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Introduction. G. Hochshild defined in [4] the relative cohomology group

of algebras as follows: let k be a commutative ring with unit element 1.

We consider an algebra A over k and its subalgebra B9 which has the unit

element 1 and is unitary. For a bi-A-module M, a k-nΛineax function./ of A

to M is called to be a cochain relative to B with coefficient M if/satisfies

the conditions

( 1 ) bf(al9 , an)=f(bal9 , an)

( 2 ) f(al9 9a%b9 ai+l9 , an)=f(alf , ai9 bai+l9 , an)

( 3 ) f(al9 ,anb)=f(al9 9an)b9 b^B9 ateA.

For n = 0, we set

C\A,B,M) = \m € M\(b 6 B), bm = mb\.

We define the coboundary operator D: C\A, B9 M) -> Cn+\A9 B9 M\ such that
n

( 4 ) (Df)(al9 ,Λ»+I) = aj(a%9 ,an+ι) + Σ ( - i y / ( α 1 ? ,atai+l9

ί = l

,Λ«+I) + (-l)n + 1/(^i, 9an)an+1.

Thus we obtain the relative cohomology group H\A, B; M).

In this paper, we shall show in § 1 that the reduction theorem of cup-

products holds just in the same way as in the case of finite groups which

R. Lyndon gave in [7], (c f. [3]. Systematic descriptions for the reduction

theorem of cap- and cup-products were given in [8]). Next, using this we shall

decide the relative cohomology groups of some modules considered in />-adic

number fields in connection with differents in § 2. (c f. [5]) In §3 we shall

decide the same groups as § 2 considered now in />-adic division algebras.

Recently I have seen that H.Kuniyoshi has also decided the (co-)homology

groups of the same modules, more generally considered in />-adic normal simple

algebras (see his forthcoming paper).

1) This discussion was published in Japanese in Annual Report of the Gakugei Faculty of
the IWATE UNIV., 14(1953), 1-13.

2) Formerly HlSASI YAMASAKI.
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1. A cochain f is called normal with respect to B or simply normal
if f(al9 , an) = 0 whenever any one of at belongs to B. All cochains
considered may be assumed to be normal almost in the same way as seen
in p.p. 61-63 of [3].

Let J be a free ring over B, and F be a residue class ring modulo the
ideal R, which is generated by a a —a a, a € k, a £Ξ F, therefore an element of
F commutes with an element of k. We shall call F a free ring over B com-
mutative with k. Moreover we assume that (F/R) ̂  A with P: F-+ A.

A cochain / over F is called to be right-invariant if f(al9 a2i a3, ) =
f(a l9a2,a3, ), whenever a2 = a 2, a3 = a39 mod. R9 and is called to be

fully invariant if f(al9a2ί ) = f(a\, a 2, ), whenever ax = a u a2 = a2, ,

mod. R.

LEMMA 1. If f is an n-cocycle over F, n > 1, then f = Duf, with (n —1)-
cochain uf. Accordingly Hn(F,B) = 0 for any bi-F-module. Moreover, if f
is right-invariant, then we see that Uf is also right-invariant.

PROOF. We shall show, at first, that the {n — l)-cochain uf for / can be
obtained by the conditions (5), (6) :

( 5 ) u(b9a2, , Λ B + 1 ) = 0, b € B9 a, € F.

By x we denote a free generator of F or an element of B, then it holds
that

(6 ) u(xau a29 ) = xu(al9 a2, ) —fix, al9a2, ).

In fact, by the induction on the length of the first variable together with
(5), (6) and the normality of / , we see easily that (1), (2), (3) and the nor-
mality hold for u. It follows from this that u(xs a2, ) = 0, if we set ax — 1
in (6). We have, therefore, that

Du(x9 a29 ) = xu(a2, ) —u(xa2, )

= f(x,a2, ).

Consequently, also the induction on the length of the first variable yields that
/ = Du. Indeed if we assume inductively that

Du(al9 a2, ) = f(al9 a2, )

then, since f is a cocycle we have that

Dφu-f)(x,aτ,a%, ) = 0.

By the inductive assumption the left hand side reduces to

xφu -/)(«„«„ ) - {Du -f)(xauat,
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= — {Du —f)(xal9 a2, ).

Thus, we obtain

Du(xaτ, α2, ) = f(xal9 a2, ),

i. e. Du = f.

