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1. Introduction. Two similar tut different families of methods for
evaluation of series stem from work of Riemann on trigonometric series.

Let p be a positive integer, and let w, + 2, + ...... be a series of real or
complex terms with partial sums s, s;,--..... The series is said to ke evaluable
R(p) to L if the series in

>/ sin b2\’
.1 a(0.0= 2 (L) w

k=0
converges over some interval 0 < ¢ <z, and o,(p,¢t)— L as t— 0. Here and
elsewhere, (sin kt)/kt is interpreted to have the value 1 when 2= 0. The
series is said to be evaluable R, to L if the series in

(1.2) oi(p, ) = oyt z (» gl

converges over some interval (0 < ¢ <#, and oy (p,t)—> L as t— 0. The
constant ¢, in (1.2) is defined so that

sin kt
.21 lim cptZ( o ) 1
and hence
*(sinz \’ _
(1. 22) ¢ fo (—x——) dr = 1.

In particular, ¢, = 2/m. It is well known that R(p) and R, are not regular
when p = 1 but are regular when p = 2. The method R(1) is sometimes
called thc Lebesgue method.

The methods R(p) and R, have been the subject of many investigations
which show that there are respects in which they have identical properties.
It has often happened that one author has proved that one of R(p) and R,
has a particular property, and then the same or another author has proved
that the other method has the same property. It seems that similarities
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between R(p) and R, have been emphasized much more than differences
between R(p) and R,. It has, however, been shown respectively by Kuttner
[24] Marcinkiewicz [28], and Kuttner [24] that if p is 1 or 2 or 3, then neither
of R(p) and R, includes the other. See also Hardy and Rogosinski [14], [15].

In order to exhibit differences as well as similarities between R(p) and

R,, this paper investigates the behaviors of the R(p) and R, transforms of
series Su, satisfying the Tauberian condition
(1.3) lirygsup | nu,| = M < oo.
Section 2 gives optimal relations between the R(p) transforms and partial
sums of series satisfying (1.3). Section 3 gives lemmas on R, transforms,
and section 4 gives optimal relations between the R, transforms and partial
sums of series satisfying (1.3). Section 5 gives optimal relations between
the R(p) and R, transforms of series satisfying (1.3). In section 6 we sup-
pose that T, is R(p) or R, and study various questions concerning 7%,C,,
T,C:' and relations between 7T, and C, where C, is the Cesaro transforma-
tion of order 7.

In connection with section 2, we observe that Zygmund [57] has obtained
an optimal relation between the partial sums and R(2) transforms of series
having bounded partial sums. While he formulated his result in a difterent
way in terms of real series, his work shows that if z is a real (or complex)
number then the inequality

1.4) limsup |0,(2,8) — 2] < ¢
t->co

2

o

lim sup |s, — 2|

2 e

holds whenever Su, is a real (or complex) series having bounded partial
sums. Moreover the numerical constant in (1.4) is the least for which (1.4)
is always valid.

We now make some remarks showing one way in which R(1) and R, can
be originated in mathematical analysis and brought into contact with pro-
blems involving trigonometric series. Suppose that the series Su, is such
that, as a standard notation

(1.5) ™ (cos ke ~ £(2)

k=0
indicates, the series in (1.5) is the Fourier series of a function f(¢#) which
is integrable (Lebesgue) over 0 < # < 27. Then, since Fourier series can be
integrated termwise, integration gives

oo

(1.51) oi(1,0) = 3 Sk
k=0 kt

u, = %j;tf(:c) dzx.
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Tt is now easy to formulate various conditions under which Su, is evaluable
R(1) to s. Suppose next that the series Zu, converges to s and is such that
the series in

(1.6) 2_ (cos kt)(si — )~ 9(2)

k=0
is the Fourier series of a function ¢(¢#) integrable over (0, 27). Then integra-
tion gives

(161 1 s — o= [ gz = o)
k=0
as ¢t — 0. Since
2t S~ sinkt
(1.62) - kZﬂ 7y — LTt o(1),

we can multiply (1.61) by 2/7 and conclude that

2t sin kt
(1. 63) 0'2(1 t) = - kzn kt S, = S + 0(1)

and hence that 2, is evaluable R, to s. It must be recognized, however
that the full scopes of the classes of series evaluable R(1) and R, cannot be
discovered by studying series Su, for which the series in (1.5) and (1.6) are
Fourier series of integrable functions. In fact the condition lim#, =0 is
not necessary for evaluability R(1) and R,. The simplest example illustrating
this fact is the following. The elementary formulas
1.7 t_ i oy sin kt, T — 2t i

2 o k Pt
which are valid when 0 < ¢# < =, show that for seriesthe 1 — 1 +1 —1 +......
for which u, =(—1)", s,, =1, and s3,.;, =0 we have o,(1,¢2) = 1/2 and
a,(1,t) = 1/2 + t/m; hence this classic divergent series is evaluable R(1) and
R, to the classic value 1/2.

