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1. Introduction. Two similar tut different families of methods for

evaluation of series stem from work of Riemann on trigonometric series.

Let p be a positive integer, and let uQ .+ uγ -f be a series of real or

complex terms with partial sums s0, sl9 The series is said to te evaluable

R(p) to L if the series in

converges over some interval 0 < t < t0 and o ̂ p, t)-> L as t —> 0. Here and

elsewhere, (sin kt)/kt is interpreted to have the value 1 when k = 0. The

series is said to be evaluable Rp to L if the series in

(1.2) ^ A O - ^

converges over some interval 0 < t < t0 and cr2(/>, t) —> L as t —> 0. The
constant cp in (1. 2) is defined so that

/i oi\ i . ̂  / sin kt \P

(i.2i) fe^Siir) = 1

and hence

(1.22) c, Γ(»**-)' Jχ=l.

In particular, cι = 2/ir. It is well known that R(p) and i?p are not regular

when p = 1 but are regular when p i> 2. The method i?(l) is sometimes

called the Lebesgue method.

The methods R(p) and Rp have been the subject of many investigations

which show that there are respects in which they have identical properties.

It has often happened that one author has proved that one of R(p) and Rp

has a particular property, and then the same or another author has proved

that the other method has the same property. It seems that similarities
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between R(p) and Rp have been emphasized much more than differences

between R(p) and Rp. It has, however, been shown respectively by Kuttner

[24] Marcinkiewicz [28], and Kuttner [24] that if p is 1 or 2 or 3, then neiiher

of R(p) and Rp includes the other. See also Hardy and Rogosinski [14], [15].

In order to exhibit differences as well as similarities between R(p) and

Rp, this paper investigates the behaviors of the R(p) and Rp transforms of

series ^un satisfying the Tauberian condition

(1. 3) lim sup ] nun \ S M < °o.

Section 2 gives optimal relations between the R(p) transforms and partial

sums of series satisfying (1.3). Section 3 gives lemmas on Rv transforms,

and section 4 gives optimal relations between the Rp transforms and partial

sums of series satisfying (1. 3). Section 5 gives optimal relations between

the R(p) and Rp transforms of series satisfying (1. 3). In section 6 we sup-

pose that Tp is R(p) or Rp and study various questions concerning TpCr,

TpCrl and relations between Tp and Cr where Cr is the Cesaro transforma-

tion of order r.

In connection with section 2, we observe that Zygmund [57] has obtained

an optimal relation between the partial sums and i?(2) transforms of series

having bounded partial sums. While he formulated his result in a different

way in terms of real series, his work shows that if z is a real (or complex)

number then the inequality
2 r-

(1. 4) lim sup I σ1(2, i) — z | ^ — lim sup | sn — z \

holds whenever Σun is a real (or complex) series having bounded partial

sums. Moreover the numerical constant in (1. 4) is the least for which (1.4)

is always valid.

We now make some remarks showing one way in which R(l) and Ri can

be originated in mathematical analysis and brought into contact with pro-

blems involving trigonometric series. Suppose that the series 2wn is such

that, as a standard notation

(1.5) Σ(cos kt)uk~f{t)

indicates, the series in (1. 5) is the Fourier series of a function fit) which

is integrable (Lebesgue) over 0 5Ξ t ^ 27r. Then, since Fourier series can be

integrated termwise, integration gives

(1. 51) σ,(l, t) = Σ, ~Γr «* = T
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It is now easy to formulate various conditions under which %un is evaluable

R(l) to s. Suppose next that the series Ί,un converges to s and is such that

the series in
CO

(1.6) Σ (cos kt)(sk — s) ~ g(t)

is the Fourier series of a function g(t) integrable over (0, 2π). Then integra-

tion gives

(1.61) ί Σ S J ] ~ ( ί * - ί ) < :

as t —» 0. Since

(1.62) 1LJ2^^= 1 + o(\\

we can multiply (1. 61) by 2/π and conclude that

• 6.3; °A1> £) == 2 ^ — I — 5λ = 5 + o(l)

and hence that Έ,un is evaluable Rt to s. It must be recognized, however

that the full scopes of the classes of series evaluable R(l) and Ri cannot be

discovered by studying series Έ,un for which the series in (1. 5) and (1. 6) are

Fourier series of integrable functions. In fact the condition lim un = 0 is

not necessary for evaluability R{\) and Rx, The simplest example illustrating

this fact is the following. The elementary formulas

(Λ 7\ t Y^ / Λ\k-\ s ^ n ^ 7r — 2^ ^ sin 2kt

which are valid when 0 < t < TΓ, show that for series the 1 — 1 + 1 — 1 +

for which un = (— I)71, s2n — 1? and s2n+i = 0 we have σx(\9t) = 1/2 and

σ2(l9t) = 1/2 + t/π; hence this classic divergent series is evaluable R(l) and

Ri to the classic value 1/2.

