SOME INTEGRABILITY THEOREMS OF TRIGONOMETRIC SERIES AND MONOTONE DECREASING FUNCTIONS

Satoru Igari

(Received October 7, 1959)

1. Let $\left\{\lambda_{n}\right\}$ be a decreasing sequence tending to zero as $n \rightarrow \infty$, and put

$$
g_{1}(x)=\sum_{n=1}^{\infty} \lambda_{n} \cos n x, \quad h_{1}(x)=\sum_{n=1}^{\infty} \lambda_{n} \sin n x .
$$

Let $g_{2}(x)$ and $h_{2}(x)$ be both non-increasing functions bounded below in $(0, \pi)$ and such that

$$
\begin{equation*}
x h_{2}(x) \in L(0, \pi), \quad g_{2}(x) \in L(0, \pi) \tag{A}
\end{equation*}
$$

We put $a_{n}=\frac{2}{\pi} \int_{0}^{\pi} g_{2}(x) \cos n x d x, \quad b_{n}=\frac{2}{\pi} \int_{0}^{\pi} h_{2}(x) \sin n x d x$.
Denote by $L(x)$ a slowly increasing function, that is, $L(x)$ is positive, continuous in $x \geqq 0$ and for any fixed $t>0$,

$$
\frac{L(t x)}{L(x)} \rightarrow 1 \text { as } x \rightarrow \infty .
$$

S. Aljančić, R. Bojanić and M. Tomic established in the paper [2] that $x^{-\gamma} L(1 / x) g_{1}(x) \in L(0, \pi)$ for $0<\gamma<1$, if and only if $\sum n^{\gamma-1} L(n) \lambda_{n}$ converges, and that $x^{-\gamma} L(1 / x) h_{1}(x) \in L(0, \pi)$ for $0<\gamma<2$, if and only if $\sum n^{\gamma-1} L(n) \lambda_{n}$ converges.
D. Adamovic proved in the paper [1] that $x^{\gamma-1} L(1 / x) h_{2}(x) \in L(0, \pi)$ for $0<\gamma<2$, if and only if $\sum n^{-\gamma} L(n) b_{n}$ converges absolutely, and that $x^{\gamma-1} L(1 / x)$ $g_{2}(x) \in L(0, \pi)$ for $0<\gamma<1$, if and only if $\sum n^{-\gamma} L(n) a_{n}$ converges absolutely.

And recently Chen Yung-Ming showed the interesting theorems which are related to the above results [3].

In this note, we shall make some inprovement of the inequalities in T. M. Flett [4] and apply it to the generalization of those four theorems.

In this note, the condition (A) is not assumed preliminarily.
If $p=1$, our theorems $2-5$ coincide with the just mentioned theorems.
The method of proof in Theorem 1 is due to T. M. Flett [4]. Theorems $2-5$ correspond to Theorems 2-5 in G. Sunouchi [5] and our proofs will go along the line of [5] respectively.
2. The slowly increasing function $L(x)$ has the following properties (for (I), (II), (III) see [2]):
(I) $\frac{L(t x)}{L(x)} \rightarrow 1$ as $x \rightarrow \infty$ uniformly for $0<a \leqq t \leqq b<\infty$.
(II) $\quad x^{\alpha} L(x) \rightarrow \infty, x^{-\alpha} L(x) \rightarrow 0$ as $x \rightarrow \infty$ for every $\alpha>0$.
(III) If we set for $\alpha>0$

$$
\begin{aligned}
& \widetilde{L}_{1}(x)=x^{-\alpha} \operatorname{Max}_{0 \leqq t \leq x}\left\{t^{\alpha} L(t)\right\}, \underline{L}_{1}(x)=x^{\alpha} \operatorname{Min}_{0 \leq t \leqq x}\left\{t^{-\alpha} L(t)\right\}, \\
& \bar{L}_{2}(x)=x^{\alpha} \operatorname{Max}_{v \leqq t<\infty}\left\{t^{-\alpha} L(t)\right\}, \underline{L}_{2}(x)=x^{-\alpha} \operatorname{Min}_{x \leqq t<\infty}\left\{t^{\alpha} L(t)\right\},
\end{aligned}
$$

then $\quad \underline{L}_{k}(x) \sim L(x)$ as $x \rightarrow \infty k=1,2$.
(IV) For $\alpha>0$, we have

