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The study of affine connections in a manifold with a system of distribu-
tions has been made by several authors [8,9, 10, 11, 12].” A.G. Walker [8]
and T.J. Willmore [10] gave an affine connection in the large with respect
to which the distributions are parallel and which is symmetric if the system
is integrable. In the present paper we shall give a general method to obtain
all affine connections making the distributions parallel.

M. Obata [6] solved on a common principle the problem of finding all
affine connections on manifolds with almost complex, quaternion or Hermitian
structure which leave invariant the given structures. His results will be utilized
throughout our study of affine connections in Riemannian, almost complex,
almost Hermitian or quaternion almost product manifolds.

We shall be concerned only with manifolds of class C* satisfying the
second axiom of countability. In such a manifold there always exists a
Riemannian metric [7].

1. Almost product manifolds. By an almost product structure in a
differentiable manifold M we shall mean a system of distributions D, ......
D,, such that the tangent space at every point is the direct sum of their
elements of contact at the point. The system of distributions will then be
said to form a complete system [8]. A tangent vector z at a point z de-
composes to give u =z, + ...... + wy,, where u(p=1,...... , m) belongs to

the plane of D, at x. The projection tensors a, -..... ,a are given by au=
1 m P
u, at every point. They satisfy the identities

(1.1) a=a, aa=0 (p=o), > a’=]I,
P P PO 3

I being the identity transformation of the tangent space. Conversely, a set of
tensors a satisfying (1.1) determines an almost product structure.
p

We shall give a method to get all affine connections with respect to

1) Numbers in brackets refer to the bibliography at the end of the paper.

2) In the present paper = always stands for = unless otherwise stated.
p
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which every D, is parallel. Conditions for D, to be parallel with respect to
an affine connection L = (L)) are [8]
(1' 2) d; a‘?lk‘ = O’
p P
or equivalently

(1° 3) a;’lk a.li’ = 0’
P P

where @ =1 — a and a vertical line denotes the covariant differentiation
P

P
with respect to L. If D and D" are any two disjoint parallel distributions,
then their sum D + D’ is also parallel. Applying the condition (1.2) to D,

and D? = > D,, we have

a%p
aaly =0 and alal=0.
PP PP
Since a + a = I, we easily obtain
P p
(1. 4) a;]k = 0.3)
P

Thus (1.4) is a necessary and sufficient condition for every D, to be parallel
with respect to L.

We first choose any affine connection I' = (T"};) defined over M. Such a
connection always exists in the manifold. Then L is of the form

(1.5) L=T+T,
where T = (T) is a tensor which remains to be determined. If a comma
denotes covariant differentiation with respect to I, then we have the identity

(1.6) ay = ajy + aiTh — ay Th.
P 4 P 3
The conditions for D, to be parallel with respect to L are now given [8] by
1.7 a,adiTh = — abaly = — abya’.
PP P P p P
To get the general solution of (1.7) we prove the following
LEMMA 1.1. Let f (p=1,...... ,m) be linear transformations of a
P

vector space V satisfying the identities

(1.8) ]:2={, {{=0(P=l=v).
Then in order that a system of equations
(1.9) fTr=A4A

P p

with unknown T admit a solution, it is necessary and sufficient that we

3) The condition (1.4) is due to Dr. T. Nagano.
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have
(1.10) fA=A4, fA=0(po0).
PP p p o
The general solution of (1.9) is of the form
(1.11) T=> A+A—-3 fA,
P p

A being an arbitrary vector in V.

PROOF. If (1.9) has a solution, then fA = f*T =fT = A, fA=ffT
=0 (pg=o0). ConQerser if we have {':‘1‘); ﬁl,P{ﬁl ='2) (p =f=p0'),P ti'len P'Iz =
> A is a solution of (1.9). The general solution of (1.9) is T =Y A +
B, virhere B is any vector satisfying B = 0. If B is of the form B = ;1 —
> fA, then we have jP‘B = 0. prconversely fB =0, then, putting B in
placpe of A, we have B=B — Jp‘ B, which propves the lemma.