2. R(p) transforms and partial sums. Let n» = n(a) and ¢ = a) be
positive functions, defined for a@ > 0, such that n(a) is an integer for each
a and n(a)— oo and #a)— 0 as @ — co. It is the purpose of this section
to determine the least constant A, which depends upon p and the functions
n(a) and #(a) and which is either finite or + oo, such that

(2.1 limsup [o(p, ) —s,| = A 111n sup [ nu,,|
w->oo
whenever 3u, is a series for which lim sup lnunl < co. In particular, we

characterize the pairs of functions z(a) and #(@) for which A is finite and
those for which A attains its minimum value A,.
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When |nu,| < M, the series in (1.1) which defines the R(p) transform
is necessarily convergent because (1 1) can be put in the form

= 1 /sinke\’
(2.11) o 1) = uy + %’k’( kt ) ke

and the last series is dominated for each ¢ > 0 by the convergent series
SMt="E2.
Settlng T = kuk,

(2.2) amy=—%ﬁ-(%ggﬂ, 1<k=<n
and
(2.21) at) = % (E%y, E>n

we find from (1.1) that

oo

(2 22) 01(1’9 t) — S = Z ak(t)xla

k=1
the series being convergent when z, is bounded. Use of lemmas set forth
by Agnew [2, section 7] shows that the least constant A for which (2.1)
holds is the constant A defined by

(2.3) A = limsup F(a)
P
where
(2.31) F(a) =3 |la2)|
k=1
and hence
1 sin k2\" - 1 sinktf"
2.52) Ew—gk@_<m>]i§J ko

It turns out that the behavior as @ — oo of F,(a) depends only upon
the product g(a) defined by

(2.33) qga) = n(a)(a).

Considering first the case in which

(2.34) 0 < ¢, = lim inf ¢(@) =< lim sup ¢(@) = ¢, < oo
e a->eo

we put (2.32) in the form
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1 sin k¢ \°
. Fl = -—_ 1 - t +
2.9 @=2 =) ]
1 |sinkt|”
* %{k? kt

For each & we may set kt = x, and ¢ = zx+; — z to see that the right mem-
ber of (2.35) is much like a Riemann sum. It is complicated by the fact
that the function for which the Riemann sum is formed depends upon the
variable ¢ and by the fact that the points x, = k¢ are not confined to a
finite interval, but it is nevertheless not difficult to show that if (2. 34) holds,
then, as a@ — oo,

(2.4) Fi@) = o(1) + G\(q)
where
) G [ 11— () Tae o [0 g,

The last terms in (2.35) and (2.41) and the infinite interval of integration
cause no trouble because

1 | sin kt |? 1 1
2. 42 L |smet)”, < tgf = dz,
( ) kfi:i,. kt| kt 3;.,,, (kt)? Jogor 2
=3 . D oo
(2. 43) f 1lsinz |7 50 < f Lz,
93 T x i q3 L

and, for each & > 0, we can choose a constant g; such that g; > ¢, and the
last members of (2. 42) and (2. 43) are less than & when 0 < ¢ <1 and hence
when a is sufficiently great.

The function G,(q) in (2 41) is positive when ¢ > 0 and attains its
absolute minimum when and only when ¢ is the unique positive number g,

for which
(2. 44) sing, _ (i>m’.

9o 2
Moreover G,(q) = oo as ¢ — 0, G,(q) = oo as g — oo, G,(q) is decreasing over
0 < g < qo, and G,(q) is increasing over g, < g < oo. These facts and (2.1)
imply that if n(a) and #(a) are such that (2. 34) holds, then the least constant
A for which (2.1) is valid is finite and is the maximum of G(q,) and
G.(g,). This maximum is a minimum when and only when ¢, = ¢. = ¢, In
case lim inf ¢(a) = 0, consideration of the last term in (2.35) shows that lim
sup Fi(a) = co and hence that + oo is the least constant A for which (2.1)
is valid. In case lim sup g(a) = <o, consideration of the first term in the right
member of (2.35) produces the same result. Therefore the least constant A
for which (2.1) is valid is finite if and only if the functions z(a) and #a)
are such that
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(2. 45) 0 < lim inf #n(a@)i(a) < lim sup n(a)t(a) < oo.
a—>ce >
A consequence of the results which we have obtained is set forth in
the following theorem.