$$
\begin{aligned}
& L(t u) \leqq A_{1} t^{-\alpha} L(u) \text { for every } u \geqq 0,1 \geqq t>0, \\
& L(u / t) \leqq A_{2} t^{-\alpha} L(u) \text { for every } u \geqq 0,1 \geqq t>0,
\end{aligned}
$$

where A_{1}, A_{2} are positive constants depending only on α and L. We give a proof of (IV).
By the first equation in (III), we obtain

$$
u^{-\alpha} \operatorname{Max}_{0 \leqq t u \leqq u}\left\{(t u)^{\alpha} L(t u)\right\} \leqq A_{1} L(u) \text { for every } u \geqq 0 \text {, }
$$

where A_{1} is a constant independent of u, and we get the first inequality.
For the second, a proof is similar.
3. The inequalities in the following Theorem 1 are to be interpreted as meaning, "if the integral on the right is finite, then that on the left is finite and satisfies the inequality." The letters $B, B_{1}, B_{2}, \ldots \ldots$ are positive constants which depend only on L and parameters concerned in the particular problem in which it appears.

THEOREM 1. Let $f(x) \geqq 0$ in $x \geqq 0$, and let $F(x)=\int^{x} f(u) d u$. If $q \geqq p \geqq 1$ and $\gamma>-1$, then

$$
\begin{align*}
& \left\{\int_{0}^{\infty} t^{-1-q \gamma}\left(\frac{L\left(\frac{1}{t}\right) F(t)}{t}\right)^{q} d t\right\}^{1 / q} \leqq B\left\{\int_{0}^{\infty} t^{-1-p \gamma}\left(L\left(\frac{1}{t}\right) f(t)\right)^{p} d t\right\}^{1 / p}, \tag{1}\\
& \left\{\int_{0}^{\infty} t^{-1-q \gamma}\left(\frac{L(t) F(t)}{t}\right)^{q} d t\right\}^{1 / q} \leqq B\left\{\int_{0}^{\infty} t^{-1-p \gamma}(L(t) f(t))^{p} d t\right\}^{1 / p} . \tag{2}
\end{align*}
$$

PROOF. First, we show (1) in the case $q \geqq p>1$.

Put

$$
J=\left\{\int_{0}^{\infty} t^{-1-p\rangle} L^{p}\left(\frac{1}{t}\right) f^{p}(t) d t\right\}^{1 / p},
$$

and let λ be a constant such that $\lambda<1 / p^{\prime}\left(1 / p+1 / p^{\prime}=1\right)$. Applying Hölder's inequality with indices q, p^{\prime} and $p q /(q-p)$, we have

$$
\begin{aligned}
& F(t)=\int_{0}^{t} f(u) d u \\
& =\int_{0}^{t}\left\{u^{\lambda+\frac{(1+p \gamma)(q-p)}{p_{t}}} L^{-\frac{q-p}{q}}\left(\frac{1}{u}\right) f^{\frac{p}{q}}(u)\right\}\left\{u^{-\lambda}\right\}\left\{u^{-p-p\rangle} L^{p}\left(\frac{1}{u}\right) f^{p}(u)^{\frac{q-p}{p_{i}}} d u\right. \\
& \leqq\left\{\int_{0}^{t} u^{q \lambda+\frac{(1+p \gamma)(\gamma-p)}{p}} L^{-(u-p)}\left(\frac{1}{u}\right) f^{p}(u) d u\right\}^{1, q}\left\{\int_{0}^{t} u^{-p^{\prime} \lambda} d u\right\}^{1 / p^{\prime}} \\
& \text { - }\left\{\int_{0}^{t} u^{-1-p \gamma} L^{p}\left(\frac{1}{u}\right) f^{p}(u) d u\right\}^{q-p} \\
& \leqq B_{1}^{1 / p^{\prime}} J^{1-\frac{p}{q}} t^{-\lambda+\frac{1}{p^{\prime}}}\left\{\int_{J}^{t} u^{a \lambda+\frac{(1+p \gamma)(q-p)}{p}} L^{-(q-p)}\left(\frac{1}{u}\right) f^{p}(u) d u\right\}^{1 / q},
\end{aligned}
$$

where

$$
B_{1}=\frac{1}{1-p^{\prime} \lambda}
$$

Write $w=q(\lambda+\gamma+1 / p)>0$ (This is possible since $\left.\lambda<1 / p^{\prime}\right)$.
We have $t^{-1-\rho \lambda-q} F^{q}(t) \leqq B_{1}^{\gamma / p^{\prime}} J^{(1-p)} t^{-1-w} \int_{0}^{t} u^{w-1-p \gamma} L^{-(q-p)}\left(\frac{1}{u}\right) f^{p}(u) d u$,
whence