2. R(p) transforms and partial sums. Let n — nice) and t = t(a) be

positive functions, defined for CL > 0, such that n(αθ is an integer for each

a and n(ά) —> oo and £(#) —> 0 as <̂  -> oo. It is the purpose of this section

to determine the least constant A, which depends upon p and the functions

n(cί) and t(cί) and which is either finite or + oo, such that

(2.1) lim sup \oΊ(p,t) — sn\ ^ A lim sup \nun\

whenever Έ<un is a series for which lim sup \nun\ < °o. In particular, we

characterize the pairs of functions n{cί) and t(ά) for which A is finite and

those for which A attains its minimum value Ao.
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When \nun\ < M9 the series in (1.1) which defines the R(ρ) transform
is necessarily convergent because (1 1) can be put in the form

and the last series is dominated for each t > 0 by the convergent series

Setting xk = kuk,

(2.2)

and

(2.21) alt) = λ ( sin** Y, k>n
k V kt >

we find from (1. 1) that
oo

the series being convergent when xn is bounded. Use of lemmas set forth
by Agnew [2, section 7] shows that the least constant A for which (2. 1)
holds is the constant A defined by

(2. 3) A = lim sup Fx(ά)

where

(2.31) F1(a) = Σ, U*(')l

and hence

sin kt
(2.32)

kt

It turns out that the behavior as a -> CXD of FI(Λ) depends only upon
the product ^(α) defined by

(2. 33) tf(αθ = n(ct)t(a).

Considering first the case in which

(2. 34) 0 < q1 = lim inf q(ά) <Ξ lim sup ^(α) = ^ < °°

we put (2. 32) in the form
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(2. 35)
kt

( sin kt Y ]
V fe / J +

+ Σ
Ίct>q

smkt
t.

For each a we may set kt = xk and t — xk+1 — xk to see that the right mem-
ber of (2. 35) is much like a Riemann sum. It is complicated by the fact
that the function for which the Riemann sum is formed depends upon the
variable q and by the fact that the points xk = kt are not confined to a
finite interval, but it is nevertheless not difficult to show that if (2. 34) holds,
then, as ύ(-> °o?

(2. 4) Fx{ά) = oil) + G,(q)
where

(2. 41) d ^ ) =
x sm xx

The last terms in (2. 35) and (2. 41) and the infinite interval
cause no trouble because

dx.

of integration

(2. 42)

(2.43)

Σ —
*£>«, kt

sin&ί
kt

oo 2 sin x
X

~t^ dx,...
dx f

and, for each £ > 0, we can choose a constant #3 such that q3 > #2 and the
last members of (2. 42) and (2. 43) are less than 8 when 0 < t < 1 and hence
when α: is sufficiently great.

The function G^q) in (2 41) is positive when q > 0 and attains its
absolute minimum when and only when q is the unique positive number q0

for which

-(i(2. 44)

Moreover G^q) —> °o as q —> 0, G^q) —> °o as ^ —> oo, G^q) is decreasing over
0 < ^ < q09 and G^^) is increasing over qQ < q < °°. These facts and (2. 1)
imply that if n(cί) and t(ά) are such that (2. 34) holds, then the least constant
A for which (2. 1) is valid is finite and is the maximum of G^q^ and
Gι(q2)- This maximum is a minimum when and only when qτ = q > = q0. In
case lim inf q(cί) — 0, consideration of the last term in (2. 35) shows that lira
sup F^ά) = oo and hence that -f °o is the least constant A for which (2. 1)
is valid. In case lim sup q(cί) — oo} consideration of the first term in the right
member of (2. 35) produces the same result. Therefore the least constant A
for which (2.1) is valid is finite if and only if the functions n(ά) and t(a)
are such that
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(2. 45) 0 < lim inf n(ά)t(ά) <S lim sup n(ά)ί(ά) < oo.
oc-^oo a-"?00

A consequence of the results which we have obtained is set forth in

the following theorem.