THEOREM 2 5. The constant G(q,) determined by (2.41) and (2. 44) is
the least constant with the following property. There exist functions n(a)
and (@) such that n(a) — o, {a) — 0, and
(2.51) lim sup |oy(p, 2) — s.| = Gy(go) lim sup|nu,|
e rdd

whenever Zu, is a series for which lim sup |nu,| < co. Moreover, the func-
tions n(a) and &) are such that (2.51) is valid if and only if

(2.52) lim n(a)t{(a) = q,.
a—>oo
Our results also show that for each ¢ > 0 the inequalities

(2.61) lim sup |o(p, ¢/n) —-s,] = G(q) lim sup | nu,|

N->00 N->c0
and
(2.62) lim sup [0(#, £) = sun| = Gi(q) lim sup |nu,]

N NS00

are optimal inequalities, and that the right members are minimal when
g = q,. It is not difficult to modify the above work to obtain the following
theorem.

THEOREM 2.7. In order that functions n(a) and (&) be such that
(2.71) lim [o(p, ) — s, =0
Qoo

whenever Su, is a series for which lim nu, = 0, it is necessary and sufficient
that

(2.72) 0 < lim inf n(a)t(a) < lim sup n(a)t(a) < oo.

a->eo @S>

It is a corollary of Theorem 2.7 that if lim nu, = 0, then Su, is evalu-
able R(p) to s if and only if it converges to s. This corollary is a Tauberian
theorem of classical type, and numerous theorems of this type are given in
papers cited in the bibliography.

The appropriateness of the Tauberian condition lim sup |7z«,| < oo which
we have employed is shown by the following facts. If ¢(n) is a nonnegative
function of # for which lim 2/¢(n) = oo, then + oo is the least constant A™
such that

(2.8) limsup |a(p, £) — s,| < A*lim sup |(n)u,]
N->eo

@7
whenever Su, is a series for which lim sup |$(n)u,| < co. To prove this, we
follow the procedure used above to find that A* = lim sup Fi(a) where
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(2.81) Fia) = ,SEQ o0 [1 ‘<Si2tkt Ht

kE 1 |sinkt”
Yew ml w
For each positive constant M there is an index k(M) such that k/$(k) > M
when £ > E(M). It therefore follows from (2. 81) that, as a -0, F*(a) = o(1)
+ MF(a) where Fi(a) is defined by (2. 35). Since limsup F.(a) > 0, it fol-
lows that A* = oo, If on the other hand lim n/¢(z) = 0, then there exist
functions z(a) and #a) such that (2. 8) holds with A* = 0.

3. R, transforms. For use later, we need a formula which gives the
R, transform oy(p, ¢) defined by (1.2) in terms of the terms u, instead of
the partial sums s, of a given series Su, for which lim sup|nu,| < co. While
we could use the formula of the first lemma of this section, it is much more
convenient to use the formula of the second lemma which is obtained with
the aid of the first lemma. If Su, is a series for which lim sup |nu,| < oo,
then I|u,|? < oo. Since the converse is not true, the following lemma has
more generality than we need.

LEMMA 3.1. If Su, is a series for which 3|\u,|? < oo then the series in

(3.11) oy p, t) = cpt kz(sm kt) 5k

converges when 0 < ¢t < 2w and

(3.12) oy 1) = c‘ptZ [ z(M) }u

=\ Jt

To prove this lemma, let 2u, be a series for which Z]u,|? = M* < co.
In case the series in

(3.13) é‘;i:<sm]t> ", = ZZ(SIH]t) s

kel jok Jt

are convergent and the equality holds, the conclusion of the lemma follows
because the series in

B.14)  alp,t) = cst [i‘(smﬂ) “o i( .

