MEROMORPHIC FUNCTIONS WITH MAXIMUM DEFECT SUM

S.M.SHAH ${ }^{1)}$ AND S.K.SINGH ${ }^{2)}$

(Received June 29, 1959)

1. Introduction. Pfluger [6] proved that if $f(z)$ be an entire function of finite order ρ with maximum defect sum 2, then ρ must be an integer. In this note we extend this theorem to meromorphic functions. We prove

THEOREM. Let $f(z)$ be a meromorphic function of finite order ρ such that $\delta\left(a_{1}\right)=1, \sum_{2}^{\infty} \delta\left(a_{i}\right)=1$ where a_{1}, a_{2}, \ldots are any constants (finite or infinite) different from each other. Then ρ must be a positive integer and $f(z)$ must be of regular growth order ρ.

We show also by means of an example that $f(z)$ need not be of very regular growth order ρ or even proximate order $\rho(r)$.
2. Lemma. Let $F(z)$ be a meromorphic function of non-integer order $\rho>0$ and

$$
\lim _{r \rightarrow \infty} \sup \frac{N(r, a)+N(r, b)}{T(r)}=\chi(\rho)
$$

where a and b are any two distinct numbers finite or infinite; then if $p=$ $[\rho]>0$,

$$
\begin{equation*}
\chi(\rho) \geqq(\rho-p)(p+1-\rho) /\left\{3 e(2+\log p)(1+p)^{2}\right\} \tag{1}
\end{equation*}
$$

and if $p=0$,

$$
\begin{equation*}
\chi(\rho) \geqq 1-\rho \tag{2}
\end{equation*}
$$

Two proofs of this lemma, with different constants, ${ }^{3)}$ on the right hand sides of (1) and (2), are known [4; pp. 51-54; 10, theorem 2 (a)]. We sketch a different proof depending on the proximate order $\rho(r)$.

$$
\text { Since } T\left(r, \frac{\alpha F+\beta}{\gamma F+\delta}\right)=T(r, F)+O(1), \text { we may suppose } a=0, b=\infty
$$

Then

$$
\begin{equation*}
F(z)=z^{k} e^{q(z)} \prod_{1}^{\infty} E\left(\frac{z}{a_{i}}, p_{1}\right) / \prod_{1}^{\infty} E\left(\frac{z}{b_{j}}, p_{2}\right)=z^{k} e^{q(z)} P_{1} / P_{2} \tag{say}
\end{equation*}
$$

Presented to the American Math. Soc. Dec. 5, 1958.

1) Sponsored by the United States Army under contract No. DA-11-022-ORD-2059.
2) Sponsored by the National Science Foundation (U. S. A.) grant NSF-G4917.
3) The constants on the right hand sides of (1) and (2) are not "best possible."
where $q(z)$ is a polynomial of degree $q \leqq[\rho]$. Write $\max \left(p_{1}, p_{2}\right)=p$. Then it is easily seen that $p=[\rho]$ and

$$
T(r, F) \leqq O(\log r)+O\left(r^{q}\right)+\log M\left(r, P_{1}\right)+\log M\left(r, P_{2}\right)
$$

Write

$$
n(x, 0)+n(x, \infty)=n(x), N(x, 0)+N(x, \infty)=N(x)
$$

and let

$$
\begin{gather*}
0<\delta<\min \left(\left|a_{1}\right|,\left|b_{1}\right|\right) . \quad \text { If } p=0 \text { and } r>r_{0}(\varepsilon) \\
T(r, F) \leqq O(\log r)+\int_{\delta}^{\infty} \frac{r n(t) d t}{t(t+r)}<(1+\varepsilon) r \int_{r}^{\infty} \frac{N(t) d t}{t^{2}} . \tag{3}
\end{gather*}
$$

If $p>0$ and $A=3 e(2+\log p)(1+p)$ then [5; pp. 225-6]

$$
\begin{equation*}
T(r, F) \leqq O\left(r^{p}\right)+A \int_{\delta}^{\infty} \frac{n(x)}{x^{1+p}} \frac{r^{1+p}}{(x+r)} d x \tag{4}
\end{equation*}
$$

Let $\rho(r)$ be the proximate order for $N(r)$. Then [8; 9, p.321]

1) $\rho(r)$ is differentiable for $r>r_{0}$ except at isolated points at which $\rho^{\prime}(r-0)$ and $\rho^{\prime}(r+0)$ exist.
2) $\lim _{r \rightarrow \infty} \rho(r)=\rho$.
3) $\lim _{r \rightarrow \infty} r \rho^{\prime}(r) \log r=0$.
4) $N(r) \leqq r^{\rho(r)}$ for all $r>r_{0}$

$$
=r^{\rho(r)} \quad \text { for a sequence of values of } r \uparrow \infty .
$$

