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1. Introduction. This paper is concerned with semi-groups of operators

in Frechet space and its application to the Cauchy problem for some linear

partial differential equations with constant coefficients.

A topological vector space is called a Frechet space if it is locally con-

vex, complete and metrizable.

We shall deal with a semi-group of operators j T(ξ) 0 5Ξ ξ < °o} satisfy-

ing the following conditions :

(1) For each ξ I> 0, T(ξ) is a continuous linear operator from a Frechet

space X into itself and

ΊXJt + v)= T(ξ)T(η) for f, η ^ 0,

7X0) = I (the identity).

(2) There exists a non-negative number σ such that

is bounded in X for each x € X.

(3) lim T(ξ)x = x for each x € X.

Since a Banach space is obviously a Frechet space, our semi-groups are
an extention of semi-groups of class (Co) in Banach space. (For semi-groups
in Banach space see the book of E. Hille and R. S. Phillips [3].)

We first remark that the conditions (1) and (3) imply the condition (2)
if X is a Banach space. For M= sup||T(|)|| <oo by the uniform boundedness

theorem, and hence ||T(f)|| <Ξ M exp(f log M) for each £ ̂ > 0. But this is not

true in general if X is a Frechet space.

EXAMPLE. We consider real valued functions of one real variable. C°°

denotes the space of oo times continuously differentiable functions. It is well

known that the space C°° becomes a Frechet space under the family of semi-

norms \ρm,k( );m,k = 0,1,2, I, where

(1.1) pm,k(x) = SUPIΛΓ^COI for each xeC~.

We define
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(1.2) ίT(ξ)xJt) = x(ξ + t) for each f^O, xeC~.

Then {T(ζ) 0 ^ ξ < °̂ } is obviously a semi-group of operators satisfying
the conditions (1) and (3). But this semi-group does not imply the condition
(2). In fact, for xo(t) = e* e C°°,

) = sup e"*e*+w ^ **<*-*-">.
|ί|glfe

Hence

ίϊm Po,k(e-σξT(ξ)xo) = oo for each σ ;> 0,
£->~

so that \e~σξT(ξ)x0 ξ^O] is not bounded for each σ ;> 0.

§ 2 — § 5 are devoted to investigations of such semi-groups and we can

obtain results similarly as for semi-groups of class (Co) in Banach space. In

§ 6, these results are applied to the Cauchy problem for the parabolic

equation and the wave equation.

2. Preliminaries- We first prove the following

THEOREM 2. 1. / / {TΛ \ is a family of continuous linear operators

from a Frechet space Xτ into a Frechet space X2 such that the set \Tax} is

bounded for each x € Xl9 then for each neighborhood N2 € 22 there exists a

neighborhood Nt € Σx such that Tα(Λ/Ί) d N2 for all a, where 2 ^ = 1,2) is

a complete system of convex neighborhoods of the origin in Xι.

PROOF. Since Xt is locally convex and metrizable, its topology is also

determined by a family of denumerable semi-norms \pn,piϊ,piz, !• Let us
put

(2.1) IWI, = ir(Λ

Pi^f ( n for x € X,
nmlZ U + Pίn(x))

Then Xi is a quasi-normed space under the quasi-norm (2. l)and || |!rtopology

is equivalent to the original topology in Xt. Thus Xt becomes a complete

quasi-normed space, so that each TΛ is a continuous linear operator from a

complete quasi-normed space Xt into a complete quasi-normed space X2 and

the set {Tax} is bounded in the complete quasi-normed space X2 for each

x € Xt. Hence, by the Mazur-Orlicz theorem [5], for any 8 > 0 there exists
a positive number δ = S(β) such that \\Tax\\2 <, 8 for all a and H ^ H ^ S .

Then the theorem is proved from the equivalence of the quasi-normed

topology (2. 1) and the original topology in Xt.

COROLLARY 2.1. Let \Ta\ be a family of operators satisfying the as-

sumptions in Theorem 2.1. If the limit lim Tax exists on a dense sub space

D in Xl9 then the limit lim Tax exists on the whole space Xx and T — lim
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TΛ is a continuous linear operator from Xt into X2.

PROOF. For any N2 € 22 there exists a N'2 € Σ2 such that iV* + N'2 +

N'2 CZ JV2, and, by Theorem 2.1, there exists a symmetric neighborhood

Nτ € Σx such that

(2. 2) T.CM) cz ΛΓ; for all tf.

Let x be any fixed element in Xτ and let x0 be an element in D snch that

zb (,r0 — x) € iVΊ Then, by assumption, there exists a number a0 < 0 such

that Tα:ro - Tα'Λr0 € JV2 for a, ά > a0. Hence

Tax - T»>x = T«(x - xo) + (Tax, - Ta>x0) + Γβ<Λτ0 - x)

€N'2 + N'2 + N2CN2

for Λ, a > Λo. The second part follows from (2.2).

COROLLARY 2. 2. // {T(f) 0 ^ ^ < 00} is a semi-group of operators

satisfying the conditions(1), (2) and (3), then \e'σξT(ξ)x 0 ^ | < o o , x c B }

Z5 bounded for each bounded set B d X. Especially, for any fixed ω > 0,

f T(£)α;;0 ̂  ξ ^ ω, ̂  € B\ is bounded.