If f is right-invariant, we see easily by induction that u is also right-

invariant. From these facts, in view of the linearity of u, our assertion

follows immediately. q. e. d.

We shall consider an A-module M as an F-module induced by P:(F/R)

^& A. For a right-invariant (n — l)-cochain u, r in R, it follows, from the

facts that ra2 £Ξ R and the right-invariant ness of u, that

( 7 ) Du(al9r9ai9 ) = aτu(r9ai9 )~u(a1r,a2, ) + u(al9ra29 )

= aτ u(r, a2, )-u(a1r, a2, ).

If Du is also right-invariant, we have

( 8 ) axu(r9aι9 ) = u(axr,a2, ).

The function u with (n — 2) variables on F given by

( 9 ) [u(a2, )] (r) = u(r,a2> )

takes, therefore, its values in Hom(R, M), which is the group of all F-left-

homomorphisms of R into M.

Hom(Λ, M) is a right-A-module with A-operators such that

(10) [hoa] 0) = h(r)a h € Hom(#, M), a € F, a e A, r, r € R.

Whenever P(a) = a, we put

(11) [αoA] (r) = h(rά),

then it holds that [_r °h~\(r) = h{rr) = r h(r), because h is an F-left-homo-

morphism. Thus Hom(i?; M) is a left-A-module with A-operators (11), because

rh(r) = P{r)h(r) = O Aίr) = 0.

Now if b in B, it holds that

[u'(fi a29 )](r) = u{r9b a2) ) = u(rb,a2, ) = [u'(a2, )\rb)

= [b°u(a299 )](r),

and this yields (1) of u. (2) and the normality of u follows from those of u.

( 3 ) is derived from the fact that

[u\ ' 9anb)]{r) = u(r9 ,anb) = u{r9 , an) b = [u\ , an)°b] (r).
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And then since u is right-invariant, u is also fully invariant, therefore, we
may regard u as a cochain over A, that is,

u € Cn-\A,B;Hom(R9M)).

Now that Du is right-invariant and DDu = 0, we may apply this for Du=f.
Thus we conclude t h a t / ' € Cn~\A, B, HomCR, M)).

We have then, since ra2 ̂  i??

[/'(Λ2, , Λ J ( Γ ) =f(r,a2, , O = Du{r, a2i , an)
n-ι

= r^ 2 ) ) - u{ra2, )+Σ(-l)'w(r, ) + (-l)\(r, , an^)an
ί = 2

= P(r>(«2, ) - ίu(a3, )](r Λ l )

+ (-1)V(«2, K](r) = - lDu\au ,an)\r).

Consequently, we have

LEMMA 2. If u is a right-invariant (n — 1)-cochain over F9 and iff
= Du is also right-invariant, then

(12) / = - Du'.

If u is a right-invariant and f is fully invariant, then Du' =f' = 0, whence
u in Zn-%A}ByHom(R,M)).

PROOF. We may show only the latter, but it is clear from

COROLLARY 2. 1. If f is a righ-invariant n-cocycle over F, where n>l9

then
/ ' = — Du f, a coboundary; iff is fully invariant, then Du =—f' = 0,

and u is in Zn'\A,B}ΐlom{R,M)).

PROOF. From LEMMA 1, a right-invariant / is Duf with a right-invariant
Uf9 and then, we can apply LEMMA 2. q. e. d.

For a cochain / over A9 we shall now define a fully invariant cochain
fP such that

fp(aτ,a2, ) =f(Pa1,Pa2, ),

where P is the homomorphism F -*• A ̂  (F/R). The correspondence
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f-* fp is univalent, and that, preserves (1)—-(4), therefore, henceforth we

shall not distinguish / and fP.

Thus every {n + 2)-cocycle / over A may be regarded as a fully invariant

cocycle over F, and as such determines, in accordance with corollary 2.1, a

cocycle uf in Z\A, B, Hom(i?, M)\ therefore the map Wf= u /, for all / in

Zn+\A, B; M) establishes an A-homomorphism

(13) W: ZW+2(A, B, M) -> Z\A, B, Hom(£, M)].

LEMMA 3. We assume that A has a linearly independent basis over B

containing 1. For every cochain w in Cn[A9 B,Hom(R, M)] there exists an

{n + l)-cochain u over F such that u and f = Du are right-invariant, and

that u = w.