The system of equations (1.7) may be considered as an example of
(1.9) in which identities (1.8) and conditions (1.10)[8] are easily seen to be
satisfied. Therefore the general solution of (1.7) is now seen to be

[ — (3 1 i
(1. 12) Tjk = - Z Ay, k d;’ + Aj]c _— Z ay tl? qpk
PP P P
_ ‘ ‘ =
=— > appal + 2 abal AL — > a)al AL
PP o 9P p P
—_— 1
= — > a\ral + > a)al A,
P 4 PP
A = (A%) being an arbitrary tensor. Thus we have

THEOREM 1.1. Let T be an arbitrary but fixed affine connection in an
almost product manifold. Then in order that every D, be parallel with
respect to an affine connection L it is necessary and sufficient that L be of
the form

(1.13) Ly =T% — 2 abeaf + 3 ayaj A,
A being an arbitrary tensor.

For an affine connection I' we define an affine connection L(I') by
(1.14) L) =T% — > c:,',,,k ??'

Then by Theorem 1.1 every D), is parallel with respect to L(I"). If I" makes
every D, parallel, then we have a)ra} =0 and hence L(I')=T. Thus we
PP
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have

THEOREM 1.2. In an almost product manifold every D, is parallel
with respect to an affine connection L if and only if there exists an affine
connection T' such that L = L(T).

For an affine connection I' and a tensor A = (A}) we have by (1.6)
LT+ A) =Th + A — 2 (apx + a) Ag — ay Al) ab
p P ) 0
= P;lc - Z a,‘,,k a}" + A,tnc - Z (A:ﬂr - a}; Azk) a}’
(1.15) . P
= IJ}L(P) —+ A}L - Z d; tlz Agk
PP
= Li(T) + 2 apaf Al.
PP
Thus we have

COROLLARY 1. Let I be an affine connection with respect to which
every D, is parallel. Then, T' + T, T being a tensor field, is also an affine
connection making every D, parallel if and only if there exists a tensor field

A such that
(1.16) Th =2 ahal Ab.
PP
A. G.Walker [8] showed that in an almost product manifold the con-
nection L given by

(1.17) L=T+ 3 T(a,7T)

with symmetric affine connection I" has the property that it makes every D),
parallel and is symmetric if the system {D,} is integrable, where

(1.18) Tia,I) = — a};at — appal + abqal al.
We have
(1.19) Ti(a,T) = Ti(I — a,T)

P P

I | 1 v i i
= ajx — Apx a3 + akpal — apqakal
P e P P p P

p

and consequently
(1.20) T+ X TwaT)=Th =3 @hual + 3 aipal — 3 aj,abal
I3 PP PP PP p

= L) + > aipal — > abhoalal.
P PP b

The connection L =T + > T(a,T) is obtained as I(T' + A) with
P
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(1. 21) A;L = Z al’o,p af.
P
In fact we have by (1.15)
LT+ A) = L) + > a, a] A%
= LiT) + > dalal,a
cp T P P
= L) + 3_ ay ab af
PP P
=LiT) + > atpal — > ab,abal
P PP P
The torsion tensor ti = Liy of Walker’s connection L =T + > T(q,T)
P

is independent of the particular symmetric connection I' chosen [10]. If we
set
(1° 22) f}:k = ﬂflk](—‘;z-’ F)’
then we have
(1.23) ol = afyal) 9, al.
P PP p
For two vector fields « = («*) and v = (v') we denote by ¢ (u,v) the vector
P

field o}, u’ v*. Then we have
P
(1.24) 20(u, v) = ala u, a v].
P PP P

Consequently the vanishing of a set of tensors o is a necessary and sufhi-
P

cient condition for the system of distributions to be integrable.
The tensor o and the Nijenhuis tensor of @ are related in the following

p p
way. The Nijenhuis tensor N(a) of a tensor a = (aj) is given [4, 5] by
(1.25) Nifa) = 2(afy O\p) @y — a3 9y aky).