Choose r_{0} so large that $p<\rho(r)<p+1$ for all $r \geqq r_{0}$. Then for all $r>R_{0}(\varepsilon)>r_{0}$, we have from (4) when $p>0$

$$
\begin{aligned}
T(r, F) & <(A+\varepsilon)\left\{r^{p} \int_{r_{0}}^{r} \frac{N(x) d x}{x^{1+p}}+r^{p+1} \int_{r}^{\infty} \frac{N(x) d x}{x^{2+p}}\right\}(p+1) \\
& <(A+\varepsilon)(p+1) r^{\rho(r)}\left\{\frac{1}{\rho(r)-p}+\frac{1}{p+1-\rho(r)}\right\}
\end{aligned}
$$

and (1) follows. If $p=0$ we have from (3)

$$
T(r, F)<(1+\varepsilon) r \int_{r}^{\infty} x^{\rho(x)-2} d x=(1+\varepsilon) \frac{r^{\rho(r)}}{1-\rho(r)}
$$

and (2) follows.
3. Proof of Theorem. (a) Suppose first $a_{1}=\infty$ so that $\delta(\infty)=1$, $\sum_{i=2}^{\infty} \delta\left(a_{i}\right)=1$.
Given $\varepsilon>0$, choose $a_{2}, \ldots, a_{q+1}(q \geqq 3)$ such that $\sum_{i=q+2}^{\infty} \delta\left(a_{i}\right)<\varepsilon$.
Since $f(z)$ has maximum defect sum, $f(z)$ can not reduce to a rational function and so $\log r=o(T(r, f))$. Now [11, p. 18]

$$
\begin{equation*}
N\left(r, \frac{1}{f^{\prime}}\right)+\sum_{2}^{q+1} m\left(r, a_{i}\right)+S(r) \leqq T\left(r, f^{\prime}\right) . \tag{5}
\end{equation*}
$$

and hence

$$
1-\varepsilon<\sum_{2}^{q+1} \delta\left(a_{i}\right)<\liminf _{r \rightarrow \infty} T\left(r, f^{\prime}\right) / T(r, f) .
$$

Further [4; p. 104]

$$
\limsup _{r \rightarrow \infty} \frac{T\left(r, f^{\prime}\right)}{T(r, f)} \leqq 2-\delta(\infty)-\mu(\infty)=1
$$

and so

$$
\begin{equation*}
T\left(r, f^{\prime}\right) \sim T(r, f) \quad \text { as } r \rightarrow \infty \tag{6}
\end{equation*}
$$

Hence from (5) we have

$$
\lim _{r \rightarrow \infty} \sup \frac{N\left(r, 1 / f^{\prime}\right)}{T\left(r, f^{\prime}\right)}+\sum_{2}^{q+1} \delta\left(a_{i}\right) \leqq 1
$$

and so

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{N\left(r, 1 / f^{\prime}\right)}{T\left(r, f^{\prime}\right)}=0 \tag{7}
\end{equation*}
$$

Further $N\left(r, f^{\prime}\right) \leqq 2 N(r, f)$, and $\delta(\infty)=1$, and so from (6)

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{N\left(r, f^{\prime}\right)}{T\left(r, f^{\prime}\right)}=0 \tag{8}
\end{equation*}
$$

Write

$$
g\left(r, f^{\prime}\right)=\frac{N\left(r, 1 / f^{\prime}\right)+N\left(r, f^{\prime}\right)}{T\left(r, f^{\prime}\right)}
$$

Then from (7) and (8), $\lim _{r \rightarrow \infty} g\left(r, f^{\prime}\right)=0$.
Now $f^{\prime}(z)$ is meromorphic function of the same order ρ; if $\rho>0$ be noninteger then we should have from Lemma

$$
\lim _{r \rightarrow \infty} \sup g\left(r, f^{\prime}\right)=\chi(\rho)>0
$$

and if $\rho=0$ then we have [7]

$$
\lim _{r \rightarrow \infty} \sup g\left(r, f^{\prime}\right) \geqq 1
$$

Hence ρ must be an integer. To prove that $f^{\prime}(z)$ is of regular growth we use the following theorem of Edrei and Fuchs ${ }^{4}$.