PROOF. We shall take b in B as a representative of the class modulo

R containing b, then 0 represents 0-class. Further we shall assume that the

representative of the class containing P(a) is also a? then it holds that

P(ab) = P(a)P(b) = P(a)b.

Thus A has a linearly independent basis over B containing 1, and we

may therefore preassign bά, a b as the representative of the class containing

bP(a)9 P(a)b respectively.

Let u be a function with (/2 + 1)-variables on F such that for r in R

(14) u(a +r,au ) = [w(P(α2), )](r),

then u is right-invariant, for w is fully invariant. Set a = 0 in (14), then

uir,a%, ) = [u\au )] (r) = lw(P(a>), )](r),

and this means that u = w.

This u is an element of Cn+1(F,B; M). Indeed, since u(b, a2, ) = [w

( )](0) = 0, u is normal with respect to the first variable, and the nor-

malities relative to the remaining variables follow from those of w. Next we

shall show (1), (2), (3) for u. Since ba is the preassigned representative and

br is in R> it holds that

u[b(a + r\ ] = u(ba + br, ) = [w{ )](*r)

= b[w( )](r) (because w is an F-left-homomorphism.)

= bu{a + /, ),

thus (l) holds for u. (3) follows from

«( ,anb) = wί ,P(aM(r) = w[ ,P(an)&](r)

= wί ,P(an)-](r)b = u( ,an)b.
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It holds further that

u\a + r9ba29 ] = w[P(ba2\ ] (r) = w[bP(a2), ](r)

= [b°w[_P(a2\ ]] (r) = w[P(a2)9 ] (rb) = u(rb9a2 )

= u(ab + rb, a29 ) = u[_(ά + r)b, a29 )],

because άb is the preassigned representative, this is (2) for the first variable.

Finally the fact that

u[_a + r, a2> , aφ, flt+i, ] = u[a -f- r, a29 , aί9bai+1, ]

is the direct consequence of (2). Thus u is really in Cn+1(F9B9 M).

As was seen above, u is right-invariant and u = w. Then it holds that

au{r9a29 ) = aw[P(a2\ ] (r) = w[P(a2\ ](αr)

= u(ar9a2, ) (because ar is in R),

therefore, we obtain that for f = Du9

(15) f(aΊ9r9a29 ) = 0.

Thus / is invariant with respect to the second variable, and the invariant-

ness for a29 follows from those of u, therefore, we see that f is right-

invariant by means of its linearity. q. e. d.

Now the proof of the reduction theorem will be carried out just in the

same way as in [8]. That is,

LEMMA 4. Every cocycle w in Zn (Λ9 B, Horn (R, M)) for n > 0 is

cohomologous to Wf for some cocycle f in ZnΛ\A9 B; M), that is, W induces

an epimorphism W of Hn+2(A,B; M) onto Hn(A,B; Hom(i?,M)).

LEMMA 5. Iff is an (n + 2)-coboundary in E"\A9B9M)9 and n > 0,

then Wf is a coboundary in B\A9 B9 Ήom(R, M)).

LEMMA 6. / / / is in ZnΛ\A9B9M\ and Wf is in B\A,B9 Hom(R9M))9

then f is in Bn*2(A9 B9 M\ thus9 W is an isomorphism.

(For the proofs of these lemmas, see [8].)

This completes the proof of the CUP PRODUCT REDUCTION THEOREM'3)

Let k be a commutative ring containing the unit element 1, B be a k-

algebra containing 1, and A be a k-algebra containing B and having a linear-

ly independent basis over B. Suppose that F be a free ring over B com-

mutative with k-element, and P be the canonical homomorphism F onto

3) A generalisation and the dual for cap product have been obtained in [8].
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(F/R)9 which is isomorphic onto A. Then the map W in (13) induces an

isomorphism

Hn+2(A, B, M) ^ H\A, B, Hom(R, M)\ for n>0r

where a bi-A-module M is considered as an F-module induced by P,Hom(jR,M)
is the group of all F-left-homomorphisms, and A operates on Hom(i? ,M) as

follows -.for h € Hom(JR, M\ r € R, a € A, P(a) = a we define [W](r) =
h(f)a and [α°Λ](r) = h(ra).

2. Let k be a p-adic number field, K be its extension of a finite degree,.

L be the maximal unramified field between k and K, and D be the different

of (K/k); B,A,BL be the principal order of k9 K, L respectively, P be the

prime ideal of A, and M be the group (A/Pr), r = 1,2, Then Y.Kawada

showed the following theorem and characterized the different.