For vector fields « and v we denote by N(a)(u, v) the vector field Np(a)
u’ v*. Then we have [4, 5]

(1.26) N(a)(u,v) = — alau,v] — alu,a v] + a’lu, vl + [a u,a v].
Simple calculation shows
(1.27) 2a(u, v) = a N(a) (u, v)

o p P

and hence we have

(1. 28) th=3 o = ; > ab Ni(a).
[ p p
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For the case p = 1,2, we have [5] N(a) = N(a) and hence
1 2

(1.29) = -1~ (a} Nia) + ab Nia)

- % Nida)

2. Riemannian almost product manifolds. A Riemannian metric ¢ on
an almost product manifold is said to be an almost product metric if the
distributions D, are orthogonal to each other with respect to the metric g, i.
e. if, at every point =z, 9;;u' v’ = 0 for all vectors # in D, and v in D,(p =
o). This condition for orthogonality is equivalent to

2.1 Ipeala) =0 (pFo).
p o

An almost product manifold with an almost product metric is said to be a
Riemannian almost product manifold.
Let 4 be an arbitrary Riemannian metric in an almost product manifold.

We define a tensor ¢ by
(2.2) =2 b al al.

If we denote by («, v), and (u, v), the inner products of the tangent space at
every point defined by ¢ and A respectively, then the definition (2.2) can be
written as

(2.3) () = (wi, v ) + ... + (tms Umhns

where u = u, + ...... + u, with v, € D, and v =v, + ...... + v, with v, €
D,. From (2. 2) or (2. 3) one sees at once that ¢ is an almost product metric.
The metric ¢ defined by (2.2) from % will be denoted by ¢(h). If h is an
almost product metric, then g(2) = h. Thus we have

THEOREM 2.1. In an almost product manifold there always exists an
almost product metric. In an almost product manifold a metric 9 is an
almost product metric if and only if there exists a metric h such that g =

9(h).
Let ¢ be an almost product metric. Then we have
(2.4) (u,v), = (uy,0,)y + ... + Uy V)
Therefore we have
(u, ‘,f v), = (u, v,), = (up, v,), = (Vpy ), = (v, 105), = (v, c’z)u)_,,.
This means that for the tensor cpz“- = ip e:}’ we have f” = z:ﬂ. Let T be a

metric connection with respect to ¢,i.e. 9;; = 0. Then an affine connection
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I + Q is metric if and only if

(2.5) Qj + 9" 950 Of = 0.

We shall now show that the connection L(I") of (1.14) is also a metric con-
nection with respect to ¢. In fact we have

D apral + 9" 950 2 apral = D apral + D ajpra
PP PP PP P P

=D @l + 2 @k — 2 apidj
PP p p P

= 8},15

= 0.

For any affine connection T, the affine connection defined by
P 0 1
(2.6) AT = Ty + Y 9" Gsax

is a metric connection with respect to ¢[2,6]. If T' is a metric connection with
respect to g, then AT' =T. Consequently, for any affine connection I, the
affine connection L(AT") is a metric connection with respect to g which makes
every D, parallel. If T' is a metric connection making every D, parallel, then
L(AT)=T. Thus we have

THEOREM 2.2. In a Riemannian almost product manifold, in order
that an affine connection L be a metric connection with respect to § making
every D, parallel it is necessary and sufficient that there exists an affine con-
nection T such that L = L(AT).

From (1.15) and (2.6) we have
@7 LMAD =Th = T aluaj + - X aba) 0 guns.
If T is a metric connection making every D, parallel, then we have [6]
2.8 AT + A%) = Th + A, Al
= T+ - (Al — 0° 0.0 A3),

and hence from (1.15)
2.9 LT+ A3) =T + 5 aj ai(A% — 9 9o, AD).
Thus we have

THEOREM 2.3. Let T be a metric connection making every D, parallel
in a Riemannian almost product manifold. Then L =T + B is also a
metric connection making every D, parallel if and only if there exists
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a tensor field A such that
; 1 @
(2.10) Bj, = o 2 apaj (Al — 97 9aa A%
P P

If T is chosen to be the Christoffel connection given by g and p =1, 2,
then I(T') is identical with the connection given by A. G. walker [9] in a
Riemannian almost product manifold for p =1, 2.

