REMARKS ON THE REALIZABILITY OF WHITEHEAD PRODUCT

(Received September 25, 1959)

KÔICHI IWATA AND HIROSHI MIYAZAKI

1. A. H. Copeland [2]¹⁾ investigated the problem of finding an H-structure of a CW-complex with two non-trivial homotopy groups. In the course of his study, an interesting result is obtained which combine the Eilenberg-MacLane invariant and the Whitehead product of a CW-complex whose non-trivial homotopy groups are of dimensions n and 2n-1 (n>1) (cf. Proposition 7 of [2]).

The arguments through his paper are true for a connected CW-complex Y with the following properties:

- 1) the product $Y \times Y$ is a CW-complex whose cells are of the form $E^p \times E^q$ for p-cell E^p and q-cell E^q of Y,
- 2) for any integer m there exists a CW-complex $X \supset Y$ such that X satisfies the property 1) and the inclusion map induces isomorphisms $\pi_i(X) \approx \pi_i(Y)$ for $1 \leq i < m$ and $\pi_i(X) = 0$ for $i \geq m$.

In his paper, it is assumed that Y is a connected locally finite CW-complex. But this may be replaced by a weaker assumption that Y is a connected countable CW-complex? For, if Y is a connected countable CW-complex, then, by Theorem (1.9) of [5], Y has the property 1). On the other hand, by Theorem 13 in § 9 of [7], Y is of the same homotopy type as a locally finite simplex Y'. Hence Y' is connected and so countable? Therefore, using the simplicial approximation theorem we may easily prove that the elements of $\pi_i(Y) \approx \pi_i(Y')$ for each i are countable. Thus we can construct a countable CW-complex $X \supset Y$ such that $\pi_i(X) \approx \pi_i(Y)$ $(1 \le i < m)$ and $\pi_i(X) = 0$ $(i \ge m)$. Since X is countable, its has the property 1). Thus properties 1) and 2) are satisfied for any connected countable CW-complex.

In § 2 we shall prove that Proposition 7 of [2] is also true for any CW-complex and so for any space whose first two non-trivial homotopy groups are of dimensions n and 2n - 1(n > 1).

In § 3, combining this proposition with results on $H(\Pi, n)$ due to Eilenberg-MacLane [3], we shall give results on the realizability of a given homo-

¹⁾ Numbers in brackets refer to the references at the end of the paper.

²⁾ The fact that a connected locally finite CW-complex is countable is noticed in p. 223 of [7].

morphism $T: \Pi \otimes \Pi \to G$ as the Whitehead products in spaces of types $K(\Pi, n; G, 2n-1)$ with n=2, 3, 4, 5.

2. Let Y be an arcwise connected space which has the first two non-trivial homotopy groups Π and G in dimensions n and m with 1 < n < m. Such a space is said to be of the type $K(\Pi, n; G, m; \dots)$ or $K(\Pi, n; G, m; k; \dots)$, where $k \in H^{m+1}(\Pi, n; G)$ is the Eilenberg-MacLane invariant of Y. As usual, by a space of the type $K(\Pi, n)$ we shall mean a space X such that $\pi_n(X) = \Pi$, $\pi_i(X) = 0$ for $i \neq n$, and it will be denoted by $K(\Pi, n)$.

Let Π and G be abelian groups. Let ψ^* , p_1^* , p_2^* : $H^{2n}(\Pi, n; G) \to H^{2n}(\Pi + \Pi, n; G)$ be the homomorphisms induced by the maps ψ , p_1 , p_2 : $\Pi + \Pi \to \Pi$ defined by

$$\psi(a, b) = a + b, \quad p_1(a, b) = a, \quad p_2(a, b) = b$$

for $a, b \in \Pi$.

Let $\Theta^*: H^{2n}(\Pi + \Pi, n; G) \to \operatorname{Hom}(\Pi \otimes \Pi, G)$ be the homomorphism determined by the Künneth formula.