THEOREM 2 5. The constant Gτ(q0) determined by (2. 41) and (2. 44) is

the least constant with the following property. There exist functions n(ά)

and t(ά) such that n(ά) -> oo, t(ά) -> 0, and

(2.51) lim sup \oΊ(p,t) — sn\ f£ G1(q0) lira sup IrcwJ

whenever Σun is a series for which lim sup \nun\ < oo. Moreover, the func-

tions n(cέ) and t(ά) are such that (2. 51) is valid if and only if

(2. 52) lim n(ά)t(ά) = q0.

Our results also show that for each q > 0 the inequalities

(2. 61) lim sup |σ"τ(/>, q/n) ~-sn\ Ŝ Gτ(q) lim sup | nun

and

(2. 62) lim sup | o~τ(p, t) — s{qit] \ ^ Gτ(q) lim sup | nun \

are optimal inequalities, and that the right members are minimal when

q = q0. It is not difficult to modify the above work to obtain the following

theorem.

THEOREM 2. 7. In order that functions n(<x) and t(ά) be such that

(2. 71) lim \σx(p, t) — sn\ = 0

whenever Ί,un is a series for which lim nun = 0, it is necessary and sufficient

that

(2. 72) 0 < lim inf n(a)t(ά) <; lim sup n(ά)t(a) < oo.

It is a corollary of Theorem 2. 7 that if lim nun = 0, then Xun is evalu-

able R(p) to s if and only if it converges to s. This corollary is a Tauberian

theorem of classical type, and numerous theorems of this type are given in

papers cited in the bibliography.

The appropriateness of the Tauberian condition lim sup | nun \ < °° which

we have employed is shown by the following facts. If φ(n) is a nonnegative

function of n for which lim n/φ(n) = oo? then + °° is the least constant A*

such that

(2. 8) lim sup | σx(ρ91) — sn\ ^ A*lim sup \Φ{n)un\

whenever Έ,un is a series for which lim sup \Φ(n)un\ < °°. To prove this, we

follow the procedure used above to find that A* = lim sup F*(a) where
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(2.81) Fΐ(a)= Σ 4v,\t

1

For each positive constant M there is an index k(M) such that k/Φ(k) > M
when & > ŷ (M). It therefore follows from (2. 81) that, as a ->oo? /Γ*(Λ) ^ o(l)
+ MF1(ά) where F/tf) is defined by (2. 35). Since limsup Fχ(tf) > 0, it fol-
lows that A* — oo. If on the other hand lim n/φ(n) = 0, then there exist
functions n(ά) and £(<*) such that (2.8) holds with A* = 0.

3. Rp transforms. For use later, we need a formula which gives the
Rp transform σ2(p, t) defined by (1. 2) in terms of the terms un instead of
the partial sums sn of a given series Σun for which lim sup\nun\ < oo. While
we could use the formula of the first lemma of this section, it is much more
convenient to use the formula of the second lemma which is obtained with
the aid of the first lemma. If Σun is a series for which lim sup | nun \ < oo,
then Σ|wrJ2 < °°. Since the converse is not true, the following lemma has
more generality than we need.

LEMMA 3. 1. If Σun is a series for which Ί,\un\
2 < oo then the series in

(3.11) σ2\P,t) = Cpt2^\ ΓΓ~ ) Sk

converges when 0 < t < 2τr and

(3.12) σlp, t) = cptjz[i (^jr)' ] u*

T o prove this lemma, let Σun be a series for which Σ | w n | 2 = M2 < °°.
In case the series in

/ Q 1 Q ^ ^ ^ / sin jt \P _ ~ ~ / sin jt \P

w J-o; JLλ^y j t J u* — 2-,λ*\ j t ) u*

are convergent and the equality holds, the conclusion of the lemma follows
because the series in

(3.14) < P t t ) = c/^t™*\' • ^/βm* 4 '• ) ^o + Σ ( ,v
j 0 Jl / / = 1 \ Jl

Γ " / sin j P " ^

= ̂  ΣH
" ^ / sin jtC\

«o + Σ Σ - —
j = ι fc = i \ Jl J

J^ " / sin j ί \P

*• = ! .?=fc \ Jl /
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~ " sin jt

are then all convergent and the equality holds. It is therefore sufficient to

prove (3.13). In case p^t2, the series in (3.13) converge and the equality

holds because the series in the left member converges absolutely, being

dominated by the series in the inequalities.