<sm]t> 2y + ié
(. >

[

sm]z‘) "y + Z

‘[\18 ..[\/‘z Iy
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_c,,tzz<sm]t> Uy

k=0 j=k
are then all convergent and the equality holds. It is therefore sufficient to
prove (3.13). In case p = 2, the series in (3.13) converge and the equality
holds because the series in the left member converges absolutely, being
dominated by the series in the inequalities.

co

M
(3.2) Z Z v lu] = Z },;‘7]”2 < oo,
i=1 k=1 J
In (3.2) we used the elementary inequahty
n n 1/2 n 1/2
(3.21) ] < [Z 12} > [ukv} < Ma':.
k=1 k=1 k=1

Coming to the case p = 1, it remains to be proved that the series in

(3.3) Z Z sin Jt Z i sin Jt

j=1 k=1 k=1 j=k

are convergent and the equality holds. To prove this, it is sufficient to
prove that one of the two series in (3.3) is convergent and that

(3.31) Im 3 5 S, o,

N> k=1 j=n J
Supposing that 0 < ¢ =< 7 and putting
(3.32) A=y BB

ok
we find that f,(7) = 0 and
= 1 t nt

(3.33) falt) = Re' 3~ e = 5 cotysin nt — sin® DR

k=0

Integration gives

n . .
) sin kt T—1 sin 7zt

— ___.l ﬂc tis d
A 9 2 2]; (o] 2 mnxdax.

(3.34)

k=1
Letting # — oo gives the standard formula

~. sin kt T—t
3.35 =
(3.35) 52 7 5

This and (3. 34) give the formula

“sinkt _ sine—1) 1 ° =z
(3.36) g P = on — 1) + 2]; cot sin(z — 1)x dx

which is valid when #» > 1 and is, when 7 > 1, equivalent to the formula
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® sinkt sinmt [ 1% x|
(3.37) > =y +2fcot sin 7z dz

k=n

which is valid when # = 1. Using (3. 37), we see that the series in the rlght
member of (3.3) is convergent if the series in

(3 4‘) o Z au, + Z bku,c
2 k=1 2 k=1
are convergent when
(3.41) a, = smTkt’ b, =f cot—‘;— sin kx dx.
t

The first series in (3.4) converges because 3|a;|? < oo and 2|u|? < oo,
Likewise the second series in (3.4) is convergent because 2|5;|? < oo, the
numbers & in (3. 41) being the Fourier sine coefficients of the function g,(x)
defined over 0 < z < 7 by the formulas ¢,(x) =0 when 0= x=<¢ and
9(x) = cot (x/2) when ¢ < x = m. Therefore the series in the right member
of (3.3) is convergent. To prove (3.31), we use (3.37) to see that (3.31)
will hold if

(3.42) lim(a, + b,) >_ur =0

N-yoo k=1

when a, and b, are defined by (3.41). Since 2|u|? < oo, (3.26) shows that
it is sufficient to prove that a,»'? -0 and b,%'* —0. Since 7|a,| is bound-
ed, we see that a,»'” — 0. Since b, is a Fourier sine cozfficient of a func-
tion ¢,(z) having bounded variation over 0 =< ¢ < w/2, it follows that #|b,]
is bounded and hence that &,1#'2 — 0. This proves (3. 31) and completes the
proof of Lemma 3.1. Without the assumption 3|u,|? < oo, Szisz [45, page
779] has proved that if the series in the left member of (3.3) converges
when 0 < ¢ < #,, then (3.3) holds and, conversely, if s,/# =0 then conver-
gence of the series in the right member of (3. 3) implies (3. 3).

LEMMA 3.5. If Su, is a series for which limsup |nu,| < oo, then the
series in (1.2) and (3.11) for oip, t) converges when 0 < t < 2w and, as
t—0,

(3.51) ay(p,t) = o(1) + o¥(p, t)

where

(3.52) Hp,t) = ¢ Z [ | “( Si;‘y ) dy | .

Supposing that |kur| =< M, we find from (3.12) and (3.52) that
(3.53) lou(p, t) — oX(p, £)| =< o(1) + c,Me(2)
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where

oo

@50  gn=x

k=1

= /sin jt \' =/siny\
E(52) ()
FZ;C Jt Kt y Y
Hence it is sufficient to prove that ¢(z) = o(1). To prove this we need

estimates of the sums in (3.54) which we obtain by use of the Euler-
Maclaurin summation formula

@6 > = ["fana + LOEL " rp e
j=k & K

where B,(x) is the Bernoulli function of order 1 defined by
(3.61) B(x) =z — [z] — 1/2.
The functions with which we have to deal seem to be such that there is

no advantage in using variants of (3.6) involving Bernoulli functions of
higher order. Putting

. »
3.7) fla) = oS )
x
in (3.6) and letting m — oo gives
0 . . p oo . V4
(3.71) t}:<3%.‘ti) | (S‘;y) dy + H, + H, +H,
J=k kt
where
1,/ sinkt\’
3.72 H. = t<_»
(3.72) =, ()
(3. 73) — Pf (Sln .l‘t) Sin;rt Bl(x)dx
e
p-1
(3.74) H, = pt f <S”’ x‘) COS T B (2)dxz.
k xt x

From (3.54) and (3.71) we obtain

oo

, 1
«t) = ZTIH1 + H, + H,|.

k=1
We find that
- 1 ot S 1sinke| 1 Isinkel _
(3.76) kZ_llells 5 4 kf | 2’;1 jE o(1).