We shall refer Proposition 7 of [2], i. e.,

PROPOSITION 1. Let Y be a countable CW-complex of the type $K(\Pi, n; G, 2n-1; \mathbf{k}; \dots)$. Then the Whitehead product $W: \Pi \otimes \Pi \to G$ in Y is given by

$$W = \Theta^*(\psi^* - p_1^* - p_2^*)\mathbf{k}.$$

We shall prove the following

PROPOSITION 2. Let Y be any space of the type $K(\Pi, n; G, 2n-1, \mathbf{k}; \dots)$. Then the Whitehead product $W: \Pi \otimes \Pi \to G$ in Y is given by

$$W = \Theta \left(\psi^* - p_1^* - p_2^* \right) \mathbf{k}.$$

Since W, Θ^{*} , ψ^{*} , p_{1}^{*} , p_{2}^{*} are natural, Proposition 2 may be easily proved by Proposition 1 and the following lemmas.

LEMMA 1. Let Y and Y_0 be spaces of the types $K(\Pi, n; G, m; \mathbf{k}; \dots)$ and $K(\Pi_0, n; G_0, m; \mathbf{k}_0; \dots)$ respectively. For a map $h: Y_0 \to Y$ we have relation

$$f^*\mathbf{k} = g^*\mathbf{k}_0$$

where $f: \Pi_0 \to \Pi$ and $g: G_0 \to G$ are homomorphism induced by h, and

$$f^*: H^{m+1}(\Pi, n; G) \to H^{m+1}(\Pi_0, n; G),$$

 $g^{\sharp}: H^{m+1}(\Pi_0, n; G_0) \to H^{m+1}(\Pi_0, n; G)$

are homomorphisms induced by f and g, respectively.

PROOF. Let X be a space obtained from Y by attaching i-cells $(i \ge m + 1)$ such that $\pi_i(X) \approx \pi_i(Y)$, $1 \le i < m$ and $\pi_i(X) = 0$, $i \ge m$. Let $\mathbf{k}' \in H^{m+1}(X, Y; G)$ be the first obstruction to retracting X onto Y. Then $\mathbf{k} = j^*\mathbf{k}'$, where $j^*: H^{m+1}(X, Y; G) \to H^{m+1}(X; G)$ is the homomorphism induced by the inclusion map, and $H^{m+1}(X; G)$ is identified with $H^{m+1}(\Pi, n; G)$ under the natural isomorphism. Let X_0 , \mathbf{k}'_0 and j^*_0 be similar to X, \mathbf{k}' and j.

The map $h: Y_0 \to Y$ has an extension $\bar{h}: X_0 \to X$, and we have $\bar{h}_1^* \mathbf{k}' = \bar{g}_1^* \mathbf{k}'_0$, where

$$\bar{h}_1^*: H^{m+1}(X, Y; G) \to H^{m+1}(X_0, Y_0; G),
\bar{g}_1^*: H^{m+1}(X_0, Y_0; G_0) \to H^{m+1}(X_0, Y_0; G)$$

are homomorphisms induced by \bar{h} and g.

In the following diagram, commutativities hold:

$$H^{m+1}(X, Y; G) \xrightarrow{\bar{h}_{1}^{*}} H^{m+1}(X_{0}, Y_{0}; G) \leftarrow \underbrace{\bar{g}^{\sharp}} H^{m+1}(X_{0}, Y_{0}; G)$$

$$\downarrow j^{*} \qquad \qquad \downarrow j^{*} \qquad \qquad \downarrow j^{*}_{0}$$

$$\downarrow f^{*} \qquad \qquad \downarrow j^{*}_{0} \qquad \qquad \downarrow j^{*}_{0}$$

$$\downarrow H^{m+1}(X; G) \xrightarrow{\bar{h}^{*}} H^{m+1}(X_{0}; G) \leftarrow \underbrace{\bar{g}^{\sharp}} H^{m+1}(X_{0}; G).$$