(3. 2). λΣ Σ ~λr I «* I 25 Σ T^i1'2 <
.1=1 fc=l l J j=l τ J

In (3. 2) we used the elementary inequality
n Γ n 1/2 n π l /2

\O. Δl) 2^, \Uk\ = z L •*• Z^

Coming to the case p = 1, it remains to be proved that the series in

(3 3) ^ y^ sin j£ __ " * sin jV

are convergent and the equality holds. To prove this, it is sufficient to

prove that one of the two series in (3. 3) is convergent and that

(3. 31) lim Σ, Έ Sm-Jt uk = 0.

Supposing that 0 < t ^ IT and putting

<3 32) /»(0=ΣllT^-

we find that fn(ir) = 0 and

(3. 33) fn(t) = 3?<?" Σ eM = icot~ sin nt - sin2 ^-

Integration

(3.34) I

Letting n —^

(3. 35)

gives

•Λ s in kt

Λ k

> oo giv(

S1Π ll/ls JU I ^C^ . -

• — — I cot^T-sin nxdx.

gives the standard formula

This and (3. 34) give the formula

/o o<z\ v^ sin ̂  sin(?2 — 1(3 36) £ = 1 Λ* .r

which is valid when n > 1 and is, when # > 1, equivalent to the formula
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. ^ sin kt s'mnt 1 f x .
<3.37) Σ — ^ — = 2 n + y j cot—smnxdx

which is valid when ft j> 1. Using (3. 37), we see that the series in the right

member of (3. 3) is convergent if the series in

I °° 1 °°

(3. 4) — Σ Λ A + τ Σ **«*
^ fc=l Z fc=l

are convergent when

(3.41) α* = — - — , ^ = cot smkxdx.
k Jt 2

The first series in (3. 4) converges because 21 ak \
2 < °° and 21 uk \

2 < 00.

Likewise the second series in (3.4) is convergent because Σ\bk\
2 < °o, the

numbers bk in (3. 41) being the Fourier sine coefficients of the function gt(x)

defined over 0 ^ x ^ ΊΓ by the formulas gt(x) = 0 when 0 ^ x ^t and

^Or) = cot (x/2) when t < x ^ 7r. Therefore the series in the right member

of (3. 3) is convergent. To prove (3. 31), we use (3. 37) to see that (3. 31)

will hold if
n

(3. 42) lim(αn + *„) Σ > * = 0

when an and bn are denned by (3.41). Since 2 |^ f c | 2 < oo, (3.26) shows that

it is sufficient to prove that ann
112 -> 0 and bnn

112 -^0. Since n\an\ is bound-

ed, we see that ann
lβ -+ 0. Since bn is a Fourier sine coefficient of a func-

tion gt(x) having bounded variation over 0 ^ t ^ 7r/2, it follows that τz|&nl

is bounded and hence that bnn
112 -> 0. This proves (3. 31) and completes the

proof of Lemma 3.1. Without the assumption Σ j ^ | 2 < oo? Szasz [45, page

779] has proved that if the series in the left member of (3.3) converges

when 0 < t < t0, then (3. 3) holds and, conversely, if sn/n -> 0 then conver-

gence of the series in the right member of (3. 3) implies (3. 3).

LEMMA 3. 5. If Σun is a series for which lim sup | nun \ < oo, then the

series in (1. 2) and (3.11) for <Tz(p, t) converges when 0 < t < 2π and, as

(3. 51) σΛ(p, t) = o(l) + σ*(A t)

where

(3. 52) σ*(p, t) = cvΣ.\ ϊΊ^^) dy\ uk.
o y

Supposing that | kuk \ ^ M, we find from (3.12) and (3. 52) that

(3. 53) I σlp, t) - σi(p, t) | rg o(l) + cvMg(t)
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where

(3. 54)
co 1

R. P. AGNEW

' sin jt \P f -

v jt ) L

ήnys

y
j dy

Hence it is sufficient to prove that g(t) = o(l). To prove this we need
estimates of the sums in (3.54) which we obtain by use of the Euler-
Maclaurin summation formula

(3.6) ) = Γ f(x)dx +
he

+ Γ f\x)Bx(x)dx

where Bτ(x) is the Bernoulli function of order 1 denned by

(3.61) Blx) = x - [r] - 1/2.

