η and from the definition of η, it follows
that

rf((z) = c(z)-f(z) for all / € T(kK),

where c(*) is a non-zero complex number which is independent of / (but may
depend on z € M for the moment). On the other hand, both rf and / are
holomorphic sections of the line bundle kK. Hence, c(z) is holomorphic in
z. As M is compact, c(z) is a constant. This completes the proof of Lemma
4.

The lemma 3 implies immediately the following

LEMMA 5. σ (G) is a closed subgroup of the projective transformation
group of PN{C\

Observe that the lemma 3 implies that p(G) is an algebraic group as
pointed out by Andreotti.

Our next step is to define a bounded domain in Γ(^^) which is inva-
riant by p(G). To this end, we introduce a real valued function v on T(kK),
which behaves like a norm. Every holomorphic section of the canoncal line
bunble K is a holomorphic /z-form on M, and conversely. Hence, in terms
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of local coordinate system z\ zn of M, every element / of T(kK) can be

symbolically written as follows :

where _/"* is a holomorphic function defined in the coordinate neighborhood

of z\ , z\ We define

\f \"1 dzι

 Adzι

 h Adz Adz.

Observe that the definition is independent of local coordinate system. We

obtain easily the following

LRMMA 6. (1) v(f)>0 and v(f) = 0 if and only if f = 0.

(2) v{cf) = \c\2lk. v(f) for every complex number c.

(3) v is a continuous function on the finite dimensional vector space

TXkK).
(4) v(φ*f) = i</) for all φ e G.

Let D be an open subset of Y(kK) defined by

LEMMA 7. D is a bounded domain invariant by p(G).

Every point of D can be joined to the origin by a straight line in D

by virtue of (2) of Lemma 6 i. e., D is star like. To see that D is boun-

ded, let /o, f, ,/τvr be a basis for T(kK). Let s2IV+1 be the unit sphere in

T(kK) with respect to this basis :

Let VQ be the minimum value of the function v on S2N+ι. Let r be a positive

real number such that ?"2lkv0 > 1. Let S2N+ι(r) be the sphere of radius r in

T(kK):

Then, by virtue of (2) of Lemma 6, D is inside iS2Λr+1(r). The invariance of

D by p(G) follows from (4) of Lemma 6.

In general, given any point o of a bounded domain D, the group of

holomorphic transformations of D which leave o fixed is a compact Lie

group. (Theorem of H. Cartan [7] a differential geometric proof can be

found in [10]). Let H be the group of linear transformations of T(kK) which

send D onto itself. Obviously, H is a compact Lie group. (Take the origin

of T(kK) as o). Let H be the subgroup of the group of projective trans-

formations of PN(C) obtained from H. (Every element of H is a linear

transformation of T(kK), hence induces a projective transformation of
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As H is compact, H is compact. From the lemmas 5 and 7, it follows that

LEMMA 8. σ(G) is compact.

A well known theorem of Bochner-Montgomery [β] states that the group
G of holomorphic transformations of any compact complex manifold M is
a complex Lie group and the group action G x M —• M is a holomorphic
map. From this fact, it follows that p is a holomorphic map of G into the
group of linear transformations of Γ(kK). (This can be also derived from
the fact that G is an algebraic group). As G is compact, the connected
component of the identity of G consists of only the identity transformation.
Hence G is a finite group. As we remarked in the introduction, this part
can be replaced by the theorem of Nakano.

3. Proof of Corollary. Let G be the group of holomorphic transform-
ations of F. We consider G as the structure group of the bundle E. G is a
finite group (Theorem). Let P be the associated principal fibre bundle. As
G is finite, P is a covering space (not necessarily connected) of B. Let ds2

B

be a Kaehler metric on the base space B. The projection of P onto B in-
duces a Kaehler metric ds2

P on P. If B is compact and ds2

B is a Hodge
metric, then P is compact and ds2

P is a Hodge metric. As P is a principal fibre
bundle, G acts on P on the right. From the definition of ds2

P} it follows
that ds2p is invariant by G. As F is algebraic and G is finite, there exists
a Hodge metric ds2

F on F invariant by G. Let ds2

P + ds2

F be the Kaehler
metric on P X F defined in a natural way. If ds2

P is a Hodge metric, so is
ds2p + ds2F> From the well known relation between E and P (or rather the
definition of E), i. e.,

G

F=E,

it follows that P x F is a covering space (not necesarily connected) of E
since G is finite. The Kaehler metric ds2

P + rfs% induces a Kaehler metric
£&% on E. If the former is a Hodge metric, so is the latter. This completes
the proof of our corollary.
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