3. Almost complex almost product manifolds. An almost product
manifold with an almost complex structure ¢ = (¢)) is said to be an almost
complex almost product manifold if we have ad = P a.

p P

Let T' be a ¢-connection, i.e., $j; = 0, in an almost complex manifold.
Then an affine connection L =T+ A is a ¢-connection if and only if
®, A = 0 [6], where

(3.1) | @mﬁk;wwamm

If T is ¢-connection in an almost complex almost product manifold, then
the connection L(T") is also a ¢-connection. In fact we have

Z a;,’c aj + én d; Z apx ap = Z apra; + by Z alxaj
P p PP PP p ®
= Z aﬁ».k a; — 2 : a;,ka}'
[ P P P
—3 O'

For any affine connection T in an almost complex manifold, the affine
connection ®T' defined by

(3.2) ST =T — ; & by

is a ¢-connection [6]. If T" is a ¢-connection, ®T'=T. It follows that, for
any affine connection T' in an almost complex almost product manifold,
the affine connection IL(®T) is a ¢-connection making every D, parallel. If
T" is a ¢-connection making every D, parallel, then L(®T) =T. Therefore
we have proved

THEOREM 3.1. In an almost complex almost product manifold, an
affine connection L is a $-connection making every D, parallel if and
only if there exists an affine connection T' such that L = L(®T)).

We have from (1.15) and (3. 2)
(3.3) M@m=h—24wp~;z@4wwb
P 3 PP

If T' is a ¢-connection making every D, parallel, then we have [6]
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(3.4) DT + Aj) = Th + % (A — S &) A
and therefore from (1.15)
(3.5 L@+ A) =Th + - (T ahaf A — T aba] 9165 43).

Thus we have

THEOREM 3. 2. Let T' be a $-connection making every D, parallel in an
almost complex almost product manifold. Then L =T + B is also a ¢-
connection making every D, parallel if and only if there exists a tensor

field A such that
(3.6) b = — <Z a,, aj A% — > dyalPh b, Zk)
P p

Theorem 3.2 may also be proved in the following way. The conditions
that B must satisfy for L =T + B to be a ¢-connection making every D,
parallel are [6]

®,B}, = % (Bl + 6.4 BL) = 0.

and from (1.7)

al al Bt = 0.
P P

Theorem 3.2 can be derived from the following

LEMMA 3.1. Let f, (r=1,...... ,t) de linear transformations of a
vector space V satisfying the identities
(3.7 fr=Ffo fifs =Ll
Then the general solution of a system of equations
(3.8) frB=
is of the form
3.9 B=U—-f)...... I — £HA,

A being an arbitrary vector in V.

PROOF. If B is a solution of f, B =0, then (I — f,) B= B and hence
=U—=£)...... (I —f)B. From f?=f,. and f.f, = f.f, we have f,(I —f.)
=0 and (I — YU~ f,) = T— £)T— f,). 1t follows that £,(I— f.) ... I— f)

A = 0, which proves the lemma.
If we set f,Bji = apa iBh (p=1,...... ,m) and fu.1 Bj, = ®, B}, then

identities f7 = f, and f, f = f, f» are easily seen and we have T=F) -
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I~ f)=1-2%Ff,

4. Almost Hermitian almost product manifolds. An almost complex
almost product manifold with an almost Hermitian metric ¢ with respect to
¢ is said to be an almost Hermitian almost product manifold if the metric

¢ is an almost product metric.
Let 2 be an arbitrary Riemannian metric in an almost complex almost

product manifold. Then the tensor ®,2 given by
(4- 1) (I)JL,,- = —;* (hij + 957 d’? Ras)

is an almost Hermitian metric with respect to ¢ [1,3,6]. If A is an almost
Hermitian metric with respect to ¢, then ®,-A = A From (2.2) we have for

9(D.h)
(4.2) 9 Dh) = —;— 3 (hsa + $ #1har) al af.

1f we denote by (u,v), and (u, v), the inner products defined by % and
9(®,h) respectively, then (4.2) is written as

(4.3) (x, v), = _;_«u,, o+ oor A+ s To

+ (bu,, dv,), + ...... +(Puy, v,
Since a® = da, we see at once from (4.2) or (4. 3) that ¢(®,h) is an
p 3

almost product metric and almost Hermitian with respect to ¢. If A is an
almost product metric and almost Hermitian with respect to ¢, then ¢(®,h)
= h. Thus we have

THEOREM 4.1. In an almost complex almost product manifold there
always exists an almost product metric. In an almost complex almost
product manifold a metric § is an almost Hermitian almost product metric
if and only if there exists a metric h such tht g = g(®,h).