The functions with which we have to deal seem to be such that there is
no advantage in using variants of (3.6) involving Bernoulli functions of
higher order. Putting

sin xt
(3.7)

in (3. 6) and letting m

(3.71) tl

where

(3. 72)

sin

Jt

f(χ) = t

*> gives
xt

H2 +H3
y

Tj — 1 +
Γ1Λ — Γ

2
ki

(3. 73) H2 =-pΓ
Xί

(3. 74) H 8 = i

From (3. 54) and (3. 71) we obtain

A 1

X

We find that

(3.76) Σ sin 1

2
s i n /eίj

For each 6 > 0 we can choose an integer N so great that

(3.77)
l Λ

\H*\ ^
! sin xt I
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PΣ, \
k = N κ Jk

and it follows that the function H2 contributes o(l) to the right side of
(3. 75). In case p^2, we find that

(3. 78) sin xt
xt

sin xt

[cos xt
x

dx

dx =

In case p = 1, we have to show that

(3.8) Σ \HΛ = cos:r£
X

Bx(x)dx

Supposing for the moment that k and t are fixed such that 0 < t < 1 and
that u > k, let

1 cos xt(r> oi \

(3.81)
B1(x)dx, αk=

COS BΎ(x)dx.

The welllknown fact that the series in the right member of

(3.82) j B l ω = - έ ^ I L ^ ^ ί

n-1 ^ ^

is the Fourier series of the function Bτ(x) in (3.61) follows from (3.35).
Since Bτ(x) and the function (cos xt)/x both belong to the Lebesgue class
L2 over the finite interval k ̂  x ^ u, we can multiply (3. 82) by (cos xt)/2
and integrate termwise to obtain

•(3.83)
n-i ^ ^ 4

1 ru sin 2nττx cos xt

x
dx

1 Γ ru sm(2nτr + *):r

α:
dx

ru sii

Jk

— t)x Ί

Jx

When 0

(3.84)

This and (3.43) imply that

<3.85) μfc(e/)| <

w = 1 2wτr LJfc(2n7£+ί) y

-fcosy 2 cos 3;

s i n

dy\<

J

w(2wτr — 1)
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where C is an absolute constant. Since (3. 81) implies that ak(u) —• ak as

w ->oo, (3.45) implies that \ak\ ^ C/k. This and (3.81) imply (3.8). The

two relations (3. 78) and (3. 8) show that the function H3 contributes o(l)

to the right side of (3. 75). Hence (3. 75) implies that g(t) = o(l) and Lemma

3. 5 is proved.

4. Rp transforms and partial sums. Let n = n(ά) and t = t(ά) be

positive functions, defined for ci > 0, such that n(cί) is an integer for each

CL and n(cί) -> oo and t(cΐ) —* 0 as oί—> oo. It is the purpose of this section

to determine the least constant B, which depends upon p and the functions

n{ά) and t(ά) and which is either finite or + oo, such that

(4.1) lim sup \σ2(p9t) — sn\ ^ B lim sup \nun\

whenever Σun is a series for which lim sup \nun\ < °°. In particular, we

characterize the pairs of functions n(ά) and t(ά) for which B is finite and

those for which B attains its minimum value Bo.

When lim sup \nun\ < ©o, it follows from Lemma 3.5 and (1.22) that

the series in (1. 2) for the Rp transform cr2(p, t) of Σun converges and

(4.11) A 0 = Γ
Jfct y

This and the procedure of section 2 show that the least constant B for

which (4.1) holds whenever lim sup | nun \ < oo is the constant B defined by

(4.12)

where

(4.13)

B = lim sup F2(a)

dy

Use of (1. 22) enables us to put (4.13) in the form

(4.14) smj/ dy
1

Jfcί

smj;

As was the case for Fτ{a), the behavior of F2(ά) as Λ - ^ M depends solely

upon the function q(ά) defined by q(ά) = n(cc)t(a).

LEMMA 4. 2. / / F2{ά) is given by (4. 14) and the function q(a) defined

*y <z(Λ) = n{a)t(a) is such that

(4. 21) 0 < qτ = lim inf q(a) ^ lim sup q(ά) = q2 < °°,
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(4. 22) F2(a) = o(l) + G2(a)

where

(4.23) G2(oί) = cp \ — i j ί ^ ) rfy!ΛΛ: + Cpi — ! | ( ^- dy
Jo ^ Jo ^ y ' \ Jq χ\Jχ \ y '