PROOF. Theorem 2. 1 shows that for each N €z S there exists an
N' € 2 such that e~σiίT(ξ) (N') cz N for all £ ί> 0, where 2 denotes a complete

system of convex neighborhoods of the origin in X. Since B is a bounded

set, there exists a positive number <2β such that <XBB cz JV'. Hence <xB e~σ^

T(ξXB) cz ΛΓ for all f ^ 0.

3. Infinitesimal generator and resolvent. Let {T(ξ) 0 <Ξ k < 00 j be

a semi-group of operators satisfying the conditions (1), (2) and (3). It is

clear that, for each x € X, T(ξ)x is a continuous function of ξ € [0, 00).

The infinitesimal generator is defined as the limit

(3.1) lim T(k)~ * * = Ax
ΛψO Λ

whenever this limit exists, the domain D(A) of A being the set of elements

for which the limit exists. For x € D(A) we have

(3. 2) dTjfX = AT(ξ)x = T(ξ)Ax for ξ > 0.

THEOREM 3. 1. TAe infinitesimal generator A is a closed linear operator

and D(A) is dense in X.

PROOF. Let x be any fixed element in X. T(ξ)x is a continuous func-

tion on [0, 00) w i t h values in X, so that we can define the Riemann integral



SEMI-GROUPS OF OPERATORS IN FRECHET SPACE AND APPLICATIONS 165

for each η > 0. It is clear that yη -» x as η I 0 and that yη € D(A). Hence
D(A) is dense in X. By (3. 2), we have

Suppose that \xn] is a sequence of elements in D(A) and that xw -> x0,
Axn -> #0 The above formula holds for x — xn, so that

J L 1 rV

7̂
Theorem 2. 1 shows that for any closed convex neighborhood N there
exists a number n0 > 0 such that T(|)(-AΛrn — z0) € JV for n > n0, 0 ^ξ^η.

Γ
Hence ί;"1 I T ( | ) ( ^ ^ n — 2:0)rf| € N for ^ > ?z0, that is,

as M -> 00. Thus we have for each η > 0

f 4~ f
7̂ Jo

Jo v

W h e n η -> 0 t h e left h a n d side tends t o #0> so t h a t x0 € £>(A) and
This completes t he proof.

Let x be any fixed element in X and let us pu t

Rw(X;A)x = ί e-

for each w > 0 and λ > 0. (We can define the integral of Riemann type
since e~λξT(ξ)x is a continuous function on [0, oo) with values in X.) P
denotes a family of denumerable semi-norms determining the topology of X.
Then we have for any semi-norm p € P

p(Rw(\; A)x - Rw,(\ A)x)^ e~

By the assumption (2) there exists a constant Mp > 0 such that p(T(ξ)x)
eσξMp for all ξ ^ 0. Hence if λ > σ, then

rw

p(Rw(\ A)x - Rw{\ I A)x) ^ Mp e'{κ'σ)ξdξ -+ 0

as w, w -> oo. Thus the limit lim i?«,(λ A)x exists.
tϋ->oo

We shall define R(\ A) for each λ > σ by

(3. 3) R(\ A)x = lim RW(X A)x = f e"λ
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THEOREM 3. 2. For each λ > σ, R{\ A) is a continuous linear operator
from X into itself, and

(λ - A)R{\ A)x '-= x for all x € X,

R(X A) (λ - A) x =x for all x € D(A).

PROOF. It is clear that R(X A) is a linear operator from X into itself.
Let xn-+0, xn € X. Then the sequence {xn\ is bounded, so that \e~σξT(ξ)xn;
£ > 0 , w = 1,2,3, } is a bounded set by the Corollary 2.2. For each
semi-norm p € P there exists a positive constant Afp such that p{T{ξ)xn)^ eσ

Mp for each ξ Ξ> 0 and Λ |> 1. From the definition of i?(λ A) we have

Since lim p(T(ξ)xn) = 0 for all ξ^ 0 and e- λ f i<Γ(lK) ̂  Afjβ"^'' € L1 for

all ^, the convergence theorem shows that Xi?(λ A)xn) —> 0 as w->°°. Hence
iί(λ -A)#n -> 0 as ^ -> oo, that is, i?(λ A) (λ > σ) is a continuous linear
operator. The second part can be proved similarly as in the case of Banach
space.

From this theorem we get the resolvent equation

(3.4) R(X A) - R(μ A) = - (λ - μ)R(X A)R(μ A)

for each λ, μ > σ.

THEOREM 3.3. For each x € X and k = 1,2,3,

( 3 5 ) dλk

PROOF. From (3. 4)

A A)* - i?(λ A)ar] - ( -

+ A A)[R(\; A)Jx for all x € X

Then for any semi-norm p ζ P we have

~jr [i?(λ + A

= \h\p(R(\+ h;A)[R(X;A)Jx)^ \h\ f

as |A| ->0, where Mp is a constant such that e'σξρ(T(ξ)[R(X A)]2x) ^ Mp

for all ξ 2g 0. This asserts that



SEMI-GROUPS OF OPERATORS IN FRECHET SPACE AND APPLICATIONS 167

^ A)x = ( - 1) [R(X A)Jx for all x € X

Using the induction we see that (3. 5) holds for each k j> 1.