Therefore, since $\bar{h}^* = f^*$, $g^* = \bar{g}^*$, we have

$$f^*\mathbf{k} = \bar{h}^* j^* \mathbf{k}' = j_1^* \bar{h}_1^* \mathbf{k}' = j_1^* \bar{g}_1^* \mathbf{k}_0' = \bar{g}^* j_0^* \mathbf{k}_0' = \bar{g}^* \mathbf{k}_0,$$
i. e.,
$$f^* \mathbf{k} = g^* \mathbf{k}_0.$$
 q. e. d.

LEMMA 2. Let Y be a CW-complex of the type $K(\Pi, n; G, m, \mathbf{k};)$ and abelian groups Π_0 , G_0 and homomorphisms $f \colon \Pi_0 \to \Pi$, $g \colon G_0 \to G$ be given. Let a cocycle $k_0 \in Z^{m+1}(\Pi_0, n; G_0)$, such that $f^*k = g^{\sharp}k_0$ for some cocycle k belonging to \mathbf{k} , be given, where $f^* \colon Z^{m+1}(\Pi, n; G) \to Z^{m+1}(\Pi_0, n; G)$, $g^{\sharp} \colon Z^{m+1}(\Pi_0, n; G_0) \to Z^{m+1}(\Pi_0, n; G)$ be homomorphisms induced by f and g. Then there exist a CW-complex Y_0 of the type $K(\Pi_0, n; G_0, m; \mathbf{k}_0;)$ and a map $h \colon Y_0 \to Y$ which induces f and g, where \mathbf{k}_0 is the cohomology class of k_0 . Moreover, if Π_0 , G_0 are countable groups, then Y_0 may be chosen to be a countable CW-complex.

PROOF. We shall consider a CW-complex |K(G, m+1)| which is the geometric realization of the Eilenberg-MacLane complex K(G, m+1). Let E be the space of paths in |K(G, m+1)| terminating in the unique 0-cell of |K(G, m+1)| with the fibre map $p: E \to |K(G, m+1)|$ and the fibre K(G, m). Let $b \in Z^{m+1}(G, m+1)$; G be the basic cocycle and $\mathbf{b} \in H^{m+1}$

(G, m+1; G) be its cohomology class. By Theorem 5.1 of [4], there exists a c. s. s. map $\lambda \colon K(\Pi, n) \to K(G, m+1)$ such that $\lambda^*(b) = k$, where λ^* denotes the cochain map induced by λ . Then λ defines a map $|\lambda| \colon |K(\Pi, n)| \to |K(G, m+1)|$ and $|\lambda|$ induces a space Y and maps q, F such that the diagram

is commutative and Y' is a fibre space over $|K(\Pi, n)|$. Since $|K(\Pi, n)|$ is a space of the type $K(\Pi, n)$ and $|\lambda|^*(\mathbf{b}) = \mathbf{k}$, Y' is a space of the type $K(\Pi, n)$, (f, n), (f, n),

$$h_1: |S(Y')| \to Y$$

which induces the identities on homotopy groups.

Similarly we shall consider the diagram

where $\mu: K(\Pi_0, n) \to K(G_0, m+1)$ is a c.s.s. map such that $\mu^*(b_0) = k_0$ for the basic cocycle $b_0 \in Z^{m+1}(G_0, m+1; G_0)$. The space Y_0 is also of the type $K(\Pi_0, n; G_0, m; \mathbf{k}_0; \dots)$.

The homomorphisms f and g induce c.s.s. maps $K(\Pi_0, n) \to K(\Pi, n)$ and $K(G_0, m+1) \to K(G, m+1)$, and these maps are denoted again by f and g respectively. Then $|g|: |K(G_0, m+1)| \to |K(G, m+1)|$ induces a map $\bar{g}: E_0 \to E$ such that $p \circ \bar{g} = |g| \circ p_0$.