In an almost Hermitian manifold, for any affine connection T' the con-
nection ®AT' is a metric $-connection [6], where

(4.4)  @AT), = A®TY, =T} + % (0 Grome — B B1. — ™bra),

b =% 0.1, Y =g¥ ).
It follows from 8§82 and 3 that, in an almost Hermitian almost product
manifold, for any affine connection I" the connection L(®AT) is a metric ¢-
connection making every D, parallel. If I" is a metric ¢-connection making
every D, parallel, then L(®AT) = L(PT") = L(T") =T. Thus we have
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THEOREM 4. 2. In an almost Hermitian almost product manifold an
affine connection L is a metric ¢-connection making every D, parallel, if
and only if there exists an affine connection T such that L = L(®AT).

From (4.4) and (1.15) we have
(4.5 LW®AT) =Th — 5 aheaf + - 5 ataXo" gun,e — $ii— b0

Since we have [6]
(4.6) AT+ A) = AT + A A,
P + A) = oI' + ®,A,

and hence
BAT + A) = BAT + ®,AA,
where A Al = % (A% — g% 9,4 A,
Ah = - (Al — S8 AL),
and

cDIAlA}k = Alq)lA.iﬂc = *i—(A;L - ¢§L ¢”; W — g“’ Gaj A + ¢ib ¢aj A,
we get

(4.7) (DA + A)) = LiW(@AT) + % S dbal
PP

X ( Zlyh - ¢1l) ; ;fl‘ - gﬂb garl /blli + ¢pb ¢all a")'

Thus we have

THEOREM 4.3. Let T' be a metric ¢-connection making every D, paral-
lel in an almost Hermitian almost product manifold. Then L =T + B is
also a metric $-connection making every D, parallel if and only if there
exists a tensor field A such that

(4.8) Bl = % S 4@ (A — $2) Al — 97 Gug Abut+ $"b, AL,
PP

5. Quaternion almost product manifolds. An almost product mani-
fold with a quaternion structure (¢, ¥) [6] is called a quaternion almost
product manifold if the manifold is an almost complex almost product
manifold with respect to both ¢ and .

In a quaternion manifold, for any affine connection I' the connection
®YT is a (¢, ¥)-connection [6], where
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(.1) YT}, = T, — % (6 $L0 + ViV + Kl ).

Therefore from § 3 in a quaternion almost product manifold the connection
L(®YT) for any affine connection I' is a (¢, ¥)-connection with respect to
which every D, is parallel. If T' is a (¢, ¥)-connection making every D,
parallel, then L(®¥T) = I'. Thus we have

THEOREM 5.1. In a quaternion almost product manifold an affine
connection L is a ($,¥)-connection making every D, parallel, if and only
if there exists an affine connection T' such that L = L(®YT).

From (5.1) and (1.15) we have
(5.2) Ly@YT)=T% — 3 ara) — % > ?2 g.‘%(qsz tx + Vi + kb ko).
PP

Since we have [6]
(5.3) YT + A) = VT + &, V7, A,

where ®, ¥ A% = % (AR — dL ) A — Vi) A — kb &) Al), we get from

(1.15)
(5. 4) Li(@U(T + A)) = Li(®YT) + 7}‘— S 4 al
o p

X (A% — L ) Af — Yy Ane — &5 kg Abie).
Thus we have

THEOREM 5.2. Let T' be a (¢, ¥)-connection making every D, parallel
in a quaternion almost product manifold. Then L =T + B is also ($,¥)-
connection making every D, parallel if and only if there exists a tensor

field A such that
(5.5) Bl = % S ab al( A% — $E AL — YL A% — il AL).
[

An almost Hermitian manifold with quaternion structure [6]is by defini-
tion a quaternion manifold with a Riemannian metric which is almost Her-
mitian with respect to both ¢ and Y. By an almost Hermitian almost
product manifold with quaternion structure we mean a quaternion almost
product manifold with an almost product metric which is almost Hermitian
with respect to both ¢ and Y.