THEOREM 3. 4. For £<zcΛ bounded set B, the set

\[(\-σ)R(\;A)Tx;x £ 3,\>σ, n = 1,2,3, }

is bounded.

PROOF. From the definition of i?(λ A)

J dξ,

so that by (3.5)

[(λ - σ)R(\ A)]**1 x = ( λ ~ ^ + Jo ξke^T(ξ)x dξ.

Thus for each semi-norm p € P we have

Corollary 2. 2 shows that there exists a constant Mp > 0 such that p(T(ξ)x)
^Mpe

σξ for all f Ξ> 0 and x € B. Hence

X[(λ - σ)Λ(λ A)T+*x) ^ Mp

for all x € £, λ > σ and * = 0,1,2,

THEOREM 3. 5. For έ?<wΛ ΛΓ € X

lim λi?(λ A)̂ r = x.

λ->oo

PROOF. By Theorem 3. 2

λi?(λ A)x - x = R(\ A)Ax for x € D(A),
and Theorem 3. 4 asserts that for each semi-norm p € P there exists a con-
stant Mp > 0 such that f(R(\ A)Ax) <Ξ Mp(λ - σ)"1 for all λ > σ . Hence

XλΛ(λ A)x - x)= ρ(R(X A)Ax) ^ Mp(λ - σ)"1 -> 0

as λ -> oo? so that lim λi?(λ A).r = ̂ : for x € D(yl). Since -D(A) is dense
in X and since )λi?(λ A)Λ: λ » σ } is bounded for each x € X, the theorem
follows from Corollary 2. 1.

4. Representation theorem. We now define

τχξ)x = exP( -
fc=0 & '

for each x € X For each fixed λ>σ, f^O and x^X, the sequence
n — 0,1, 2, } is a Cauchy sequence. Indeed, for any semi-norm p € P,
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^ exp( - λftΣ-^TΓ/KMλ A)fx)
m+l * '

and there exists, by Theorem 3.4, a constant Mp > 0 such that (λ— σ)k

ρ([R(\ ^4)]fc.z) ^ Mp for all έ, and so that

£ Mp exp( -
m+ι K - Kλ

as n,m-+ °o,

Then, for each λ > σ, f I> 0 and x € X, the limit

(4.1) T λ(f)± = lim Tλ

w(f)x = exp( - τf

exists. Since Tx(|) is a continuous linear operator from X into itself, it
follows from Corollary 2. 1 that Tκ(ξ) is a continuous linear operator from
X into itself.

THEOREM 4.1. For each fixed λ > σ ##6? .r € X, T λ ( |) .τ /s a continuous
function on [0, °o) wzYλ values in X. Furthermore the set

Z5 bounded if B is a bounded set.

PROOF. Tχ(ξ)x is a continuous function of I € [0, °o) and (4.1) holds
uniformly with respect to | in any finite interval of ξ, so that Tλ(|ί) x is a
continuous function of ξ € [0, oo). By Theorem 3. 4 we have for each semi-
norm p € P

T ( & ) £Ξ exp (

^ Mp exp( - λ f )Σ ^ - (-—-) = Mp exp
1 - σ / λ

for all ξ ί> 0, λ > σ and x € B, where Mp > 0 is a constant.

THEOREM 4. 2. For eα<;Λ yϊz αi λ, μ > σ and x € X

(4. 2) ~cΓT^ ~" v)Tμ{η)x = Tλ(ξ - η)Tμ(η)(μAR(μ A > - λAi?(λ A);r)

(0 ^ 77 ̂  I).

PROOF. An elementary calculus shows that for each semi-norm p ^ P

d
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λ ^
^_10 k\ \\~σ) λ - σ j ^ j f e ! \X-σJ

(0 ̂  ξ S ω), where Mp is a constant such that /<[(λ — σ)R(\ A)fx) ̂  Mp for

all λ > σ and & = 0, 1,2, The right hand side tends to zero as ̂ 0"^°°

and hence the series

converges uniformly with respect to ζ in any finite interval of ξ. Therefore

exp( — λf) ~-- - — ~ — - — — x \ is a continuous function of I € [0, oo)

and then

p ( ) x - x
fc-0 ^ *

for all I > 0, and so that

J £ e x p ( _ ii)
aς fc=0

= exp( - ^

Since λ2Λ(λ A)x - \x = XAR(\ A)x by Theorem 3. 2, we have

(4. 3) J r Tlξ)x = Γλ(|)λAi?(λ A)x for f ̂  0.

Then the formula (4. 2) follows from (4. 3), Therems 4.1, and 2. 1, and the

property Tμ(η)AR(X A) = AΛ(λ A)Γμ(^).

The same agument shows that

( 4 4 ) dη T λ ( f ~ vMv)* = Tλ{ξ - η)T(ηXA - XR(\ A)A)x

for Λ: € D(A), λ > σ and 0 ̂  η <L ξ.

THEOREM 4. 3. For each ξ ̂  0 and x € X

(4. 5) T(|> = lim exp( - 7®j^^^& x.