THEOREM I. (Y.Kawada)4) For i = 1,2,

(16) H\A9 B, M) * H\A, BL> M)

and

We shall show further

COROLLARY. (16) and (17) remain valid for every positive integer

i = = 1> ^> 39

PROOF. In the application of the reduction theorem, we may take the

polynomial ring B\_x\ of one variable x over B as a free ring F over B (the

basic ring k there is now the rational integer ring z.), since all rings con-

sidered are commutative. Then A has a minimal basis over B consisting of

one element θ9 because the residue class ring (A/P) is a separable extension

of that of ^(Theorem 11 of IV, 6 in [1]). Then the ideal R in the reduction

theorem is the principal ideal generated by the monic irreducible polynomial

f(x) over B, of which root is θ. Since A, (A/Pr) is commutative, it holds

that for a, β in F, g in Hom(#, (A/Pr)\

g{af{χ)β) = aβg(f{χ)) (mod. Pr\

therefore, g is decided uniquely if g(f(x)) (mod. Pr) is given. From this we

4) In [5], this was proved for the commutative cohomology groups, i.e., f(a, b) =f(b, a)
But even if we except this commutativity and so take our relative group, this theorem

remains valid with the proof slightly modified. Therefore we shall omit the proof.
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see that

Therefore our reduction theorem reduces to

Hn+2(A, B9 M) * H\A9 B9 M\ n>0.

Together with (17) in THEOREM 1, we obtain (17) in our corollary.

Similarly we obtain (17) in the case of (A/BL). Now that L is the maximal

unramified extension between k and K, the relative different of (K/L) is

nothing but that of (K/k).

Combining both (17), we have (16) in our corollary. q. e. d.

3. Let k be also a />-adic number field, 0 be its principal order, © be

a central division algebra over k9 91 be its principal order, $ be the extension

in SI of the prime ideal p of 0, π be a prime elment of 5β. If [©:&] = n2

9

there exists an unramified extension of k such that © 3 L Z) k9 \L : k~] = n.

And if o/p * GF(#),

Let JB be the principal order of L, and $z be the extension in B of p.

As a generator of the Galois group of (L/k), which is the cyclic group of the

order n9 we may take σ with ωσ = ωQ. Then © is represented as a cyclic

crossed product such that

© = L + LIT 4- + Lπn-\

TΓCL — aTfτr9 a in L, where T is σ with (/, n) = 1, and 7rn is a prime element

of p, which we shall again denote by p9 and may be considered as in 0.

Regarding 0, SI, B as algebras over z; Y.Kawada showed in [6]

THEOREM 2. (Kawada) For r>l9 we

f, 0, ( s t / D ) « ίΓ(Sί, β,

^ 0, if r=l

^& the additive group of GF(q) if r φ l (mod.w).

For the 2-dimensional case we shall show

THEOREM 3. If r> 1, *Aen

» ίΛe additive group of GF(qn), ifr^l (mod. w)

^ the additive group of GF(q)f if r Ψ 1 (mod.w).
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PROOF. For / € Z2(δί, o, (8l/$r)), a € Si, it holds that

cojf(ω\ a) - / (ω j + i , a) + Λ< ®'α) ~ / « ω') α = 0 (mod. $ r),

we have therefore

(19) f(ω\ a) = ωR-Jf(ω^9 a) - ω*-Jf(ω>9 ω'a) + » B " J / « ω V

where qn — 1 = R. By adding up (19) from j = 0 to j = R — 1, we have
R-l

ΛΛ»'. α) = Σ ω "" ' f(ωi+<, a) -
j = ΰ

where

The first term on the right reduces to Rω{g(a) by taking the sum with
respect to j + i = k. On account of R φ 0 (mod. $ r), we obtain that /(ω j, α)
= Dg(coJ

9 a), therefore, we may consider from the beginning that f(<*>\ a}
= 0. Consequently (1) for / follows from the Z>relation

^fia, β) ~ /(*>'*, β) + /(»', Λ/S) - f(ω9 a) β = 0.