For each &€ > 0 we can choose an integer N so great that

3.77) Z |H2f~p>“ﬁf 1ozl g,
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~ 1
=o)+pY —f L= 0(1)+pz 1<
v k) 2 k?
and it follows that the function H, contributes o(1) to the right side of
(3.75). In case p> 2, we find that

(3.78) Z |H31—Ptz f‘s‘”‘

k=1

|cos zz| dr
z

= |sin xt|
<Z 1 —
=p E kj,; " dx = o(1).

In case p = 1, we have to show that

(3.8) Z%lel =téz\f:i‘§ﬁsl(x)dx'i=ou).

k=1

Supposing for the moment that %2 and ¢ are fixed such that 0 <z <1 and
that > %, let

(3.81) aw) = [ 2 B (@), a= [ B ()dz.
k x k x
The welltknown fact that the series in the right member of
=, sin 2nmx
(3.82) B(zx)=—2—

n=1
is the Fourier series of the function B,(x) in (3.61) follows from (3.35).
Since By(x) and the function (cos x¢)/x both belong to the Lebesgue class
L, over the finite interval 2 < x < u, we can multiply (3.82) by (cos xt)/2
and integrate termwise to obtain

o

1 p*sin2 t
(3.83)  ax(u) = — v"f sin 2nmz cosxt
n=1 BT x
_ i 1 [f“rsiin(}mr + t)x dr + f“ sin(@nm — t)x de
no 2nm L), x k x
_ i ;,1; (ifu(Zrma—t) s1ny d fu(wm-') wdy] .
aoy 2nm k(nr+t) kenr—ty Y

When 0 < y,:< y,,

.84 |[TERYgy =
Y1 y j

This and (3.43) imply that

COSYy; _ COS Y, __j‘ cosyd <#
Y1 Ye V1 y i %1

13 1 _C
(3. 85) lal =4 2 e Ty =k
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where C is an absolute constant. Since (3.81) implies that aw(x) — ar as
u —> oo, (3.45) implies that |a;| < C/k. This and (3.81) imply (3.8). The
two relations (3.78) and (3.8) show that the function H,; contributes o(1)
to the right side of (3.75). Hence (3. 75) implies that ¢(¢) = o(1) and Lemma
3.5 is proved.

4. R, transforms and partial sums. Let » = n(a) and ¢ = #(a) be
positive functions, defined for @ > 0, such that n(a) is an integer for each
a and zn(a) > oo and #a@) > 0 as a@ — oo. It is the purpose of this section
to determine the least constant B, which depends upon p and the functions
n(a) and #(@) and which is either finite or + oo, such that

(4.1) lim sup |oy(p, £) — s,| =< B lim sup |zu,|

a—>eo Nn->e0
whenever Zu, is a series for which limsup |znu,| < oo. In particular, we
characterize the pairs of functions n(a) and #(«@) for which B is finite and
those for which B attains its minimum value B,.

When lim sup |znu,| < oo, it follows from Lemma 3.5 and (1.22) that
the series in (1.2) for the R, transform o&,(p,t) of 2u, converges and

(Y ]

This and the procedure of section 2 show that the least constant B for
which (4.1) holds whenever lim sup |zu,| < oo is the constant B defined by

(4.12) B = lim sup Fy(a)
a->co

(4.11) ay(p, t) = o(1) + u, + i l:c,,f

k=1 k

where

. D o { . i
smy_) d ]_‘_ 1fcfw<‘smj‘}> .
y It LNy )Y

k=n+1

4.13) Fua) =3 —%‘ 1—c, f;(

k=1 |

Use of (1.22) enables us to put (4.13) in the form

wt siny)p 1 °°<siny>p
—) dy| + ¢ — ——=) d
fo ( y Y pkzm k j;, y Y
As was the case for Fi(a), the behavior of Fy,(a) as @ — oo depends solely

upon the function g(a) defined by g(a) = n(a)t(a).