PROOF. By (4. 4) we have

T(ξ)x -TK(S)x = I -j^m ~ v)T(v)xdV
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= [ m-η)T(η)(Aχ-

for .r € Z)(A). It follows from Theorems 4. 1 and 2. 1 that for any closed
convex neighborhood N of the origin there exists a neighborhood N' € 2
such that Γλ(£ - ??)iV' C iV for all λ > 2 σ and 77 € [0, ξ]. Further there

exists by Theorem 2. 1 a neighborhood N" € 2 such that T(rj)N" d iV'for
all 7̂ € [0, £], and Theorem 3. 5 asserts that there exists a number λ0 > 0

such that Ax — \R(\ A)^4x € JV" for λ > λ0. Hence if λ > max (2 σ, λ0),

then 7\(| - η)T(η) {Ax - λi?(λ A)Ax) € Λ̂  for all η € [0, £]. Hence we get

-γ[T(ξ)x - Tl%)x\ € N

for λ > max(λ0, 2σ), that is, lim Tλ(ξ)x -• T(ξ)x for each ξ > 0 and α: €

D (A). We have by Corollary 2. 1 that the limit T\ξ)x = lim Tλ(S)x exists

for all x € X and that T'(ζ) is a continuous linear operator. Since T\ζ)x

— T(ξ)x for x € Z)(A) and since the operators T\ξ) and T(ξ) are continuous,

we have TXf)* = T'(f)a: for all x € X and f > 0. If f = 0, then T(|)^ = x
= Tλ(ξ)x for all λ > σ and x € X Therefore (4. 5) holds for all .r € X and

5. Generation of semi-groups. Collecting the previous results we get
the following

THEOREM 5. 1. If I T(ξ) 0 <: ξ < 00} « a semi-group of operators

satisfying the conditions (1), (2) <2#<i (3), then

(1) £/z£ infinitesimal generator A is a closed linear operator and its

domain D(A) is dense in X,

(2) for each λ > <r there exists a continuous linear operator R(\ A)

from X into itself such that

(λ - A)R{\ ;A)x = x for x € X,

R(\ ;A)(\~ A)x = x for x

(3') for each x € X £/^ s££

|[(λ - σ)i?(λ A)Jx λ > σ, Λ = 0,1,2, )

z's bounded.

Then we have

= lim exp ( M ) i

We now consider the converse problem for the theory of semi-groups,
namely, what properties should an operator A possess in order that it be
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the infinitesimal generator of a semi-group of operators satisfying the con-
ditions (1), (2) and (3) ?

Let A be a linear operator satisfying the following conditions :
(l/) A is a closed linear operator from the domain D(A) into X and

D(A) is dense in X.
(2) For each λ, > σ, where cr is some non-negative constant, there exists

a continuous linear operator R(\ A) from X into itself such that

(λ - A)R(X A)x = x for x € X,

R(\ A) (λ - A)x --= x for x € D(A).

(3') For each x € X the set

|[(λ - σ)R(X A)Jx λ > σ, n = 0, 1, 2, }

is bounded.
Under these assumptions it follows from the previous arguments that

(5.1) T ^ ^

is well defined for each 1 ^ 0 , λ > cr and x € X, and that Theorems 3. 5,
4. 1 and 4. 2 hold.

We now prove that for each fixed x € Xthe limit lim Tκ(ξ)x exists

uniformly with respect to £ in any finite interval of ζ. In fact, by Theorem
4. 2, we have

A) -

for x € ί)(A). By Theorems 4. 1 and 4. 2 for any closed neighborhood N € 2
there exists a neighborhood Λτ' € 2 such that Tk(ξ — η)Tμ(η)N' cz N for all
/̂ , λ > 2 σ and 0 ζ^ η <, ξ <^ ω, where ω is any fixed number, and Theorem
3. 5 shows that there exists a number λ0 > 0 such that [μR(μ; A) — \R
(λ A)]Ax € N' for all λ, μ > λ0. Then we have for each 0 <: ξ ^ ω

iV

if λ, /̂  > max (λo, 2 cr), so that Tμ(ξ)x - TA(ξ)x € ω N f or all ξ € [0, ω] if
λ, μ > max(λ0, 2 σ). Hence for each fixed x € D(A) the limit lim Tμ(ξ)x

exists uniformly with respect to ξ in any finite interval. Corollary 2. 1 concludes
that for each fixed x € X the limit lim Tμ(ξ)x exists uniformly with respect

to ζ in any finite interval and this limit is a continuous linear operator
from X into itself.
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We define

(5.2) T(ξ)x = lim Tλ(ξ)x for each? ;> 0 and x € X.
λ->co

Since Tλ(ξ)x is a continuous function of f € [0,<*>), T(ξ)x is continuous with
respect to ξ € [0, oo) for each j ; € X.

An elementary argument shows that for λ > σ

TA(f + ?) = TmT,{η) and Γλ(0) = /,

and hence we have by (5.2) and Theorem 2.1 the semi-group property

T(ξ + η)= m)T(η) and 7X0) = /.

Finally, from Theorem 4.1, we have that the set \e~σ* T(ξ)x; 0 <Ξ ξ < oo j is

bounded for each Λ € X. Thus we obtain the following

THEOREM 5.2. If A is an operator satisfying the assumptions (l '), (2')
Λ ^ J (3), then A is the infinitesimal generator of a semi-group of operators

\T(ξ); 0 <̂  ξ < oo) satisfying the conditions (1),(2) α̂ zrf (3). Further

= lim exp ( - λ |) 22 — x

for all x € X and ξ ^> 0.