THEOREM. Let $F(z)$ be a meromorphic function of finite order ρ and lower order μ. Let p be the integer defined by $p-\frac{1}{2} \leqq \mu<p+\frac{1}{2}$. If

[^0]$$
\limsup _{r \rightarrow \infty} \frac{N(r, F)+N(r, 1 / F)}{T(r, F)}<\frac{\beta}{5 e(1+p)}, 0<\beta \leqq \frac{1}{2},
$$
then $p \geqq 1$ and $p-\beta \leqq \mu \leqq \rho \leqq p+\frac{\beta}{10}$.
Since $\lim _{r \rightarrow \infty} g\left(r, f^{\prime}\right)=0$ and f^{\prime} is of finite order ρ, we can choose β arbitrary small and so we have
$$
\rho=\lim _{r \rightarrow \infty} \frac{\log T\left(r, f^{\prime}\right)}{\log r}=\mu
$$

Further $T\left(r, f^{\prime}\right) \sim T(r, f)$ and so $f(z)$ is of regular growth integer order $\rho \geqq 1$.
(b) Suppose now $a_{1} \neq \infty$. We have $\delta\left(f, a_{1}\right)=1, \sum_{2}^{\infty} \delta\left(f, a_{i}\right)=1$.

Let $F(z)=1 /\left\{f(z)-a_{1}\right\}$. Then $T(r, F)=T(r, f)+O(1)$
and so $F(z)$ is of the same order ρ. Further $\delta\left(f, a_{1}\right)=\delta(F, \infty)=1$, $\sum_{2}^{\infty} \delta\left(f, a_{i}\right)=\sum_{2}^{\infty} \delta\left(F, \alpha_{i}\right)=1$ where $\alpha_{i}=1 /\left(a_{i}-a_{1}\right), i=2,3, \ldots \ldots$ are finite constants different from each other. Hence by case (a) $F(z)$ is of regular growth integer order $\rho \geqq 1$ and by (9) the theorem is proved
4. Remarks. (i) We note that it is not possible to prove the theorem without some condition of the type $\delta\left(a_{1}\right)=1$. In fact there are meromorphic functions of finite non-integer order $((2 k+1) / 2$ where k integer $\geqq 1)$ with maximum defect sum 2 (see [2], [3]).
(ii) We can prove (6) under less restrictive hypothesis: $f(z)$ is of finite order and

$$
\begin{equation*}
\theta(\infty)=1, \sum_{a \text { finite }} \theta(a)=1 \ldots \ldots \tag{1}
\end{equation*}
$$

where $\theta(a)=1-\lim _{r \rightarrow \infty} \frac{N(r, a)}{T(r)}$.
However the conclusion that $f(z)$ is of integer order will not follow with $\left(H_{1}\right)$. Consider for instance

$$
f(z)=\exp (2 \sqrt{z})+\exp (-2 \sqrt{z})
$$

which is an entire function of order $1 / 2$, and

$$
\theta(\infty)=1, \theta(2)+\theta(-2)=1
$$

(iii) If $f(z)$ is meromorphic for $|z|<R<\infty$ and satisfies
(a) $\lim _{r \rightarrow R} \frac{-\log (R-r)}{T(r, f)}=0$,
(b) $f(z)$ is of finite order ρ,
(c) $\delta(\infty)=1, \quad \sum_{a \neq \infty} \delta(a)=1$,
then (6), (7), (8) where $r \rightarrow \infty$ is to be replaced by $r \rightarrow R$, follow by the same argument.
(iv) We construct an entire function $f(z)$ of integer order $\rho>1$ for which $\delta(0)=1=\delta(\infty)$ and

$$
\lim _{r \rightarrow \infty} \frac{T(r)}{r^{\rho}}=\infty, \liminf _{r \rightarrow \infty} \frac{T(r)}{r^{\rho}}=a, \quad 0<a<\infty
$$

Let $\prod_{1}^{\infty} E\left(\frac{z}{z_{n}}, p\right)$ be a canonical product where $p=\rho, n(r)=o\left(r^{\rho}\right), z_{n}^{\rho}$ real, $\sum 1 /\left|z_{n}\right|^{\rho+e}$ convergent, $\sum 1 / z_{n}^{\rho}$ oscillating such that if $S(r)=\sum_{\left|z_{n}\right| \leqq r} 1 / z_{n}^{\rho}$ then $\lim _{r \rightarrow \infty} \sup S(r)=\infty, \lim _{r \rightarrow \infty} \inf S(r)=b$ where $0<b<\infty$.