The last integral in (4. 23) is convergent because if p > 1, then

ίA CΛA\ \ f ° Y S i n v Y 7 I ̂ - Γ~ 1 7 1
( 4 . 2 4 ) ί I I — αy S αy = —

JΛ y J \~~l y 2 x
and if /> = 1, then

2//< or"\ / / s in y \ 7 cos ,x Γ cos y _» ^~
(4. 25) I ( — 1 dy = — / -~ dy ^

i jχ N y *£ jχ y

Introducing the function q(cc)9 we put (4.14) in the form

(4. 26) F2(a) = cp Σ, ~ fΊ*™^-)* dy t + CpΣ —\ ί
ίgx; m kt Jo \ y / kt>q kt I Λf

and then, under the hypothesis (4. 21), the conclusion of Lemma 4. 2 follows
from the elementary theory of Riemann integration because if 8 > 0 and h
is sufficiently great then we can see with the aid of (4. 24) and (4. 25) that

y

(4. 27) Σ jr \ Γ (^y dy tS

when 0 < ί < 1 and hence when a is sufficiently great.
A modification of the proof of Lemma 4. 2 shows that if n{cί) and £(#)

are functions such that lim inf q(ά) = 0 or lim sup q(ά) = °°, then lim sup
Ft(a) = 00.

The formula (4. 23) corresponds more closely to (2. 41) when it is written
in the form

(4. 3) Glq) = cJ"±\I- Φ(x) \dx + cJ"-\ Φ(x) I dx

where

(4. 31) / = f ( i ί^-V dy, <Kx) = Γ

It is easy to see that there is a unique positive number q0 such that

.32) r (JHLVY * , = 4 =
Jo \ y / 2 JQ

It then follows that 0 <; / - φ(χ) < 1/2 when 0 ̂  x < q0 and 1ΦU)| < 1/2
when α: > qQ. These facts and (4. 3) imply that G2(q) is positive when q > 0
and attains its absolute minimum when and only when q = qQ. In fact
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G2(q) -* °° as q -> 0, G2{q) -* °° as q -> °°, G2(q) is decreasing over 0 < g

< <7o> and G2(g) is increasing over q0 < q < oo. These results and (4.12)

imply that if the functions n(oL) and ί(tf) are such that (4. 21) holds, then

the least constant B for which (4.1) is valid is finite and is the maximum

of G2(<7i) and G2(q2). This maximum is a minimum when and only when

qτ = g2 = gQt

A consequence of the results which we have obtained is set forth in

the following theorem.

THEOREM 4. 4 The constant G2(q0) determined by (4. 23) or (4. 3) and

(4. 32) is the least constant with the following property. There exist func-

tions n(ά) and t{a) such that n(ά) -> °°, t{ά) -> 0, and

(4. 41) lim sup |σ*2(A t) ~ sn\ Ŝ G2(q0) lim sup \nun

whenever %un is a series for which lim sup \nun\ < oo. Moreover the func-

tions n(oί) and t(ct) are such that (4. 41) is valid if and only if

(4. 42) lim n(a)t(ά) = q0

Our results also show that for each q > 0 the inequalities

(4.51) lim sup \<r2(ρ9q/n) ~ sn\ ^ G2(q) lim sup \nun\

and

(4. 52) lim sup | <r2(p, t) — 5[Q/t] | ^ G2{q) lim sup
£>0 n ^£->0

are optimal inequalities and that the right members are minimal when

q = q0. It is not difficult to modify the above work to obtain the following

theorem.

THEOREM 4. 6. In order that functions n{ci) and t(ά) be such that

(4.61) lim \σ2(p,t) - sn\ = 0
n->oo

whenever Έ,un is a series for which lim nun = 0, £ί ί5 necessary and sufficient

that

(4. 62) 0 < lim inf n(ά)t(ά) <Ξ lim sup n(cέ)t(a) < oo.

It is a corollary of Theorem 4. 6 that if lim nun = 0, then Σun is evalu-

able Rp to 5 if and only if it converges to s. This corollary is a Tauberian

theorem of classical type, and numerous theorems of this type are given in

papers cited in the bibliography.

5. Tauberian relations involving R(p) and Rp. For each q > 0 the

two relations (2. 62) and (4. 52) imply that the R(ρ) transform o-t(p, t) and
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the Rp transform <r2(p, t) of a series Σ#n for which lim sup | nun ] <
-so related that the formula

>, t)\ ^ Cq lim sup |nun\

are

(5.1)

holds when

(5.11)

lim sup
ί->0

, t) —

CQ = ) + Gt(g).

This implies that if Σun is a series for which lim sup | nun | < oo? then the
R(p) and Rp transforms are both bounded or both unbounded. It implies
also that if Σun is a series for which lim nun = 0, then the R(p) and Rp

transforms are (whether they be convergent or divergent) equiconvergent in
the sense that

(5. 12) lim \σx(p, t) - σΛ(p,t)\ = 0.