$$
\begin{aligned}
& \int_{0}^{\infty} t^{-1-\imath \gamma-q} L^{q}\left(\frac{1}{t}\right) F^{q}(t) d t \\
\leqq & B_{\mathrm{I}}^{q / p^{\prime}} J^{(q-p)} \int_{0}^{\infty} t^{-1-w} L^{q}\left(\frac{1}{t}\right) d t \int_{0}^{t} u^{w-1-p\rangle} L^{-(1-p)}\left(\frac{1}{u}\right) f^{p}(u) d u \\
= & \int_{0}^{\infty} L^{-(1-p)}\left(\frac{1}{u}\right) f^{p}(u) u^{-1-p \gamma} K(u) d u,
\end{aligned}
$$

where $\quad K(u)=u^{w} \int_{u}^{\infty} t^{-1-w} L^{q}\left(\frac{1}{t}\right) d t$

$$
\begin{aligned}
& =\int_{0}^{1} T^{-1+w} L^{q}\left(\frac{T}{u}\right) d T \quad \quad\left(\text { putting } t=\frac{u}{T}\right) \\
& \leqq A_{1}^{q} L^{q}\left(\frac{1}{u}\right) \int_{0}^{1} T^{-1+w-\epsilon} d T \\
& \leqq B_{2} L^{q}\left(\frac{1}{u}\right)
\end{aligned}
$$

provided that we take $\varepsilon>0$ such that $w-\varepsilon>0$.
Thus we obtain

$$
\int_{0}^{\infty} t^{-1-q \gamma-q} L^{q}\left(\frac{1}{t}\right) F^{q}(t) d t \leqq B_{1}^{q} B_{2} J^{(q-p)} \int_{0}^{\infty} u^{-1-p \gamma} L^{p}\left(\frac{1}{u}\right) f^{p}(u) d u
$$

which proves (1). In the case $q \geqq p=1$, put $\lambda=0$, and the inequality (1) may be obtained by the similar arguments.

We can prove the inequality (2) by the similar way writing

$$
\begin{aligned}
K(u) & =\int^{1} T^{-1+w} L^{q}\left(\frac{u}{T}\right) d T \\
& \leqq A_{2}^{q} L^{q}(u) \int^{1} T^{-1+w-\epsilon} d T
\end{aligned}
$$

where $\varepsilon>0$ is sufficiently small so that $w-\varepsilon>0$.
THEOREM 2. If $\lambda_{n} \downarrow 0, p \geqq 1$ and $0>\gamma>-1$, then a necessary and sufficient condition that $\sum n^{-1+p \gamma+p} L(n) \lambda_{n}^{p}$ should converge is that $x^{-1-p \gamma} L(1 / x) g_{1}^{p}(x) \in L(0, \pi)$.

PROOF. If $x^{-1-p \gamma} L(1 / x) g_{1}^{p}(x) \in L(0, \pi)$, we put by Zygmund's method [6: p. 213],

$$
\begin{aligned}
G_{1}(x) & =\int_{0}^{x} g_{1}(t) d t \\
& =\sum_{n=1}^{\infty} \frac{\lambda_{n}}{n} \sin n x
\end{aligned}
$$

and then $G_{1}\left(\frac{\pi}{n}\right)=\sum_{m=1}^{n-1}\left(\frac{\lambda_{m}}{m}-\frac{\lambda_{m+n}}{m+n}+\frac{\lambda_{m+2 n}}{m+2 n}-\ldots \ldots\right) \sin \frac{m}{n} \pi$

$$
\geqq \sum_{m=1}^{n-1}\left(\frac{\lambda_{m}}{m}-\frac{\lambda_{m+n}}{m+n}\right) \sin \frac{m}{n} \pi
$$

$$
=B_{3} \sum_{\left[\frac{n}{3}\right]+1}^{\left[\frac{2 n}{3}\right]}\left(\frac{\lambda_{m}}{m}-\frac{\lambda_{m+n}}{m+n}\right)
$$

$$
\geqq B_{4} \sum_{\left[\frac{n}{3}\right]+1}^{\left[\frac{2 n}{3}\right]} \frac{\lambda_{m}}{m}
$$