For instance we can take $z_{n}=\{n \log (n+1)\}^{1 / \rho}$ for a sequence of values of n and $e^{t \pi / \rho}\{n \log (n+1)\}^{1 / \rho}$ for the remaining values of n in such a way that if $\varepsilon_{n}= \pm 1$,

$$
\sum_{\left|z_{n}\right| \leqq r} \frac{1}{z_{n}^{\rho}}=\sum_{\left|z_{n}\right| \leqq r} n \varepsilon_{n} \varepsilon_{n}=S(r)
$$

thon $\quad \lim _{r \rightarrow \infty} \sup S(r)=\infty, \lim _{r \rightarrow \infty} \inf S(r)=b$.
Further $n(r)=o\left(r^{\rho}\right), p=\rho$, and $\sum 1 /\left|z_{n}\right|^{\rho+e}$ is convergent. Consider the entire function $f(z)=z^{k} \exp \left(c_{\rho} z^{0}+c_{\rho-1} z^{0-1}+\ldots \ldots\right) \prod_{1}^{\infty} E\left(\frac{z}{z_{n}}, p\right), \Re e\left(c_{\rho}\right) \geqq 0$. It is an entire function of order and genus equal to ρ. If we write

$$
c_{\rho}+\frac{1}{\rho} S(r)=A(r) e^{i \alpha(r)}
$$

then $\lim _{r \rightarrow \infty} \inf A(r)=\left|c_{\rho}+\frac{b}{\rho}\right| ; \lim _{r \rightarrow \infty} \sup A(r)=\infty$.
Further $\{\mathrm{cf}$. [1; pp. 27-29], [6; pp. 97-101]\}

$$
\log \left|f\left(r e^{i \phi}\right)\right|=\mathfrak{R e}\left\{r^{\rho} A(r) e^{(\alpha(r)+\rho \phi)}\right\}+o\left(r^{\rho}\right)
$$

and so if $a \pi=\left|C_{\rho}+b / \rho\right|$ we have

$$
\begin{align*}
& \log M(r)=(A(r)+o(1)) r^{\circ} \tag{10}\\
& T(r)=(A(r) / \pi+o(1)) r^{\rho}
\end{align*}
$$

$$
\lim _{r \rightarrow \infty} \sup T(r) / r^{\rho}=\infty, \lim _{r \rightarrow \infty} \inf T(r) / r^{\rho}=a, \delta(0)=\delta(\infty)=1
$$

If we compare $\log M(r)$ with a proximate order $r^{\rho^{(r)}}[6 ; \mathrm{p} .96 ; 8$, pp. 326-7 (case A)], then from (10) we have

$$
\lim _{r \rightarrow \infty} \sup \log M(r) / r^{\rho(r)}=1, \lim _{r \rightarrow \infty} \sup T(r) / r^{\rho(r)}=\frac{1}{\pi}
$$

$$
\lim _{r \rightarrow \infty} \inf \frac{T(r)}{r^{(r)}}=\lim _{r \rightarrow \infty} \inf \frac{\log M(r)}{r^{\rho(r)}}=0
$$

Further we note that by an appropriate choice of z_{n} and C_{ρ} we can construct an entire function $f(z)$ of mean type (with respect to comparison function r^{ρ}), with defect sum 2 , for which

$$
0<\lim _{r \rightarrow \infty} \inf \frac{T(r)}{r^{\rho}}<\limsup _{r \rightarrow \infty} \frac{T(r)}{r^{\rho}}<\infty .
$$

REFERENCES

[1] R.P. BOAS, Entire Functions, New York (1954).
[2] E. Hille, Zero point problems for linear differential equations of the second order, Matematisk Tidsskrift, B, (1927), 25-44.
[3] F. Nevani.InNA, Über eine Klasse meromorpher Funktionen, 7 Congr. Math. Scand, Oslo (1930), 81-83.
[4] R. Nevanlinna, Le Théorème de Picard-Borel et la théorie des fonctions meromorphes, Paris (1929).
[5] R. Nevanlinna, Eindeutige Analytische Funktionen, Berlin (1953).
[6] A. Pfluger, Zur Defectrelation ganzer Funktionen endlicher Ordnung. Comment. Math. Helv. 19 (1946), 91-104.
[7] S. M. ShaH, A note on meromorphic functions, Math. Student 12 (1944), 67-70.
[8] S. M. Shat, On proximate orders of integral functions, Bulletin Amer. Math. Soc. 52 (1942), 326-328.
[9] S. M. SHAH Exceptional values of entire and meromorphic functions II, Journal Indian Math. Soc. 20 (1956), 315-327.
[10] S. M. ShaH, Mermorphic functions of finite order, to appear in Proc. Amer. Math. Soc.
[11] H. Wittich, Neuere Untersuchngen uber eindeutige analytische Funktionen, Berlin, 1955.
[12] H. Wittich, Defekte Werte eindeutiger analytischer Funktionen, Archiv der Math. 9 (1958), 65-74.

Mathematics Research Center, Wisconsin University, Madison and Muslim University, Aligarh, India.
University of Kansas, Lawrence, Kansas and D. S. College, Aligarh, India.

[^0]: 4) A. Edrei and W. H. J. Fuchs "Deficient values and asymptotic values of a meromorphic function" in publication; see also, Notices Amer. Math. Soc. 6 (1958) pp. 496-7 abstract 548-71, 548-72 p. 606 abstract 549-26.