In a quaternion manifold for an arbitrary Riemannian metric 2 the
tensor ¢ = ®, ¥,k is an almost Hermitian metric with respect to both ¢ and

Y [6], where
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(5.6) Wihiy = by + V8 o),
and hence
‘DA‘I’JHJ‘ = ‘I'4q)4hu = il;\ (hn' + 4’}‘ 4”; hey + ‘I"Z "l’} hab + ¢ K?; hab)'

It follows from §4 that in a quaternion almost product manifold the almost
product metric ¢(®,¥,4) for any Riemannian metric £ is almost Hermitian
with respect to both ¢ and Y. If A is an almost product metric and almost
Hermitian with respect to both ¢ and ¥ in a quaternion almost product
manifold, then ¢(®,¥,2) = A. Thus we have

THEOREM 5. 3. In a quaternion almost product manifold there always
exists an almost product metric which is almost Hermitian with respect to
both ¢ and Y. In a quaternion almost product manifold a metric q is an
almost product metric which is almost Hermitian with respect to both ¢
and ¥, if and only if there exists a metric h such that g = g(®,V,h).

In an almost Hermitian manifold with quaternion structure the connec-
tion ®PAT defined for any affine connection T' is a metric (¢, ¥)-connection
[6]. If T is a metric (¢, ¥)-connection, then ®VAT =T. Therefore, in an
almost Hermitian almost product manifold with quaternion structure, the
connection L(®TAT') defined for any affine connection T' is a metric (¢, ¥)-
connection making every D, parallel. If T' is a metric (¢, ¥)-connection
making every D, parallel, then L(®VAT) =T. Thus we have

THEOREM 5.4. In an almost Hermitian almost product manifold with
quaternion structure, in order that an affine connection L be a metric (¢,
Y)-connection making every D, parallel, it is necessary and sufficient that
there exists an affine connection T such that L = L(®VAT).

From (1.15), (2.6) and (5.3) we have
i 1 i a a a Y
(5- 7) Lgk(q)q,AP) = ij((b\I’P) + 78 - Z %z) ?j(gp Jaask — o’ ¢a Gavsr
- ‘!,‘041 ’\P‘z Gavse — xap ’CZ gab’lc)~

From (2.8) and (5.3) we have
(5.8) SUAMT + A) = GUAT +d,F,A,A,

where
¢1\I,1A1A.ZW = 8 (A';L - ¢'fa ¢’; AT:A: - "I"«Zu ; Z’k - K’; IC’} rfk

- 9“ i A — o ¢ja e ‘I"ib‘l"jaAgk — & 50 Ab).
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Consequently we get from (1.15)
W PVAT + A)) = Liy(dYAT)
(5.9) + *é*‘ Z 6:; %3(145% — PL P, A — Yhvg A — bk AT,
- gpbgau e — ¢pb¢aa e — ‘l"m‘[’qu e — /Cpbfcqugk)-
Thus we have
THEOREM 5.5 Let I' be a metric (p, V)-connection making every D,
parallel in an almost Hermitian almost product manifold with quaternion

structure. Then L =T + B is also a meiric (¢, V)-connection making every
D, parallel if and only if there exists a tensor field A such that

(5.10) Bl = —;- ST al al(Af — B b Al — P Al — k8 il Al
[

— 9790 A% — 7P Al — YVl — &7k g Alk).

6. Manifolds with a system of disjoint distributions. So far we
have considered only complete systems of distributions. In this section
we shall deal with a manifold having a system of disjoint distributions and
give all affine connections making every distribution parallel. If such a
manifold has some additional structures, then we shall discuss affine connec-
tions making the structures covariant constant.