Since
$$g^*b=g^{\sharp}b_0$$
, by $f^*k=g^{\sharp}k_0$, we have
$$(\lambda f)^*b=(f^*\lambda^*)b=f^*k=g^{\sharp}k_0\\ =g^{\sharp}\mu^*(b_0)=\mu^*g^{\sharp}b_0=\mu^*g^*b=(g\mu)^*b,$$
 i. e.,
$$(\lambda f)^*b=(g\mu)^*b.$$

Therefore, by Theorem 5.1 of [4], we know that $\lambda f = g\mu$, hence $|\lambda| \circ |f| = |g| \circ |\mu|$. Therefore we can define a map

$$h_0: Y_0 \to Y$$

by $h_0(r, s) = (|f|(r), |g|(s))$ for $r \in |K(\Pi_0, n)|, s \in E_0$ $(p(s) = |\mu|(r))$. Then we have a commutative diagram:

Therefore it is easily seen that h_0 induces the homomorphisms f and g on homotopy groups. Thus if we put $Y_0 = |S(Y_0')|$ and $h = h_1 \circ |\bar{h}_0|$, then Y_0 and h have the required properties, where $\bar{h}_0: S(Y_0') \to S(Y_0')$ is the c.s.s. map induced by h.

If Π_0 and G_0 are countable groups, then by Theorem (5.1) of [1], we know that the minimal subcomplex M of $S(Y_0)$ is countable. Therefore |M| and h||M| have the required properties. q. e. d.

LEMMA 3. Let Π , G be abelian groups and we assume that Π is countable. For any element $\mathbf{k} \in H^{m+1}(\Pi, n; G)$ there exist a countable subgroup $G_0 \subset G$ and an element $\mathbf{k}_0 \in H^{m+1}(\Pi, n; G_0)$ such that $\mathbf{k} = g^{\sharp}\mathbf{k}_0$, where $g^{\sharp}: H^{m+1}(\Pi, n; G_0) \to H^{m+1}(\Pi, n; G)$ is the homomorphism induced by the inclusion map $G_0 \subset G$.

PROOF. By the universal coefficient theorem $H^{m+1}(\Pi, n; G) = \text{Hom } (H_{m+1}(\Pi, n), G) + \text{Ext } (H_m(\Pi, n), G)$, hence we have $\mathbf{k} = \mathbf{k}_1 + \mathbf{k}_2$ for some $\mathbf{k}_1 \in \text{Hom } (H_{m+1}(\Pi, n), G)$ and $\mathbf{k}_2 \in \text{Ext } (H_m(\Pi, n), G)$. Since Π is countable, the complex $K(\Pi, n)$ is countable, hence $H_i(\Pi, n)$ for each i is a countable group. Hence $G_1 = \mathbf{k}_1(H_{m+1}(\Pi, n))$ is countable.

Next, we shall consider an exact sequence

$$0 \to R \xrightarrow{i} F \xrightarrow{j} H_n(\Pi, n) \to 0,$$

where F is a free group. Since $H_m(\Pi, n)$ is countable, we may assume that F and also R are countable. By the definition of Ext,

Ext
$$(H_m(\Pi, n), G) = \text{Hom } (R, G)/i^*\text{Hom } (F, G),$$

hence we can choose an element $a \in \text{Hom } (R, G)$ which represents \mathbf{k}_2 . Then $a(R) = G_2$ is countable. Hence $G_0 = G_1 \cup G_2$ is countable and it is obvious that there exists an element $\mathbf{k}_0 \in H^{m+1}(\Pi, n; G_0)$ such that $\mathbf{k} = g^{\#}\mathbf{k}_0$.

q. e. d.