PROOF. It has already been observed that the family of operators which

is defined by (5.2) satisfies the conditions (1), (2) and (3). We shall now show

that A is the infinitesimal generator of \T(ξ);0 ^ ξ < oo|.

By (4.3)

(5.3) -y(7\(f)z - x) = -y J[ TK(V)XR(X;A) Ax dv

for each x € D(A). Let N € 2 be any neighborhood and let JV' be a closed
convex neighborhood of origin such that iV' + JV' ClJV. By Theorems 4.1
and 2.1 there exists a neighborhood iV" € 2 such that Tλ(η)N" CZ N' for

all λ > 2 σ and 7̂ € [0, f], and by Theorem 3.5 there exists a number λj > 0

such that λJR(λ;A)Az — A^: € iV" for all λ > λ> Since (5.2) holds uniformly

in any finite interval of ξ, there exists a number λ0 > 0 such that (Tκ(η) —

T(η))Ax € N' for all λ > λ0 and η € [0,1]. Thus if λ > max (λ0, λa, 2 σ), then

T " ( ί T*ίv)λR(λ; A) Ax dη ~ /o T(η)Axdη)

= y j[ Tλ(τ;Xλiί(λ;A)Ax - A Λ : ^ + y jf (TΛ(^) - 7X )̂)Aα: dη

Then passing to the limit with λ in (5.3) we have



SEMI-GROUPS OF OPERATORS IN FRECHET SPACE AND APPLICATIONS 173

ηr{T(ί;)x - *)=-yJo T{η)Axdη

for x € D(A), so that lim ^r(T(ξ)x - x) = Ax for x € D(A).

Let A' be the infinitesimal generator of \T(ξ); 0 ^ ξ < °°} and D(A')

be its domain. Since D(A') ID D(A) and Ax = Ax for .r € 2)(A), it follows
from the assumption (2') and Theorem 5. 1 (2') that i?(λ; A')(\ — A);r = r

- i?(λ; A)(λ - A>r for x € Z)(A). Hence we have R(\; A) = i?(λ; A') ac-

cording to (λ — A) [D(A)~] = X, so that A = A'. This concludes the proof

of Theorem 5. 2.

6. Applications to partial differential equations. The theory of semi-

groups of operators in Banach space has been applied to the Cauchy problem

for linear partial differential equations by E. Hille [2], P. D. Lax & A. N.

Milgram [4] and K. Yosida [7], [8].

In this section we shall apply to the Cauchy problem our semi-group

theory.

6.1. Preliminaries. Let H be the space of real-valued C'-functions

(infinite times continuously differentiable functions) defined on ̂ z-dimensional

euclidean space Em such that its partial derivatives of all orders belong to

the space ZA It is clear that the space H becomes a pre-Hilbert space under

the inner product

(6.l) (φ,n=Σ

μ l

where D{k) = ^ 1 3 ^ g^Γ> 1*1 =Σh and dt= dtx dt2 dtm.

Let Hn be the completion of H with respect to the norm

(6.2) \\φ\\n = (φ,φγj\

The following theorem is due to P. D. Lax & A. N. Milgram [4].

THEOREM 6. 1. Let a bilinear functional B(φ, ψ) defined on the Hilbert

space Hn satisfying the followings;

\B(φ,ψ)\ ^y\\φ\\n\\ψ\\n for all φ,ψe Hn,

B(φ, φ) ^ h\\φ% for all φ € Hn9

where y, 8 are some positive constants. Then there exists a bounded linear
operator S from Hn onto itself such \\S\\ ̂  δ"1 and (φ, ψ)n = B(φ, S ψ) for

all φ, ψ € Hn.

We shall introduce a topology into the vector space H. Let D be a
partial differential operator of the form dkι+k2+'-+krn/3t^dtk

2

2 dt^n and let us
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put

(6.3) \{Dφ\t)Vdt
1/2

for all φ € H.

It is a semi-norm of the vector space H and trie totality of those semi-norms
corresponding to all partial differential operators defines a topology of H.
We shall again denote by H the topological vector space H provided with
this topology.

LEMMA 6. 1. If Urn fa, — f in H, then for each partial differential operator

holds uniformly with respect to t in any compact set in Em.

PROOF. We now prove the lemma for m = 2. We may assume f = 0
without loss of generality. By the assumption and the Schwarz inequality
we have

as a —> 0, that is, for arbitrary S > 0 there exists a number tf0
 = #o(£) > 0

such that

(6. 4)

for | α | ^

(6.5) - <

<
=

for all \a

Hence we

so

«0. where Bx

Γ
Λ.S2

7 , I

c

and

see that

lim
c

) ι

== 0 or 1.

^ fit

3 5 l + 1 _(Γ;-

£ 2 . N o w

a'

2 /α(^ ^.) Λ i ί/̂ 2 ^ ^

Then

3^1 _ (,
2

+e 2)
*2) — ^ δx e

f*\tu
2

•**'Λft,,^Λ,<-.

ΛUIA) |Λ

*) From now the symbol D (or Dt) denotes a partial differential operator of the form
—.+km/kι km
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when t2 tends to — 00 (or -f °°) without taking the values of t2 which form
a set of finite measure. Therefore for each a there exists a sequence \S\}
= \S%ά)\ such that

lim I - ^ Γ β ~V* 1 T M V '/.&, δϊ) Λ , = 0.