LEMMA 4.2. If Fya) is given by (4.14) and the function g(a) defined
by gla) = n(a)i(a) is such that

(4.21) 0 < g, = lim inf g(a) < lim sup g(a) = g, < oo,

a-—>eo a—>o

(4.14) Fyla)=c, i %—

k=1

then, as a — oo,
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(4.22) Fya) = o(1) + Gy(a)
where
(4. 23) Gya) = c,,\/j% [‘/;z(iil;—yy dy }dx + cdj%jj(%l)p dy | dzx.

The last integral in (4.23) is convergent because if p > 1, then

(4. 24) ff(smy> !<f°°1 :%

and if p = 1, then

co . D ( | -
4.25) | [ (m) dy| = SO8E _ [Te08Y gy o 2
j z y ‘ x A 2 : z

Introducing the function q(a) we put (4.14) in the form

. b
(4.26) Fla)=c, 3 - f (S‘“y> dy t +¢,5 L f (Eﬂy> dy ¢
t=k =q kt kt>q k y !
and then, under the hypothesis (4.21), the conclusion of Lemma 4.2 follows
from the elementary theory of Riemann integration because if &€ > 0 and 2
is sufficiently great then we can see with the aid of (4.24) and (4. 25) that

2 L [" (Slny) dy t=23

xion Rt y Kt>h (kt)g

when 0 <z <1 and hence when « is sufficiently great.

A modification of the proof of Lemma 4.2 shows that if n(a) and #«)
are functions such that lim infg(a) =0 or limsupg(a) = oo, then lim sup
Fya) = oo,

The formula (4. 23) corresponds more closely to (2. 41) when it is written
in the form

ngw L gz <e
h

L.CC

(4.3) Gig) = ey [ 1|1~ ¢(@)|dz + ¢, [ = |9(a)]dx
where
(4. 31) I= fw<ii;y->p dy, P(x) = f:(%)p dy.

It is easy to see that there is a unique positive number g, such that
q0 : D oo . b/l

(4.32) f <Sﬂ> dy =1 = f <§£2) dy = d(qo).
0 y 2 a0 Y

It then follows that 0 < I — ¢(x) < I/2 when 0 < x < g, and |¢(x)| < I/2
when z > g,. These facts and (4. 3) imply that G,(qg) is positive when g > 0
and attains its absolute minimum when and only when ¢ = g,. In fact
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Gy(g) — o0 as ¢ >0, Gy(q) = 0 as g —> oo, Gy(q) is decreasing over 0 < g
< g0, and Gy(q) is increasing over g, < g < oo. These results and (4.12)
imply that if the functions z(a) and #a) are such that (4.21) holds, then
the least constant B for which (4.1) is valid is finite and is the maximum
of Gy(q,) and G,(g,). This maximum is a minimum when and only when
g1 = q: = qo.

A consequence of the results which we have obtained is set forth in
the following theorem.

THEOREM 4.4 The constant Gy(q,) determined by (4.23) or (4.3) and
(4. 32) is the least constant with the following property. There exist func-
tions n(a) and () such that n(a) — oo, t{a) -0, and
(4.41) lim sup |oy(p, t) — s,] = Gi(go) lim sup |nu,|

a—>ee ‘R->o0

whenever Su, is a series for which lim sup |nu,| < co. Moreover the func-
tions n(a) and (@) are such that (4.41) is valid if and only if
(4.42) lim n(a)t(a) = q,.

>

Our results also show that for each ¢ > 0 the inequalities

(4.51) lim sup [oy(p, q/n) — s.! = Gy(q) lin”;_)sup | nat, |
and
(4.52) lim sup loy(p, 8) — sl = Gi(q) lirf.l;up | nat, |

are optimal inequalities and that the right members are minimal when
q = q,. It is not difficult to modify the above work to obtain the following

theorem.

THEOREM 4. 6. In order that functions n(@) and t(@) be such that
(4.61) lim |oy(p, ) — s,] =0

whenever Su, is a series for which lim nu, = 0, it is necessary and sufficient
that
(4. 62) 0 < liminf n(a)t(a) < lim sup n(a)t(a) < oo.

&> &>

It is a corollary of Theorem 4.6 that if lim nu, = 0, then 2u, is evalu-
able R, to s if and only if it converges to s. This corollary is a Tauberian
theorem of classical type, and numerous theorems of this type are given in
papers cited in the bibliography.