Similarly by setting ( ^f(a,^J)^ J )/R = fl(α), we may consider

that f(a, w7) = 0, and (3) follows also from the /^-relation.
Thus (18) is proved.
Now we shall take a system of representatives \ t in L of (B/?$L)9 then

every element of 9ί has the unique representation ̂ λi7r\ For a cocycle f in

Z2(δί, β,($t?/2Γ))> the β-linearity (1),(3) yields that

(20) /(2_ ^7r, 2^ λ ^ j Ξ 2- λ ^ λ
 J Λπ > *)

Accordingly, to decide /, we have only to assign

f(τr\ τrj) O^i, j ^ n - 1.

Now in the formula

we have if i =4= 0, k 4= 0,

J\7Γ , 7Γ ) = J^ ̂ 7Γ , 7Γ j V^mOQ. ip^.

We can therefore set

(22) /Or', τrθ Ξ /^i+j (mod. 5P)
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independently of the division i -f j into the sum of i and j.

If we define a B-linear g such that, g(π) = μ%. 0 ^ i ^ n — 1, then g is

decided over Sί, because 7rn — p =0. In the formula

(f - Dg) (w', τrθ = /(TΓ*, ir>) - IT* </(7rO + <7(τr'+') - gfr'y (mod. Sβ),

if ί =4= 0, j 4= 0, then we have writing (/ — Dg) simply /

<23) ftf, τrθ == μt+} = 0 (mod. SB).

In the similar way as from (22) to (23), we have inductively that μi+j = 0

(mod. $r)» (ί 4= 0, j + 0). We have further that /(I , «•') s /(*•', 1) = 0(mod. $ r),

therefore, it holds that

(24) μo = μχ= = /*»-i = 0 (mod. «βΓ).

Let Z' be the group of all cocycles as (24), then we may consider that

H a = (Z/B) *s Z'/ (Z' Π B)

For D&' in (Z' Γϊ B) = B', 0 ^ i + j ^ n - 1, it holds that, from (24),

Dg(ir\π>) = 7r^(τrO - pfcr'*') + ^ V = 0,

we see therefore that

(25) Dg in B' operates as a differentiation on π with 0 ^ i ^ n — 1.

When 0 ^ i + j ^ w — 1, 0 ^ j + έ ^ w — 1, since it follows from (21),

(24) that f(7rί+i

} '7rk)^f(7rί

97rj+k)9 we may set independently of the division

of i and j into the sum i + j

(26) /(«•' , τ r θ = μ t + } , 0^i, j S n - l .

If we set j = n — 1 — z, k = n — j in (21), then z, 7, ^ are smaller than

n, therefore it holds that

irV» - y^.+i + f(τr\ τrn) 4- /(τrc, TT-OTΓ* ^ 0.

The third term on the left vanishes, because 7rn = p and / is β-normal, and

the fourth term also vanishes by (24). We have thus πμn = μn+i, and similar-

ly M'n+k — Pn71"70 by setting i = n — j, i = n — 1 — k in (21). Consequently we

obtain

(27) 7rVw = Λ+t = Λ77"*-

Conversely we shall show that whenever μn is given so as to satisfy (20),

(24), (26), (27), then / becomes a cocycle relative to B, and that, its μn is

nothing but the given μn.

(a) If i + j<ί n, j+k<C n, the first and fourth terms on the left of

(21) vanish from (24) and the second and third vanish from (26).
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(b) If i -f- j ^> n9 j + k < n, or i -\- j < n, j + k > w, we shall show

-only the former. The latter is proved similarly. Now we set i -h j = n + a9

then a < n. The first of (21) vanishes from (24). The second is

then a + k < n since j + k < n, therefore, this vanishes also from (24). Finally

the third and the fourth cancels each other :

(c) lί i -{- j > n9 j Λ- kl> Πy put i -\r j = n + a, j + k = n + b, then

Λ + k = i -f έ and

= τrVVM - pf(τra,

= 0 (from (27)).

Thus f is well determined whenever μn is given as (27). We shall examine

this condition: τrμn = /tnτr in detail. Suppose that

•(28) μn = λ0 + λxTΓ + + λr_1w
r-1 (mod. Φ),

λ, are representatives of (B/%ι), then from the condition we have

0 = iτμn — μnτr = (λo

τ - λ0) + (λ/— λ!>r+

+ (λ r_/ - λ , . , ) ^ " 1 + (λr ./ - λ ^ V (mod. $ r)
W - l

vSince an element of ΰ λ = ^ a^1\ at in 0, having the property Xτ — \

= Σ«t((®<lf - (®f)) = 0 (mod. 5βz) is with Λ i ΞΞ 0 (mod. 5βz) ί = 1, , (n- l )

i. e., λ is an element of 0. Therefore,

(29) In (28) λr_j w <2 representative of B/^βL, λ0, λx, , λr_2 αr^ representa-

tives of o/p.