Combining this and (6. 5) we have

(6-6) ( ~ ^ e "<tί+'*)/.(ίi,.

for all \a\ ̂  cc0 and 52 Let us take Sτ = 1, then

(6.7)
- e

^ Λo. On the other hand if we put δj = 0 infor all sl9Sl9s2 and
(6.6), then

for all ̂ 2 and \ct\ ^ ct0. Hence, as in the preceding case, we see that for
each fixed s2 and \OL\ fg a0 there exists a sequence j£f} = {€l(oc,s2)\ such
that

_ / s 2 + 6.2\

Combining this and (6. 7) we have | £ /«(^i>^2)| < £ for all ̂  and ̂ 2 if
| Λ | ^ a0. Thus fΛ(sl9 s2)-^Ό uniformly with respect to (si9 s2) in any compact
set.

Finally if lim fa = 0 in H then it is obvious that lim Dfa = 0 in H for

each partial differential operator D, so that (Zy*Λ) (ί) -> 0 uniformly with respect
to t in any compact set.

Using the same method we can also prove the lemma for m 2S 3.
The following lemma is easily proved.

LEMMA 6. 2. The space H is a Frechet space.

6. 2. Parabolic equation. Let A be a partial differential operator of the
2n-th order in w-dimensional euclidean space Em

(6.8) A = - ( - 1)" Σ, a*vDwDw,
Ipl, I Ί - O



176 I.MIYADERA

+ —+p m

 m

g p m

where D{p) = •^~PΓ~o~ίΓ > 1̂ 1 == Σ Λ a n d t n e coefficients α*" = α " 1 ' - ' ^ ^ 1 " ' ^

are real constants.

In this section we consider the Cauchy problem for the parabolic

equation in ^-dimensional euclidean space Em

u(0,t)=f(t).
We assume that

(6. 9) ap;v = av:p f o r \p\ = \v\ = n ,

and there exists a constant £0 > 0 such that

Σ*5j
for each (/15 , O € £m. Therefore A is an elliptic differential operator.
We define the adjoint operator A* by

n

(6. 11) A* = - ( - 1)" Σ ( ~ 1 ) ' P l + IH ap'μD{v) D(p\
|p|>l-o

We can easily prove

(6. 12) (A/, «7)o = (/, A* g\ for all f,g&H,

where (/,</),= f f(t)g(t)dt.

LEMMA 6.3. (Gάrdίngs inequalities) There exist positive constants So,

λo( = λo(δo)) and K such that if λ ^ λ0 then

(6.13) ((λ - A)f,f\ = (f, (λ - A* )/)„ ^ 8,11/111 /or αtf / € H,

(6. 14) I (Λ/,flr). - (J, Ag\ I ϊS ̂ ll/iUMU, /or α/i /,fl- € H.
Further for each λ > 0 there exists a constant Λfλ such that

(6.15) |((λ - A)f,g\\ = |(/,(λ - A*)g\\ S Mλ||/||n||flr||n

for all f,g € H.

For the proof see Garding's paper [1]. In our case the coefficients are
constants, so that we see that the inequalities hold in the space H.

LEMMA 6. 4. Let λ be any fixed number such that λ > λ0. Then, for

any function f € U Π C°°, the equation

Xu — Au = f

has a solution Uf € Hn Π C"°.
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PROOF. Let us define a bilinear functional

B\(u, v) = (λ« - A* z/, v)0

for all u, v € / / . From Garding's inequalities we have

\Bk(u,v)\ ^ Afλ|M|n||t/||n, βA(«,w)^δ 0 | |α | | i .

Since Hn is the completion of H with respect to the norm || | |n,

Bκ(u ,v) may be extended to the bilinear functional Bλ(u, v) defined on Hn

satisfying

(6. 16) \Bκ(u, v)\ ^ M λ | |κ | | n |M| n, Bλ(u, u) ̂  δ0IMI»

For any / € L2 Π C°° the linear functional (z/,/)0 is a bounded functional

defined on Hn since \(u,f\\ ^ IklLII/llo- Hence, by the F. Riesz theorem,

there exists an element v(f) € Hn such that (u,f\ = (&, v(f))n for all z* €
i/n. Thus, by Theorem 6. 1, we get

(u,f\ = (u,v(f))n = Bκ(u, SMf)) for all u € i/n,

where »Sλ is a bounded linear operator from Hn onto itself which is deter-

mined in Theorem 6. 1. Let vk € H be a sequence such that

- 5λτ</)||n = 0.
fc->o

Then, for u € β ( £ T c / J ,

βλ(w, Sκv(f)) = lim i?λ(tt, VA;) = lim (λw — Ar u, vk\

= (λu-A*u,Sκv(f))09

so that

(«,/)o = (λ« ~ A ẑ/, Λ>(/))o for all »

Thus (λ — A)Sκv(f) - / i n ©'(= the dual of £) = the space of distributions).

/Or) being any C°°-function and (λ — A) being an elliptic differential

operator, we see, by the L. Schwartz theorem [6], that uf = Sκv(f) € Hn is
a C°°-solution.

LEMMA 6. 5. Let λ έe any fixed number such that λ > λ1? where λx(> λ0)

z"s a constant. If w € L2 Π C°° α ^ z/ λze> — Aw = 0, then w(t) = 0 /or all

t € JBm.