5. Tauberian relations involving R(p) and R,. For each ¢ > 0 the
two relations (2.62) and (4.52) imply that the R(p) transform o,(p,2) and
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‘the R, transform o,(p,t) of a series 2u, for which limsup |nu,] < co are
so related that the formula

(5.1) lim sup lo(p,t) — ox(p, )| = Cy lim sup |nu,|
> N->oo

holds when

(6.11) C, = Gig) + Gi(g)

This implies that if Su, is a series for which lim sup |7nu,| < oo, then the
R(p) and R, transforms are both bounded or both unbounded. It implies
.also that if Su, is a series for which lim nu, = 0, then the R(p) and R,
transforms are (whether they be convergent or divergent) equiconvergent in
the sense that

(5.12) lim [oy(p, 1) — ax(pt)| = 0.

In particular, a series 2u, for which lim nu, = 0 is evaluable R(p) to s (finite
-or infinite) if and only if it is evaluable R, to s.

For further study of matters relating to (5.1), we introduce two positive
functions #(a) and wv(a) such that #{a)—> 0 and wv(a)—>0 as @ —> o= and
.obtain information about the least constant C, which is finite or infinite
and depends upon p and the functions #«a) and v(a), such that -

(5.2) lim sup [oy(p, t) — o3(p, v)| = C lim sup |nu,]|
el K
whenever Su, is a series for which lim sup |nu,| < oo. Use of (1.2), Lemma

3.5, and the procedure of section 2 shows that the least constant C for
which (5. 2) holds is the constant C defined by

(5.3) C = lim sup Fy(a)
where
S 1/sinky =/siny\’
(5.31) Fs(a>_§?]< pn ) —cp(kv( . ) dy‘.
Letting Ma) be the function defined by
(5.32) Ma) = v(@)/Ha),
we put (5.31) in the form
. S 1!/ sinkt\” =/siny\
. 32) F@) =3 kt’( p” ) cf( ; ) dy ¢
‘which involves modified Riemann sums. In case
(5.33) 0 < A = lim inf Ma) < lim sup Ma) = A, < oo,
L a->eo

it follows from (5. 32) that
«5. 34) Fya) = o(1) + Gs(\)
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where

5.4 GO =f§i(ﬂ) |

!
i x

”(Si;yy dy

x

In case liminfMa) =0 or limsupMa)= oo, (5.32) shows that lim sup-
|Fya)] = oo. As a function of A, G4(\) is positive and continuous over
A>0and G A)—> o0 as A—>0 and as A— oo. Therefore G;A) has a
positive absolute minimum attained for at least one positive value A, of A.
This implies that the optimal constant C in (5.2) is always positive and
C = G4(\,). This constant C attains its minimum value Gs\,) when and
only when the functions #(a) and v(a) are such that w(a)/#a)—> A, In
particular for each A > 0 the inequality

(5.5) lim sup [o4(p, ) — o3($, M)| = Gi(\) lim sup | nu, |
is an optimal inequality and the right member is minimal when A = A,.

6. Riemann and Cesdaro methods. It is the purpose of this section to-
show that a simple Tauberian argument can be applied to prove that the
product transformations R(p)C, and R,C, are regular when =1, and to.
show how this result is related to others in the theory of Riemann and
Cesaro methods. The R(p)C, transform of a given series is, if it exists, the:
R(p) transform of the C, transform of the series, and R,C, is similarly
defined. :

For each real (or even complex) number r which is not a negative:
integer, the Cesaro transform oy’ of order r of a series Su, with partial.
sums s, is defined in standard notation by

(6.1) ) = SP/AD

where

(6.11) AP = (” * ’), SO =3 AP s = 5 AL .
k=0 k=0

The series is evaluable C, to L if ¢§> — L as n — oo. In order to obtain
the transform of the C, transform by a series to function transformation,.

we need the series to series version of C,. To get this, we use (6.1) and.
(6.11) to obtain

o _ " nln —k+ 7r)!
(6 12) g, kZ=O (n T r)'(n _ k)' 177
and
(6.13) o — “onln — kA4 ) (n+r)(n—kf
. o=

-k an—k+ r)y__ulc
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where in (6.23) and the following formulas we suppose that » = 0. Let-

ting «” + uf”® +...... be the series with partial sums ¢{’, we have )’ = af’
— o, and it follows from (6.12) and (6.13) that
. (n — k& + 1)! k
.1 » =T n k.
(6.14) “ n,CZ=0(n+r)!(n~/’e)!n—/e—l-ru’c

Thus (6.14) is the series to series version of the Cesiaro transformation, a
series Zu; being evaluable to L if the series 2u{’ converges to L.

Using the identity

k n+r

6. 15 ,,,,,,,, = - 1,
( ) n—k+r n—k+r
splitting the right member of (6.24) into two sums, and then using (6.22)
gives

(6.16) nul? = r(e " — o).
We are now in a position to give a simple proof of the following theorem
in which the transformation 7 can be either R(p) or R,.