$$
\geqq B_{5} \lambda_{n} .
$$

So, putting $\widetilde{G}_{1}(x)=\int_{0}^{x}\left|g_{1}(t)\right| d t$, we have by inequality (1)

$$
\sum_{n=2}^{\infty} n^{-1+p \gamma+p} L(n) \lambda_{l l}^{p} \leqq B_{6} \sum_{n=2}^{\infty} n^{-1+p y}\left\{n L^{\frac{1}{p}}(n) G_{1}\left(\frac{\pi}{n}\right)\right\}^{p}
$$

$$
\begin{aligned}
& \leqq B_{7} \sum_{n=2}^{\infty} n^{-1+p \gamma}\left\{n L^{\frac{1}{p}}(n) \widetilde{G}_{1}\left(\frac{\pi}{n}\right)\right\}^{p} \\
& \leqq B_{8} \sum_{n=2}^{\infty} \int_{\pi / n}^{\pi /(n-1)} x^{-1-p \gamma}\left\{\frac{L^{\frac{-1}{p}}(1 / x) \widetilde{G}_{1}(x)}{x}\right\}^{p} d x \\
& =B_{8} \int_{0}^{\pi} x^{-1-p \gamma}\left\{\frac{L^{\frac{1}{p}}(1 / x) \widetilde{G}_{1}(x)}{x}\right\}^{1 / p} d x \\
& \leqq B_{9} \int_{0}^{\pi} x^{-1-p \gamma} L\left(\frac{1}{x}\right)\left|g_{1}(x)\right|^{p} d x \\
& <\infty \quad \quad(\gamma>-1)
\end{aligned}
$$

Thus the sufficiency part of Theorem is proved.
To show the necessity, we observe that

$$
\begin{aligned}
\left|g_{1}(x)\right| & \leqq\left|\sum_{\nu=1}^{n} \lambda_{\nu}\right|+\left|\sum_{\nu=n+1}^{\infty} \lambda_{\nu} \cos \nu x\right| \\
& \leqq P_{n}+\frac{\pi}{x} \lambda_{n} \quad\left(P_{n}=\sum_{\nu=1}^{n} \lambda_{\nu}\right)
\end{aligned}
$$

and so $\left|g_{1}(x)\right| \leqq B_{10} P_{n}$ for $\pi /(n+1) \leqq x \leqq \pi / n$.
If we set $p(x)=\lambda_{n}$ for $n-1 \leqq x<n(n=1,2, \cdots \cdots)$
and

$$
P(x)=\int^{x} p(t) d t
$$

then we have by (2)

$$
\begin{aligned}
& \int_{0}^{\pi} x^{-1-p \gamma} L\left(\frac{1}{x}\right)\left|g_{1}(x)\right|^{p} d x \\
= & \sum_{n=1}^{\infty} \int_{\pi /(\Omega+1)}^{\pi / n} x^{-1-p \gamma} L\left(\frac{1}{x}\right)\left|g_{1}(x)\right|^{p} d x \\
\leqq & B_{11} \sum_{n=1}^{\infty} n^{-1+p \gamma} L(n) P_{n}^{p} \\
\leqq & B_{11} L(1) \lambda_{1}^{p}+B_{12} \int_{1}^{\infty} x^{-1+p \gamma+p}\left\{\frac{L^{\frac{1}{p}}(x) P(x)}{x}\right\}^{p} d x \\
\leqq & \left.B_{11} L(1) \lambda_{1}^{p}+B_{13} \int_{1}^{\infty} x^{-1+p_{\gamma}+p} L(x) p^{p}, x\right) d x \\
\leqq & B_{14} \sum_{n=1}^{\infty} n^{-1+p \gamma+p} L(n) \lambda_{n}^{p} \\
< & \infty \quad \quad(\gamma<0)
\end{aligned}
$$

Thus we complete the proof.

THEOREM 3. If $\lambda_{n} \downarrow 0, p \geqq 1$ and $1>\gamma>-1$, then a necessary and sufficient condition that $\sum n^{-1+p \gamma+p} L(n) \lambda^{p}{ }_{n}$ should converge is that $x^{-1-p \gamma} L(1 / x) h_{1}^{p}(x) \in L(0, \pi)$.