PROOF. Let © be the space of all rapidly decreasing functions and let

©' be the dual of ©. We now define

Tw{φ) = \ w(t)φ(.t) dt

for all ψ € ©. It is clear that Tw € @\ According to L.Schwartz [6] we can

*) £)(Em) denotes the space of C^-functions with compact carriers.
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define the Fourier transform F(T) £ ©' for all T € ©'. It is well known
that

(6. 17) F(βT/dtt) = 2 TΓX/^Ί t% F(T),

(6. 18) F*(F(T)) = Γ,

where JF* denotes the conjugate Fourier transform.

By the hypothesis
n

λ Tw + ( - 1)" £ cf-vΌ{f)D{v)Tw = 0,

|p l>l"l-o

so that by (6.17)

(6. 19) λ F(TW) + ( — 1)" Σ ao:v(2 τr\/— 1) tL £••»" "*. F(TW) = 0.
|p|,M=0

An elementary calculus shows that if X > X2 = max (Xo, C) then
n

_ λ . . r | p | + | i > | pi + vi Pm+I///A i

> X - C> 0,
n n

where C - ( 2 τ r Γ Σ k p :1^i p l + k ! and a0 = max (1, Sόι Σ, WD- T h e n '
lp|,kl=o lpl>l=o

for each X > \19 l/hk is a slowly increasing function, so that φ/hκ € © for
all 9? € ©.

Now, by (6. 19), (F(Tw))(hκφ) - 0 for all φ € ©. Hence if X >X1? then

(F(TW)) (φ) =(F(TW)) (hκ~^) = 0 for all φ € ©, that is, ί χ τ w ) = 0. Thus

we have Tw = 0 from (6. 18). Then

f ZiKf)φ(t)dt= 0

for all <p € @, so that w(t) ~ 0 since © is dense in L2.

LEMMA 6.6. Let X έe α ^ fixed number such that X > X}. Then, for

any functions f € H, the equation

( X - A)u=f

has a unique solution uf € H and, for each semi-norm pυ{ ),

1

where \ι and C are constants in the preceding lemma.

PROOF. By Lemma 6. 4, for each function / € H there exists a function
Uf € Hn Π C°° such that (λ — A)uf = f Operating any partial differential
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operator D, we have

(6. 20) (λ - A)Duf = Df.

Again it follows from Lemma 6.4 that there exists a function uDj € Hn Π C°°

such that

(6. 21) (λ - A)uDf = Df

We remark that Dσ)uf belongs to U Γ) C", where D0) denotes a partial

differential operator of the first order. If we put w = Z)(1) uf — uDWj, then

w € L2 Π C°° and (λ — A)w = 0. Thus Lemma 6. 5 shows that D{l)uf = uD(Vj

€ Hn Π C°° CZ U Ω C". Repeating the same argument, for each partial diff-

erential operator D, we have D% = ŵ / € Hn Γϊ C°° C i 2 Π C°°. Hence uf

€ i^ and the uniqueness of the solution follows from Lemma 6. 5.
Finally we get from (6. 20)

hit) F(Duf) - F{Df\

where F denotes the Fourier transform on L2, and

|Aλ(ί)ϊ = |λ + ( - 1)" Σ. ^ ' ( 2 ^ - i ) — , Γ ^ t 7 - I > λ - C

for all t € £m. Hence *
1

- λ - C

for all t € £'", so that by the Parseval theorem

Piiuf) = ( ί I Duf (ί) 12 Λ)ι'» = ( f I F(DufXt) 12 l /2

This concludes the proof of Lemma 6. 6.

It is clear that A is a continuous linear operator from H into itself.

If we put i?(λ; A)f = Uf, then we obtain from Lemma 6.6 that i?(λ; A)

(λ > λ j is a continuous linear operator from H onto itself, that

(λ - A)R(X;A)f = R(X;A)(X - A)f = f for all / € H, λ > λ1?

and that

for each semi-norm pD, k = 1, 2,3, and λ > λ^ Hence the set

|[(λ - σ)R(\;A)Tf; X > σ, k = 0, 1, 2, }
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is bounded in 77 for each / € 77, where σ = max(λl5 C). Thus Theorem 5.2

shows that the differential operator A generates a semi-group of operators

satisfying the following conditions;

(6. 22) T(ξ + v) = T(ξ)T(v\ Γ(0) = 7,

(6. 23) P»(T(ξ)f) S e^pD{f) for all / € 77,

(6. 24) lim T(ξ)f = f for all / € 77.

In this case D{A) — 77, so that

dιT(£)f
(6,25) ~^T = T Φ ^ / = A'T^f

for a l l / € 77 and / = 1,2,3,
It follows from Lemma 6. 1 that dT(ζ)f/ dζ is equal to the ordinary deri-

vative d(T(ξ)f)(t)/dξ and that lim (T(ξ)f)(t) = f(t) for all * € Em. Thus if

we put u(ξ, t f) = Γ(£)/, then

(6. 26) 3 ^ | g ; / ) = Λ«(f, t; f) for all f S 0, ί € £m,

(6. 27) lim «(f, «;/) = / (Q for all t € £m.
fψo t

Furthermore, for each partial differential operator Dt with respeet to t9 we

have

(6.28) (/ \Dtu(ξ,t;f)\2dt)ιl2Se*Kί \Dtf(t)\2dt)1'2

for all I S O . It is clear that u(ξ,t;f) is a C°°-function with respect to ξ and

u(ζ,t;f)€ 77 for each | S 0.
Finally we shall prove that u(ξ,t;f) is a C°°-function with respect to