THEOREM 6.2. If T is a transformation such that 3u, is evaluable T
to L whenever Zu, converges to L and lim nu, = 0 and if r > 0, then each
series evaluable C,_, to L is evaluable TC, to L.

The hypothesis that » > 0 and 2u, is evaluable C,_, to L implies that
Su, is evaluable C, to L. Thus ¢{™” - L and o’ - L and (6.16) implies
that nu$’ — 0. Since Zu{’ converges to L because o — L, it follows from
the hypothesis on 7' that 2«{’ is evaluable T to L. Thus 2u, is evaluable
TC, to L and Theorem 6. 2. is proved. Using standard terminology we say
that 7% includes 7', and write T, 2 7", and 7T, © 7T, if each series evaluable
T, to L is also evaluable T, to L, and we say that T, and T, are equivalent
and write Ty ~T, if Ty 27T, and T, DT, There are occasions upon
which it is convenient to recognize that the usual formulas defining C, have
no meaning when » = — 1 and to adopt a special definition under which
Su, is said to be evaluable C_, to L if Zu, converges to L and nu, — 0.
We do this now. Theorem 6.2 then reduces to the simple fact that if 7D
C_,, then TC, D C,_, when r > 0. This shows the if =1 and T D C_,,
then 7C, D C,-, © C, and hence TC, is regular. Thus R(»)C, and R,C, are
both regular when » > 1.

Beginning perhaps in 1904 when Fejér [6] proved that C, © R(4), many
authors have given relations among Riemann and Cesaro methods of various
orders. Hardy [8, page93 and page 371] gives a brief account of the subject
and some references. A more complete list of references is given in the
bibliography at the end of this paper. In particular, Obreschkoff [30] and
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Hirokawa [13] have obtained properties of transformations which are modi-
fications of R(p)C, and R,C,. The papers noted above show that if 7, is
one of R(p) and R, and p is a positive integer, then the first of the rela-
tions
(6. 3) Co1s C Tp, Tp (- Cp+5
holds when 0 <8 < 1. In case T, = R(p), it has been shown by Zygmund
[63] and Kuttner [22] that the second relation in (6.3) is valid when p =1
and when p = 2. However this second relation is certainly not valid when
T, = R(p) and p =3 because Kutter [22] has shown that if p =3 then
there exist series evaluable R(p) but not evaluable by the Abel power series
method which includes all Cesaro methods C, of order » > — 1.

If (6.3) holds, then
(6 31) Cp-1-:C, < T,C,, T,C, < Cp,sC,
and conversely. Using the well known fact that C,Cs~ C,.; when a@ > — 1,
B>—1,a+B>—1, wesee that if p=1,r> —1, 0< 3 <p, and 0 <
8<p+r, then Cp1.sC. ~ Cpiris and CpusC,. ~ Cpissr. Therefore when
p=1,r>—1,0<8<p and 0 <& < p + r, the relations (6. 3) and (6. 31)
hold if and only if

(6 32) C]H—r-—-l—s c Tpcr, Tpcr c Cp+r+8-
Introducing inverses of the Cesaro methods, we see that if (6.3) holds, then
(6. 33) Cp—-l—SCr-l c TpC;l, Tpc;l o Cp-.-BC;.],

and conversely. Using the well-known fact that C,C3' ~C,_g when a > —
1, B3>—1,a— B> —1, wesee that if p=1,r> —1,0<8<p, 0<8
< p — r, then Cp_1_5C;' ~ Cy_r_i_s and Cp.sC;' ~ Cp,rys. Therefore when p
>1,r>—1,0<8<p and 0 <& <p — r the relations (6.3) and (6. 33)
hold if and only if

(6.34) Corios < T,CFY, THCi' € Cporss.
In particular, putting » = p — 1 shows that (6. 3) holds if and only if
(6.35) C_sC T,Chy, T,Cili < Ciys.

In connection with the questions whether the relations (6.3) and (6. 35)
are valid and are optimal relations, it would be of interest to know whether
inclusion relations exist among the methods T,C;Xi. If it could be shown
that

(6.4) T, =T.C'cT,Ci'c T,.C:'C ...
or
(6.41) T, =T.C'DT,Ci'DT,C:'D ...

or
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(6.42) T, =TCi'~T,Ci'~TLCi' ~ ......
these results would be of intrinstic interest and would perhaps have signi-
ficant consequences.
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