PROOF. The sufficiency of condition may be obtained by a similar argument as the Theorem 1. To prove that the condition is necessary, we observe that for $\pi /(n+1) \leqq x \leqq \pi / n$,

$$
\begin{aligned}
\left|h_{1}(x)\right| & \leqq \sum_{\nu=1}^{n}\left|\lambda_{\nu} \sin \nu x\right|+\left|\sum_{\nu=n+1}^{\infty} \lambda \cdot \sin \nu x\right| \\
& \leqq B_{16}\left(\frac{\lambda_{1}+2 \lambda_{2}+\ldots \ldots+n \lambda_{n}}{n}+(n+1) \lambda_{n+1}\right) \\
& \leqq B_{16}\left(\frac{\left(\lambda_{1}+2 \lambda_{n+1}\right)+2\left(\lambda_{2}+2 \lambda_{n+1}\right)+\ldots \ldots+n\left(\lambda_{n}+2 \lambda_{n+1}\right)}{n}\right) \\
& \leqq 3 B_{16} \frac{\lambda_{1}+2 \lambda_{2}+\ldots \ldots+n \lambda_{n}}{n} \\
& =3 B_{16} \frac{Q_{n}}{n} \quad\left(Q_{n}=\sum_{\nu=1}^{n} \nu \lambda_{\nu}\right) .
\end{aligned}
$$

If we set $q(x)=n \lambda_{n}$ for $n-1 \leqq x<n(n=1,2, \ldots \ldots)$
and

$$
Q(x)=\int_{0}^{x} q(t) d t
$$

then by (2) we have

$$
\begin{aligned}
\int_{0}^{\pi} x^{-1-p \gamma} L & \left(\frac{1}{x}\right)\left|h_{1}(x)\right|^{p} d x=\sum_{n=1}^{\infty} \int_{\pi /(n+1)}^{\pi / n} x^{-1-p \gamma} L\left(\frac{1}{x}\right)\left|h_{1}(x)\right|^{p} d x \\
& \leqq B_{17} \sum_{n=1}^{\infty} n^{-1+p \gamma} L(n)\left\{\frac{Q(n)}{n}\right\}^{p} \\
& \leqq B_{17} L(1) \lambda_{1}^{p}+B_{18} \int_{1}^{\infty} x^{-1+p \gamma}\left\{\frac{L^{\frac{1}{p}}(x) Q(x)}{x}\right\}^{p} d x \\
& \leqq B_{17} L(1) \lambda_{1}^{p}+B_{19} \int_{1}^{\infty} x^{-1+p \gamma} L(x) q^{p}(x) d x \\
& \leqq B_{20} \sum_{n=1}^{\infty} n^{-1+p \gamma+p} L(n) \lambda_{n}^{p} \\
& <\infty
\end{aligned} \quad(\gamma<1) . ~ \$
$$

THEOREM 4. If $g_{2}(x), a_{n}(n=0,1,2, \ldots \ldots)$ are defined in $\S 1$ with the exception of (A) and $p \geqq 1,0>\gamma>-1$, then a necessary and sufficient
condition that $\sum n^{-1+p \gamma+n} L(n)\left|a_{n}\right|^{p}$ should converge is that $x^{-1-p \gamma} L(1 / x) g_{2}{ }^{p}(x)$ $\in L(0, \pi)$.

PROOF. It is sufficient to consider the case $g_{2}(x) \geqq 0$ in $(0, \pi)$.
Employing Zygmund's argument [6: p. 215], we shall prove the two inequalities: $\left|a_{n}\right| \leqq 4 G_{2}(\pi / n), \widetilde{P}_{n} \geqq B_{21} g(\pi / n)$,
where

$$
\widetilde{P}_{n}=\sum_{\nu=1}^{n}\left|a_{\nu}\right|, \quad G_{2}(x)=\int_{0}^{x} g_{2}(t) d t .
$$

In fact, writing

$$
\frac{\pi}{2} a_{n}=\int_{0}^{\pi / n} g_{2}(x) \cos n x d x+\int_{\pi / n}^{\pi} g_{2}(x) \cos n x d x
$$

the last term on the right is, by the second mean value theorem, less than $g_{2}(\pi / n)(2 / n) \leqq G_{2}(\pi / n)$ in absolute value and the first inequality is immediate. To prove the second inequality it is enough to notice that:

$$
\begin{aligned}
\widetilde{P}_{n} & \geqq \frac{2}{\pi} \int^{\pi} g_{2}(t) \frac{\sin n t}{2 \tan \frac{t}{2}} d t \\
& \geqq \frac{2}{\pi} \int_{0}^{\pi / n}\left[\frac{g_{2}(t)}{2 \tan \frac{t}{2}}-\frac{g_{2}\left(t+\frac{\pi}{n}\right)}{2 \tan \left(t+\frac{\pi}{n}\right) / 2}\right] \sin n t d t \\
& \geqq B_{22} \int_{0}^{\pi / 2 n} \frac{g_{2}(t)}{t} \sin n t d t \\
& \geqq B_{23} g_{2}\left(\frac{\pi}{2 n}\right) \\
& \geqq B_{23} g_{2}\left(\frac{\pi}{n}\right)
\end{aligned}
$$