(f, ί). Since ZV1 = AE>ί> we have A ^ O ; -A) = #(λ; A)Dt. Then, by the

continuity of Dt and the representation theorem of T(£), we have

T(ξ)Dt =

Therefore we obtain from (6. 25) that

for Z = 1,2,3,

Now T(ξ)AιDtf = u(ξ, ;AιDtf) is a continuous function of | S 0 with values

in 77, so that it follows from Lemma 6.1 that u(ξ, t; AιDtf) is a continuous

function of (£, £). Hence u(ζ, t f) is a C°°-function with respect to (f, t). Thus

we have the following

THEOREM 6. 2. TA^ Cauchy problem for the parabolic equation in m-
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dimensional euclidean space E711

1 u(O,t)=f(t), t€Em,
is solvable in the following sense. For any given f € H the above parabolic
equation admits a C°°(with respect to (ξ, t)) solution u(ξ, t) = u(ξ, t f) satisfying
the conditions

(i) u(ξ + η, t f) = u(ξ, t;u(η, •;/)) for all ξ, η > 0 and t € Em,

(ii) there exists a constant σ > 0 such that

for all ζ έ 0 and for all partial differential operators Dt,

(iii) lim «(f, •;/) = Λ 0 in H and du(ξ, -;f)/dξ = Au(ξ,-;f)in H.

Ho

Furthermore the solution u(ζ, t f) such that the conditions (ii) and (iii) satisfy,
is uniquely determined for f € H.

PROOF OF UNIQUENESS. We suppose uλ{ξ9 t f) and u2(ξ, t f) satisfy the
conditions (ii) and (iii). Then v(ζ, t f) — uλ(ξ, t;f)—u2(ξ, t f) implies the foll-
owings;

i lim v(ξ,.;f) = O in H,

Hence

exists for each λ > c

dv{ξ,
dξ

L(X;v)

T and

^ ι n H'

AL{X;v) = [e-^Av (f, •;/) dξ = J~e'*

= XL(\;v),

that is, (λ - A)L(X;v) = 0. Thus L(λ; v) = 0 for all λ > <r. Hence v(ξ, •;/)
= 0 for all ξ^ 0, so that Ml(f, t f) = u2(ξ, t f).

6.3. Wave equation. Let A be a partial differential operator of the
second order in ra-dimensional euclidean space Em with constant coefficients
satisfying (6. 9) and (6.10) (with n = 1).

We now consider the Cauchy problem for the wave equation iii m-
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dimensional euclidean space Em;

&u(ξ, t)
^

(6.29) *

(0, ί) = /(*), ̂ (0, ί) = ~3|-«(0, ί)

The problem is equivalent to the matrical equation

^_(u(ξ,t)\__/o r\(u(ξ,t)\
dξ Uf,o/"U (vU(U)λ

Uo, * ) / " Uί)/
Let λ0 be a fixed positive number such that the Garding inequality

(6. 13) holds, and let D be a partial differential operator of the form
3*1+ ~+tm/3ft 34m. We define ^ by

(6. 31) qD(f) = ((λo - A)D/, Zy)i/a for all / €= H.

The following lemma is easily proved from the Garding inequalities.

LEMMA 6.7. qD is a semi-norm of the vector space H and H becomes a
Frechet space under the topology defined by the totality of semi-norms qD cor-
responding to all partial differential operators. Further this topology is
equivalent to the previous topology determined by {ρD\D\.

Let us put

for each (£) € H X H.

It is a semi-norm of the product vector space H X H and the totality of
those semi-norms corresponding to all partial differential operators defines a
topology of H X H. We shall again denote by H X H the topological vector
space H X H provided with this topology. Then it is clear that the product
space H X H is a Frechet space.

From Yosida's arguments [8] and Lemma 6. 6 we can prove the following

LEMMA 6. 8. There exists a positive number λ2 such that if λ is a real
number with |λ | > λ2, then the equation

has a unique solution (^Λ = {^Λ € H X H for each (ζ)eHx H.

Further
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for each semi-norm Γχ», jλ | S λ2 and y) €z H X H, where β is a positive

constant independent of λ, ί M and rD.

Using the same method in the parabolic case, we can prove the foll-

owing theorem.

THEOREM 6. 3. The Cauchy problem for (6. 29) is solvable in the fol-

lowing sense: For any given pair \~ ) of H-functions the equation (6. 29)

admits a C"° {with respect to (£:,£)) solution u (ξ,t) = u(ζ, t; (£)) satisfying the
conditions

(i ) there exists a constant cr > 0 such that

[((λ0 - A)Dtu{ξ, ), Dtu(ξ, ))„ + (A«ί(f» λ A«t(f, ))o]"2

S ^ i f lK(λ 0 - A)DJ,DJ\ +(Dtg,Dt9)QJi*

for all ξ and for each partial differential operator Dt,

(..,Λ

{ Uf, ))~U ojUf, )
Further the solution u (I, ί) which satisfies the conditions (V) α/zίί (ii') /^

uniquely determined for y'jGzHxH.
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