Since / is further normal relative to B, it holds that

Λ ω = f(if-\ TΓ) ω = /(TΓ^ 1 , 7rω) == /(TΓ^ 1 , ωV)

EΞ / ( T Γ ^ 1 ωΓ

? TΓ) E= / ( β V - 1 , TΓ) ΞEi /(ωTΓ^1, TΓ)

= ωf(irn'ί9τr) Ξ= ω ^ ?

ω/xw — yLtnω = λo(ω — ω) + λ/ω 7 — ω)ττ +

+ λ , . ^ ^ - ^ - a ) ) / ' 1 EE- 0 (mod. $ r).

Accordingly, let 0 be also the representative of the 0-class of (B/?βz),
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then we see that
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( 3 0 ) { * '
I if i

if i = O(mod. n), then every λ4 is an arbitrary representative of

0(mod. n), then \ = 0.

From (29) and (30) we obtain the condition of/ to be a cocycle by means

of μn:

/(a) if r — 1, then we may take an arbitrary representative oj

I as λ0 in μn = λ0 (mod. $).

I (b) ί / r ^ l (mod. n) say r = tn + 1,

I /w-w = A 0 -r A n7r -f- + Λ(ί_i) n 7r v •+• A ί r ι7r ( m o d . ip

(31) ί

if rψ 1 (mod. w), 5Λy r = tn + s, s 4= 1, 0 ^ 5 < w,

/*„ = λ0 + λnirn + + λ ( ί.1 ) r ιτr ( ί-1 ) w + X i r y
w (mod. $ ί w + s ) .

1 (0/P)(0/p) (0/p) (0/p)

Next we shall consider the condition of μn to be a coboundary Dff.

Since ^ is jB-normal? we have

ωT£for) = #(*>Vj = g(τrω) = g(τr)ω.

Thus, for

g(τr) = \0 + λ l7r + +λ r_ 1τr r- 1 (mod. φ r),

it holds that

- ω)

(mod. $0-

From this we may take arbitrary \ if i = 1 (mod. w), and λ t = 0 if / Φ l(mod. w).

Consequently, #(τr) reduces to the form :

(32) g(τr) = λ l W + X27rn+1 + + X ( i_1 ) 7r
( i-1 ) n + 1 + λ ί7 lτr ί7 i+1 (mod. $ r )

By means of (25), we shall compute μn of Dg in ΰ ' , taking the fact

g(τrn) = 5f(/>) = 0 in account:

7Γ7 1
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λ2τr2 n + + \w**

^π71 + (Sp{m) λ2) τr2n

Evidently,

and then (27) holds also for μn of Dg. (L/k) is unramified and (B/^L) is a

finite field, therefore, (o/p) is filled up with {Sρ^Lm λ) (mod. 5βz), [2]. Con-

sequently we see for D#,

(33) μn = 0 + λn τrn + X2n τr*n + + λ ίrι τrίW (mod. $ r )

(o/p) (o/t>) (o/p)

Whenever ^ n is given, / is uniquely decided by (20), (24), (26), (27) and

its linearity. Therefore, in comparision with (31), (33), we have our assertion.

That is, H2 is isomorphic with (B/^L) as a module if r = 1, and if r φ l

(mod. n) only the first (o/p) remains. At last, if r = 1 (mod. ή), the first

term (o/p) and the last term (jB/5βχ)/(o/p) remain. Therefore, combining

these, ί P is isomorphic with (J5/5βz) as a module. q. e. d.

THEOREM 4. If n>l, there exist the following isomorphisms :

PROOF. We shall give the proof by applying the reduction theorem.

Now, SI is generated by the single element TΓ over B and the basic ring is

the ring of all rational integers, and then F is a usual free ring of one

variable over B. The kernel R of the natural homomorphism from F onto

SI, which maps X to TΓ, is an ideal generated by

A = Xn - p, A' = Xω - ωQi X,

where (i, n) = 1.

For the simplicity from now on we shall denote f(al9 a29 <z3, , an+2)

of Hn+2, u{ ,<23, ,^n + 2) constructed by f9 in (5), (6), and the corresponding

u of Hn defined by (9) u(r, az, , an+2) = [u(az, , αn + 2)] (r) r € R, by
f(ax, a2), u{r) and w(r) respectively.