3. Let Π , G be abelian groups. Then for integers n, m with 1 < n < m and for each element $\mathbf{k} \in H^{m+}(\Pi, n; G)$ there exists a space of the type $K(\Pi, n; G, m; \mathbf{k}; \dots)$. Therefore, by Proposition 2, in order that a given homomorphism $W \colon \Pi \otimes \Pi \to G$ is realizable as the Whitehead product in a space of the type $K(\Pi, n; G, 2n-1; \dots)$ it is necessary and sufficient that $W \in \Theta^*(\psi^* - p_1^* - p_2^*)H^{2n}(\Pi, n; G)$. For $n = 2, 3, 4, 5, \Theta^*(\psi^* - p_1^* - p_2^*)H^{2n}(\Pi, n; G)$ are computable and we have the following

THEOREM 1. In order that a given homomorphism $W: \Pi \otimes \Pi \to G$ is realizable as the Whitehead product in a space of the type $K(\Pi, n; G, 2n - 1;)$ for n = 2 or 4, it is necessary and sufficient that there exists a map $\eta: \Pi \to G$ such that $\eta(x) = \eta(-x)$, and $W(x \otimes y) = \eta(x + y) - \eta(x) - \eta(y)$ for any $x, y \in \Pi$.

THEOREM 2.3 In order that a given homomorphism $W: \Pi \otimes \Pi \to G$ is realizable as the Whitehead product in a space of the type $K(\Pi, n; G, 2n-1;)$ for n=3 or 5, it is necessary and sufficient that $W(x \otimes x) = 0$ for any $x \in \Pi$.

PROOF OF THEOREM 1. We shall consider the following commutative diagram which is seen in the proof of Theorem 21.1 of [3]:

$$\Gamma(\Pi_{1}) \otimes \Gamma(\Pi_{2}) \xrightarrow{\theta_{1,\Gamma}} H(\Pi_{1}, n) \otimes H(\Pi_{2}, n)$$

$$\downarrow g \qquad \qquad \downarrow \pi_{*} \qquad (n : \text{ even})$$

$$\Gamma(\Pi_{1} + \Pi_{2}) \xrightarrow{\theta_{\Gamma}} H(\Pi_{1} + \Pi_{2}, n).$$

If we restrict to the subgroups of degree 4 and if we put n=2, this diagram gives the following commutative diagram:

³⁾ Theorem 2 for n=3 covers Theorem 8 of [6].

where $\Gamma_4(\Pi_1) \otimes 1$, $H_4(\Pi_1, 2) \otimes H_0(\Pi_2, 2)$ and $\Gamma_0(\Pi_1)$ etc. are naturally identified with $\Gamma_4(\Pi_1)$, $H_4(\Pi_1, 2)$ and Π_1 etc. respectively. And under these identifications, g and Ψ are defined by

$$\begin{cases} g(\gamma_4(x)) = \gamma_4(x, 0), \\ g(\gamma_4(y)) = \gamma_4(0, y), & (x \in \Pi_1, y \in \Pi_2) \\ g(x \otimes y) = \gamma_4(x, y) - \gamma_4(x, 0) - \gamma_4(0, y), \end{cases}$$

$$\Psi = \begin{cases} \theta_{1,\Gamma} & \text{on } \Gamma_4(\Pi_1), \\ \theta_{2,\Gamma} & \text{on } \Gamma_4(\Pi_2), \\ \text{identity} & \text{on } \Pi_1 \otimes \Pi_2. \end{cases}$$

By Theorem 18.4 and Theorem 21.1 of [3], g and Ψ are onto isomorphisms. Let $i: \Pi_1 \otimes \Pi_2 \to H_4(\Pi_2, 2) + H_4(\Pi_2, 2) + \Pi_1 \otimes \Pi_2$ and $i: \Pi_1 \otimes \Pi_2 \to \Gamma_4(\Pi_1) + \Gamma_4(\Pi_2) + \Pi_1 \otimes \Pi_2$ be the inclusion maps. Then the composition homomorphism $i \circ \pi_*$ induces the homomorphism

Hom
$$(i \circ \pi_*)$$
: Hom $(H_4(\Pi_1 + \Pi_2, 2), G) \to \text{Hom } (\Pi_1 \otimes \Pi_2, G)$.