In particular, a series Σun for which lim nun = 0 is evaluable R(p) to s (finite
or infinite) if and only if it is evaluable Rp to s.

For further study of matters relating to (5.1), we introduce two positive
functions t(ά) and v(ά) such that t(a) -* 0 and v(a) ->0 as a -> 00 and
obtain information about the least constant C, which is finite or infinite
and depends upon p and the functions t(ά) and v(ct\ such that
(5. 2) lim sup [ cr^p, t) — σ2(/>, v) \ ^ C lim sup | /z

whenever Σun is a series for which lim sup nun
< 00. Use of (1.2), Lemma

3.5, and the procedure of section 2 shows that the least constant C for
which (5. 2) holds is the constant C defined by

(5. 3) C = lim sup F3(ά)

where

(5. 31) F3(«) = Σ T

sin
kt d y

Letting \{ά) be the function defined by

(5. 32) \(ά) = v(a)/t(ct),

we put (5.3 1) in the form

/ t - o o v 77./ \ v^

(5.32) F,(«) = Σ
which involves modified Riemann sums. In case

(5. 33) 0 < \x = lim inf \{a) <: lim sup \(ά) = λ2 < 00,

it follows from (5. 32) that

<5. 34) F3(α) = o(l) + G3(λ)
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where

dy dx.

In case lira inf X(ά) = 0 or lira sup \(ct) = oo3 (5. 32) shows that lim sup-
\F3(cc)\ = oo. As a function of λ, G3(λ) is positive and continuous over
λ > 0 and G3(λ) -» oo as λ -> 0 and as λ-> oo. Therefore G3(λ) has a
positive absolute minimum attained for at least one positive value λ0 of λ.
This implies that the optimal constant C in (5. 2) is always positive and
C > G3(λ0). This constant C attains its minimum value G3(λ0) when and'
only when the functions t(a) and v(ά) are such that v(ά)/t(ά) —* λ0. In
particular for each λ > 0 the inequality
(5. 5) lim sup | σx(p, t) — σ2(p9 λί) | ^ G3(λ) lim sup | nun \

is an optimal inequality and the right member is minimal when λ = λ0.

6. Riemann and Cesaro methods. It is the purpose of this section to
show that a simple Tauberian argument can be applied to prove that the
product transformations R(p)Cr and RpCr are regular when r ^ 1, and to
show how this result is related to others in the theory of Riemann and
Cesaro methods. The R(p)Cr transform of a given series is, if it exists, the
R(p) transform of the Cr transform of the series, and RpCr is similarly
defined.

For each real (or even complex) number r which is not a negative
integer, the Cesaro transform σjf; of order r of a series Σun with partial,
sums ^n is defined in standard notation by

(6.1) σi> = SP/AP

where

The series is evaluable Cr to L if σ£° -* L as n -> °°. In order to obtain

the transform of the Cr transform by a series to function transformation,,

we need the series to series version of Cr. To get this, we use (6. 1) and.

(6.11) to obtain

( 6 1 2 ) σi = S in + r)!(» - k)l u*
and

A r) (n - 1z%
——τ~~u

(6. 13) σnij =
t70 (n -h r)\(n — k)\ tin — k + r)_ -
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where in (6. 23) and the following formulas we suppose that r Φ O . Let-

ting u{p + u[r) + be the series with partial sums σ%\ we have uV — σ£y

- σir2i and it follows from (6. 12) and (6. 13) that

(6.14) u\} = — 2^ 7 — i — w zΛ? ί~i Uk

Thus (6. 14) is the series to series version of the Cesaro transformation, a

series 2^fc being evaluable to L if the series ΣuP converges to L.

Using the identity

(6. 15) _ — — 1,
n — k + r n — k Λ- r

splitting the right member of (6. 24) into two sums, and then using (6. 22)

gives

(6.16) rf^W-"-^").
We are now in a position to give a simple proof of the following theorem

in which the transformation T can be either R(p) or Rp.

THEOREM 6.2. If T is a transformation such that Σz/n is evaluable T

to L whenever Σun converges to L and lim nun = 0 and if r > 0, then each

series evaluable Cr_x to L is evaluable TCr to L.