Then, if έ is in B, it holds, as will be seen below, that

<34) u(AX) = ίί(XA) = X«(Λ) (mod. 5βr)
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(35) u(Ab) = u(bA) = bu(A) (mod. 5βr)

(36) u(A'X) = u{XA') = 0 (mod. ψ)

(37) u(A'b) = «(iii') = 0 (mod. ψ)

Even if we put u in place of u, the above four equalities remain valid.

Thus for a, cc, β, β' of F it follows from the linearity of u that

uXaAa 4- βA'β') = aa'w'(A) (mod. $ r)?

which means that w' is decided if we assign u\A) (mod. 5βr). Since W:f-+u

is an epimorphism, therefore, we have an isomorphism

if "[81, ^ , Hom(i?, Λf)] ^ i/n(?ί, 5, Λf),

which maps [u(a3, ,an+2)'](A) to u(a3, , an+2).

Consequently, our reduction theorem means that ίίn+2[Sί, B, (Sl/̂ )3r)] ^s

i/r'[5ί, 5, (δl/$r)]> from which, together with theorems 2,3, our assertion-

follows immediately.

Now, we shall show (34), ,(37), (writing = in stead of = ) .

It holds that u(b) = 0, b in B, and that, if we put aτ = 1 in (6),

(38) u(X) = 0.

From this, and (6) with ax — X, we see

(39) u(X*)= -f(X9X).

Similarly it follows inductively from / ( , 1) = 0 that
i

(40) u(Xl) = - Σ,

In the same way we have
i

(41) n(χ<b) = - Σ
J=ι

Thus we obtain that

u(XA) = Xu(A)

= X[u(Xn) - u(pj]

= Xlu(Xn)l

Accordingly (40) yields that

f(X, X'-'b).

(from (8))

(by the linearity)

(from (5)).

(42) u(XA) = - Σ JT-'+ 1 f{X, X1-1).

On the other hand

u(AX) = u(Xn+1 - pX) = u(Xn+1) - u(pX)
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= u{Xn+1) - pu{X) (by the S-normality)

= «(X"+1) (from (38))

= u(Xn+J) - u(X)p = u(Xn+1) - u(Xp)

= «(X"+1 - Xp) ~ u(XA),

thus (34) is obtained. In the similar way as (42) we have
n

(43) u(bA) = bu(A) = - b Σ Xn-'f(X, X'-').
iml

Meanwhile it holds that

u(Ab) = u(Xnb - pb) = u(Xnb) - u(pb)

= u(Xnb) (by the β-normality)

where / is fully invariant, and then modulo R that

n

= -ΣX1-1 f{Xbf~"x'-χ) (by the β-normality)
i = l

w

= - Σ Z""' /(έ7" X, X'-1). (since / is fully invariant)
4 = 1

n

= - Σ X " - V /(X.X*-1) (by the β-normality),
lei

where β>gi = ω'Γ. Since Λί is an f-module induced by the natural homomor-

phism of F onto A, we see by computing modulo R that
n

= - Σ b1™ X*-'AX, X1"1)

= -Σb xn-' AX,x'-1).
i = l

From this together with (43) follows (35).

As for (36),

u(XA') = Xu(A') (from (8)),

further from (6) and the B-normality of u,

= X(Z«(ω) - f(X, ω) - ωτ

u(X)),

= 0,
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because of the .B-normalities and the third by (38). Similarly we have

u(A'X) = u(XωX - crχη

= Xu(ωX) - f(X, ωX) - « Γ

K (Γ)

= Xo>u(X) - f(Xco,X) + ωrf(X, X)

- f(X«>, X) + f{«>τX, X)

= -f(A',X)

= 0 ,

since / is fully invariant.

Thus (36) is proved. Finally as for (37),

uibA') = bu(A') = bu(X<o) - bu(ωrχ)

= bXu(ω) - bf{X,<o) - bωτ

u{X)

= 0,

because u and f are .B-normal. By the same reason we see that

u(A'b) = u(Xωb) - u(ωrXb)

= Xu(ωb) - f{X, ωb) - ωΎu{Xb)

= - ωτXu(b) + ωτ /(X, b)

= 0,

so that (37) is also shown and we have proved all our assertions.

q. e. d.
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