The proof of Theorem 4 is then quite analogous to that of Theorem 2.
THEOREM 5. If $h_{2}(x)$ and $b_{n}(n=1,2, \ldots \ldots)$ are defined in $\S 1$ with the exception of (A) and $p \geqq 1,0>\gamma>-2$, then a necessary and sufficient condition that $\sum n^{-1+p \gamma+p} L(n)\left|b_{n}\right|^{p}$ should converge is that $x^{-1-p \gamma} L(1 / x) h_{2}^{p}(x)$ $\in L(0, \pi)$.

PROOF. We may assume that $h_{2}(x) \geqq 0$ in $(0, \pi)$.
To show that the condition is sufficient, we observe

$$
\left|b_{n}\right|=\frac{2}{\pi}\left|\int^{\pi} h_{2}(x) \sin n x d x\right|
$$

$$
\begin{aligned}
& \leqq \frac{2}{\pi} \int_{0}^{\pi / n} h_{2}(x) \sin n x d x \\
& \leqq \frac{2 n}{\pi} \int_{U}^{\pi / n} x h_{2}(x) d x \\
& \leqq B_{24} n H_{2}\left(\frac{\pi}{n}\right)
\end{aligned}
$$

where

$$
H_{2}(x)=\int_{0}^{x} t h_{2}(t) d t,
$$

and applying (1), we have

$$
\begin{aligned}
\sum_{n=2}^{\infty} n^{-1+p \gamma+p} L(n)\left|b_{n}\right|^{p} & \leqq B_{24}^{p} \sum_{n=2}^{\infty} n^{-1+p \gamma+p}\left\{n L^{\frac{1}{p}}(n) H_{2}\left(\frac{\pi}{n}\right)\right\}^{p} \\
& \leqq B_{25} \sum_{n=2}^{\infty} \int_{\pi / n}^{\pi / n-1)} x^{-1-p \gamma-p}\left\{\frac{L^{\frac{1}{p}}(1 / x) H_{2}(x)}{x}\right\}^{p} d x \\
& =B_{25} \int_{0}^{\pi} x^{-1-p \gamma-p}\left\{\frac{L^{\frac{1}{p}}(1 / x) H_{2}(x)}{x}\right\}^{p} d x \\
& \leqq B_{26} \int_{0}^{\pi} x^{-1-p \gamma} h_{2}^{p}(x) L\left(\frac{1}{x}\right) d x \\
& <\infty \quad(\gamma>-2)
\end{aligned}
$$

Since $\widetilde{Q}_{n} \geqq B_{27} h_{2}(\pi / n)\left(\widetilde{Q}_{n}=\sum_{\nu=1}^{n}\left|b_{n}\right|\right)$, we get the necessity part of Theorem by the same way as in Theorem 2 (see [5]).

This proves the Theorem.

REFERENCES

[1] AdAmović, Généralisation de deux théorèmes de Zygmund-B. SZ. Nagy. Publ. Inst. Math. Acad. Serbe Sci, XII, (1958), 81-100.
[2] S. Aljančić, R. Bojanić and M. Tomić, Sur l'intégrabilité de certaines séries trigonométriques, Publ. Inst. Math. Acad. Serbe Sci. VIII, (1955), 67-84.
[3] CHEN YUNG-MING, On a maximal theorem of Hardy and Littlewood and theorems concerning Fourier constants, Math. Zeitschr, 69(1958), 418-422.
[4] T. M. Flett, A note on some inequalities, Proc. Glasgow Math. 4(1958), 7-15.
[5] G. Sunouchi, Integrability of trigonometric series, J. Math. (Tokyo Metropolitan Univ.), 1(1953), 99-103.
[6] A. ZYGMUND, Trigonometrical series, Warsawa, 1935.
TÔHOKU UnIVERSITY.