Since $H_3(\Pi, 2) = 0$, by the universal coefficient theorem we have

$$H^4(\Pi_1 + \Pi_2, 2; G) = \text{Hom } (H_4(\Pi_1 + \Pi_2, 2), G),$$

and if we put $\Pi = \Pi_1 = \Pi_2$, then Hom $(i \circ \pi_*)$ is Θ^* in Proposition 2. Thus, from the above diagram and the naturality of θ_4 we have the following commutative diagram:

$$H^{4}(\Pi, 2; G) \xrightarrow{\text{Hom } (\theta_{4})} \text{Hom } (\Gamma_{4}(\Pi), G)$$

$$\downarrow \psi^{*} - p_{1}^{*} - p_{2}^{*} \qquad \qquad \downarrow \overline{\psi}^{*} - \overline{p}_{1}^{*} - \overline{p}_{2}^{*}$$

$$H^{4}(\Pi + \Pi, 2; G) = \text{Hom}(H_{4}(\Pi + \Pi, 2), G) \xrightarrow{\text{Hom } (\theta_{4})} \text{Hom } (\Gamma_{4}(\Pi + \Pi), G)$$

$$\downarrow \text{Hom } (\pi_{*}) \qquad \qquad \downarrow \text{Hom } (g)$$

$$\text{Hom } (H_{4}(\Pi, 2) + H_{4}(\Pi, 2) + \Pi \otimes \Pi, G) \xrightarrow{\text{Hom } (\Gamma_{4}(\Pi) + \Gamma_{4}(\Pi) + \Pi \otimes \Pi, G)} \text{Hom } (i)$$

$$\text{Hom } (i) \qquad \qquad \text{Hom } (i)$$

where $\overline{\psi}$, \overline{p}_i : $\Gamma_i(\Pi + \Pi) \to \Gamma_i(\Pi)$ are homomorphisms induced by ψ , p_i and $\overline{\psi}^* = \operatorname{Hom}(\overline{\psi})$, $\overline{p}_i^* = \operatorname{Hom}(\overline{p}_i)$.

Therefore we have

$$\Theta^*(\psi^* - p_1^* - p_2^*)$$
= Hom $(g \circ i) \circ (\overline{\psi}^* - p_1^* - p_2^*) \circ \text{Hom } (\theta_4).$

Since θ_4 is an onto isomorphism, we can identify $H^4(\Pi, 2; G)$ with Hom $(\Gamma_4(\Pi), G)$ under the isomorphism Hom (θ_4) . Then we have

$$\Theta^*(\psi^* - p_1^* - p_2^*) = \operatorname{Hom}(g \circ i) \circ (\overline{\psi}^* - \overline{p}_1^* - \overline{p}_2^*).$$

Thus, for $k \in \text{Hom}(\Gamma_4(\Pi), G)$ and $x, y \in \Pi$ we have

$$[\Theta^*(\psi^* - p_1^* - p_2^*)k](x \otimes y)$$

$$= [\operatorname{Hom} (g \circ i) \circ (\overline{\psi}^* - \overline{p}_1^* - \overline{p}_2^*)k](x \otimes y)$$

$$= k\gamma_4(x + y) - k\gamma_4(x) - k\gamma_4(y).$$

Therefore, if we put $\eta(x) = k\gamma_4(x)$, then we have

$$[\Theta^*(\psi^* - p_1^* - p_2^*)k](x \otimes y) = \eta(x + y) - \eta(x) - \eta(y),$$

and since $\gamma_4(x) = \gamma_4(-x)$, $\eta(x)$ satisfies the condition $\eta(x) = \eta(-x)$.