The hypothesis that r > 0 and Σun is evaluable Cr_τ to L implies that

Σun is evaluable Cr to L. Thus σ^"υ -> L and σ^r) -> L and (6. 16) implies

that nuP —> 0. Since 2w«r) converges to L because σir) —> L, it follows from

the hypothesis on T that Σ#£r) is evaluable T to L. Thus Σ^n is evaluable

TCr to Z/ and Theorem 6. 2. is proved. Using standard terminology we say

that Tι includes 7\ and write T2 ID 7\ and T x CZ T2 if each series evaluable

7\ to L is also evaluable T2 to L, and we say that T2 and TΎ are equivalent

and write T2 -~~ Tτ if T2 ^> TΊ and T x 3 T2. There are occasions upon

which it is convenient to recognize that the usual formulas denning Cr have

no meaning when r — — 1 and to adopt a special definition under which

Σun is said to be evaluable C-ι to L if Σun converges to L and nun -> 0.

We do this now. Theorem 6. 2 then reduces to the simple fact that if T ID

C-!, then ΓC r => Cr_! when r > 0. This shows the if r ^ 1 and T ID C_1?

then TCr H) Cr_j ID Co and hence TC r is regular. Thus R(p)Cr and ivpCr are

both regular when r Ξ> 1.

Beginning perhaps in 1904 when Fejer [6] proved that Ĉ  CZ 2?(4), many

authors have given relations among Riemann and Cesaro methods of various

orders. Hardy [8, page93 and page 371] gives a brief account of the subject

and some references. A more complete list of references is given in the

bibliography at the end of this paper. In particular, Obreschkoff [30] and
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Hirokawa [13] have obtained properties of transformations which are modi-

fications of R(p)Cr and RpCr. The papers noted above show that if Tv is

one of R(p) and Rp and p is a positive integer, then the first of the rela-

tions

(6. 3) Cp-ι-8 cz Tp, Tp ci Cp+s

holds when 0 < δ < 1. In case Tp = R(P), it has been shown by Zygmund

[53] and Kuttner [22] that the second relation in (6. 3) is valid when p — 1

and when p = 2. However this second relation is certainly not valid when

Tp = R(p) and p ^ 3 because Kutter [22] has shown that if p >̂ 3 then

there exist series evaluable R(p) but not evaluable by the Abel power series

method which includes all Cesaro methods Cr of order r > — 1.

If (6. 3) holds, then

(6. 31) Cp_i_δCr d TpCr9 I pCsr cz Cp+δCr

and conversely. Using the well known fact that CaCβ —- Ca+β when a > — 1,

β > - 1, a + β > — 1, we see that if p 2> 1, r > — 1, 0 < δ < p, and 0 <

S < p + r, then Cp-i_δCr— CP+r-i-a and Cp+sCr ~~ Cp+s+r. Therefore when

^ ;> 1, r > - 1, 0 < δ < />, and 0 < δ < p + r, the relations (6. 3) and (6. 31)

hold if and only if

(6. 32) Cp+r-i-5 CZ 1 pC r, 1 pLsr CZ Cp+r+δ.

Introducing inverses of the Cesaro methods, we see that if (6. 3) holds, then

(a QO\ /'""* (~^~~^ ^ ~ T"* /^—^ T ^ Γ^~~^ ^— /°* /^>l"-^

and conversely. Using the well-known fact that CaCβ1 — C^-β when a > —

1, β > - 1, Λ - β > - 1, we see that if /> Ξ> 1, r > — 1, 0 < δ < £ , 0 < δ

< ^ — r, then Cp.i-δC^1 — Cp_r_τ_δ and Cp^C,"1 •—- Cp+r+δ. Therefore when p

> 1, r > - 1, 0 < δ < A and 0 < δ < p - r the relations (6. 3) and (6. 33)

hold if and only if

(6. 34) Cp-r-i-δ cz TpC7\ TpCr1 cz Cp-r+δ.

In particular, putting r = p — 1 shows that (6. 3) holds if and only if

(6. 35) C-δ cz TpCpίl9 TpC li cz Cι+S.

In connection with the questions whether the relations (6.3) and (6. 35)

are valid and are optimal relations, it would be of interest to know whether

inclusion relations exist among the methods TpCpIi. If it could be shown

that

\Ό. 4) 1 i — 1 i ^ o C_ 1 2 U i C_ 1 3 O ί C_

or

(6. 41) T, = T.Cό1 3 TzCΓ1 3 TsCl1 3

or
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(6. 42) Tλ = TXC? ~ T.CΓ1 ~ TsG"1 ~

these results would be of intrinstic interest and would perhaps have signi-
ficant consequences.
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