Suppose that disjoint distributions D;, ..., D,, are given over a differentiable
manifold M and we wish to find all affine connections L which make them

parallel. Let us set D= ) D, We may choose a distribution D so that D

and D are disjoint and complementary. D could, for example, be the ortho-
gonal complement of D with respect to a Riemannian metric which is known

to exist. The system {Dp,l_)} is complete and therefore determines tensors a,
P

a(p=1,.... ,m) over M.
p

As in §1, we first choose an affine connection I' = (I'ix) over M and
write the affine connection L in the from
(6.1) L=T+T.
The conditions for D, to be parallel with respect to L are (1.7). Lemma
1.1 applies also to the present case and we get the following general solu-
tion for affine connections which make the distributions D, ...... , D, parallel :

(6.2) Ly =T — 3 apua) + Al — 3 aaj Ap,
PP PP
A = (Al) being an arbitrary tensor. Thus we have

THEOREM 6.1. Let I be an arbitrary but fixed affine connection in a
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manifold with a system of disjoint distributions D,,..., D,. Then in order that
every D, be parallel with respect to an affine connection L, it is necessary
and sufficient that L be of the form
(6. 3) L}k = ng e Z d;,k a’}' -+ A}x; - Z Zf, a}’ Aé"k,
PP PP

A being an arbitrary tensor.

We associate with an affine connection I" the affine connection L(T') in
the same way as in §1:
(6.4) W) =T% — Z af,,k aj.

PP

Then we have

THEOREM 6. 2. In a manifold with a system of disjoint distributions
D,, every D, is parallel with respect to an affine connection L if and only
if there exists an affine connection I' such that L = L(T).

Corresponding to (1.15) we have
(6.5) LT + A) = L) + A% — 3 aba} A
PP

Therefore we get

COROLLARY 1. Let T be an affine connection with respect to which
every D, is parallel. Then, T' + T, T being a tensor field, is also an affine
connection making every D, parallel if and only if there exists a tensor
field A such that

(6. 6) Tfnc = A‘i}k - Z ;ZZ, a3 é’k.
PP

We next consider a manifold with a system of disjoint distributions {D,}
and with an almost complex structure ¢ such that we have, when the system

{D,} is completed by D, a$ = ¢pa. Then the arguments in §3 apply also
3 3
to such a manifold and we have

THEOREM 6.3. In a manifold as above, an affine connection L is a
b-connection making every D, parallel if and only if there exists an affine
connection T' such that L = L(®T), where in the present case we have

(6.7) LW@D) =Th— % abeat— L ¢l + L T @t sn i

Corresponding to (3.5) we have
(6.8) Lu(@T + A)) = Li(@T) + % (Al — $L % A% — 3 @b af A%
PP
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+ Z a;a§¢g ;Abk
PP
Therefore we obtain

THEOREM 6.4. Let a manifold be as in Theorem 6.3 and T' be a ¢-
connection in the manifold making every D, parallel. Then L =T + B is
also a P-connection making every D, parallel if and only if there exists a
tensor field A such that

(6.9) Bsk=%<A5k o) Al — 3 abal Al + 3 ahaf 1 9] Al
PP

We now consider a manifold with a system of disjoint distributions
{D,} and with a quaternion structure (¢, V) such that we have, when the

system {D,} is completed by D, ap=¢a and a¥ =V a. Then the argu-
P p P P

ments in §5 apply also to such a manifold and we have

THEOREM 6.5. In a manifold as above, an affine connection L is a
(b, V)-connection making every D, parallel if and only if there exists an
affine connection T' such that L = L(®YT), where in the present case we
have

(6.10) LiW(®YD)=T% — > apra’ — %(qbé &t + Yavie + Kiix)
P p

+ L et + V¥ s
PP
Corresponding to (5.4) we have

(6.11) L@V + A)) = Li(@PT) + _jl—<A — GlPAL — Yl

— KAL) — }1 > @b al( Al — BIpLAL — VIVLAL — kAL,
p P
Thus we have

THEOREM 6. 6. Let a manifold be as in Theorem 6.5 and T be a (¢, ¥)-
connection in the manifold making every D, parallel. Then L =T + B is
also a (P, V¥)-connection making every D, parallel if and only if there
exists a tensor field A such that

(6.12) Bh = i (AL — PBLAL — PALAL — KAL)

- Z I'IaJ ¢p¢ Ay — Y 2 e — IC?;ICZA?k)-
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