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1. In the present note fit), — oo < t < -f °o5 will denote a functions

with period 1 and (L) fit) dt = 0. Then we put, for k = 1, 2, ,

which is known as the Riemann sum of the function fit).
B. Jessen has proved that if nk \ nk+i9 then for almost all t,

(1.1) limFn Λ(ί,/) = 0.
fc-?oo

Since then the problem whether (1.1) holds or not for a given increasing
sequence \nk] has been discussed. But it is not yet answered for the ques-
tion "Does there exist a function fit) such that fit) € L2(0,1) and Fk(t,f)
does not converge to 0 almost everywhere in t ?"

On the other hand various sufficient conditions of (1. 1) without as-
suming any arithmetical property of \nk\ have been given ([3], [4], [5] and
[6]) and from them it follows that, for any £ > 0,

(1. 2) Σ I ( 0 ^ ^ 1, \Fnk(i,f)\ > €)\ < + oo.

Following P. L. Hsu and H. Robbins [1] if (1. 2) holds, then we say
that Fnk(t9f) converges to 0 "completely." However, Fnjc(t,f) converges to
0 completely if and only if Fnk(t + hk,f) converges to 0 almost everywhere
in t for any sequence of real numbers \hk\. The necessity is obvious. To
prove the sufficiency consider \Fnk(t + tk(w), / )} where \tk(w)} is a sequence
of independent random variables such that Prob. \tk(w) x\ = x for 0 S
x 1. If Fnjc(t + tk{w),f) converges to 0 almost everywhere in t for any-
fixed w9 then Fnk{t + tk(τv),f) converges to 0 with pro' ability one for sui-
tably fixed t. From the lemma of Borel-Cantelli, (1. 2) follows.

Hence if f(t) € R(0,1), then Fk(t9f) converges to 0 completely. Further-
by the above mentioned remark, there exist functions f(t) such that f(t) €
i?(0,1) and Fk(t,f) converges to 0 completely. Therefore it seems to be
natural that we consider the complete convergence of the Riemann sum.

2. The following theorem shows that an analogous theorem to that of
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B. Jessen does not hold with respect to the complete convergence.

THEOREM. Let {njc} be any increasing sequence of positive integers.

Then there exists a function jXt) such that f{t) € L p ( 0 , 1 ) , l ^ ί < + °°,

and Fnk(t,f) does not converge to 0 completely.

PROOF. Let us put, for m = 1, 2, ,

(2.1) am = \2nΓι log~2 (m + 1)}1/2

and

(2. 2) Nm = Π »».

CO

Then the series ]>Z ̂ m cos 2τrNmt converges to a function /^ί) of the class

Lp(0,1), 1 S p < + oo (c. f. [7]) and we have
CO

Fnk(t,f) = Σ. a™ C O S

Hence for the proof of the theorem it is sufficient to prove that, for k > kθ9

(2.3) K O S ί S l

where

(2,3')

Next let us expand all real numbers t9 0 S t S 1, as follows :

(2.4) * * = Σ ^(W1 (9>&) = 0, 1, , Λ* ~ 1),

and put

(2. 4') βm(ί) = φm+Ί(t)n^+i

and
oo

(2. 4") &(*) = X: αm cos 2τr0m(ί)

Then we have

(2. 5) !#*(*) - Sk(t)\ < Σ α f f l I cos 2τriVmί - cos 2τrθm(t)\
m=fc

oo co oo

ΞS 2TΓ Σ αOT ΛΓm 2 »,. ΛΓΓ1 < 2τr Σ. am{m + l )- α S Λa*,

where A is a constant independent of k. Hence we have, by (2. 5),
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(2. 6) Sk(t) dt
Jo

and

(2. 6') I fs&t) dt- ( fsk(t)dt)2 - f Rl(t)dt

SS Aak f \Sk(t) + Rk(t)\ dt + A*ά

S A<2fc( 2 |i?fc(ί)| dt + AaΛ + A2al

α l \ l / 2

Rl(t)dt) + 2A2al<Bak
>

where B is a constant independent of k.
On the other hand Sk(t) — I Sk(t) dt is the sum of independent functions

•Ό

αm!cos2τri9w(ί) — Γ cos2τrθm(t)dt] and by (2.1) (2.3') and (2.6'), it is seen

that
(2.7) fsi(t)dt -(fsk(t)dt)2-

Jo vJo '
-^ Bak.

Hence we apply the lemma of A. N. Kolmogorov [2] to

and obtain, for k > k0,

- J1 sk(t) dt

(2.8) (θ ^ t rg 1, Sk(t) - fsk(t)dt > l) I > k'\

By (2. 5), (2. 6) and (2. 8) we can obtain (2. 3).
We can not see whether there exists a bounded function or not whose

Riemann sum does not converge to 0 completely.
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