Conversely, let $T: \Pi \otimes \Pi \to G$ be a given homomorphism and if $T(x \otimes y) = \eta(x+y) - \eta(x) - \eta(y)$ for some map $\eta: \Pi \to G$ such that $\eta(x) = \eta(-x)$, then $T(x \otimes (y+z)) = T(x \otimes y) + T(x \otimes z)$ implies the relation

$$\eta(x + y + z) - \eta(y + z) - \eta(z + x) - \eta(x + y) + \eta(x) + \eta(y) + \eta(z) = 0.$$

Therefore, there exists a homomorphism $k: \Gamma_4(\Pi) \to G$ such that $k\gamma_4(x) = \eta(x)$. Hence $\Theta^*(\psi^* - p_1^* - p_2^*)k = T$. Thus the proof for n = 2 is complete.

By Theorems 24. 1, 24. 2 and 27. 3 of [3]

$$\theta_7: {}_2\Pi \simeq H_7(\Pi, 4),$$
 $\theta_8: \Gamma_4(\Pi) + \Pi/3\Pi \simeq H_8(\Pi, 4),$
 $\theta^8: H^8(\Pi, 4; G) \simeq \text{Hom} ({}_2\Pi, G/2G) + \text{Hom} (\Gamma_4(\Pi), G) + \text{Hom} (\Pi/3\Pi, G).$

But it is easily seen that $\Theta^*(\psi^* - p_1^* - p_2^*)$ is trivial on the first and third summands of $H^8(\Pi, 4; G)$. Therefore the proof for n = 4 is reduced to the above proof for n = 2. Thus the proof of Theorem 1 is complete.

PROOF OF THEOREM 2. The proof is similar to that of Theorem 1, and so we shall sketch the proof. We shall consider an isomorphism

$$g: \Lambda_2(\Pi_1) + \Lambda_2(\Pi_2) + \Pi_1 \bigotimes \Pi_2 \to \Lambda_2(\Pi_1 + \Pi_2) \qquad (\Pi = \Pi_1 = \Pi_2)$$

defined by

$$g(x \wedge x') = (x, 0) \wedge (x', 0), g(y \wedge y') = (0, y) \wedge (0, y'), g(x \otimes y) = (x, 0) \wedge (0, y)$$

for $x, x' \in \Pi_1, y, y' \in \Pi_2$.

This isomorphism is the restriction of g on the subgroup of degree 4 which is defined in Theorem 19.2 of [3].

Let $i:\Pi_1\otimes\Pi_2\to\Lambda_2(\Pi_1)+\Lambda_2(\Pi_2)+\Pi_1\otimes\Pi_2$ be the inclusion map. Then, by the similar argument with that in the proof of Theorem 1 we know that

$$\Theta^*(\psi^* - p_1^* - p_2^*)H^{2n}(\Pi, n; G)
= \text{Hom}(g \circ i) \circ (\overline{\psi}^* - \overline{p}_1^* - \overline{p}_2^*) \circ \text{Hom}(\Lambda_2(\Pi), G)$$

for n=3 or 5.

Since $\Lambda_2(\Pi)$ is $\Pi \otimes \Pi$ modulo the diagonal, this proves Theorem 2.

REFERENCES

- [1] E. H. BROWN, Finite computability of Postnikov complex, Ann. of Math., 65 (1957), 1-20.
- [2] A.H. COPELAND, On H-spaces with two non-trivial homotopy groups, Proc. of Amer. Math. Soc., 8(1957), 184-191.
- [3] S. EILENBERG AND S. MACLANE, On the groups $H(\pi, n)$, II, Ann. of Math., 60(1954), 49-139.
- [4] ——, On the groups $H(\Pi, n)$, III, Ann. of Math., 62(1954), 513-557.
- [5] I. M. JAMES, Reduced product spaces, Ann. of Math. 62(1955), 170-197.
- [6] H. MIYAZAKI, On realizations of some Whitehead products, Tôhoku Math. Journ., 12 (1960), 1-30.
- [7] J. H. C. WHITEHEAD, Combinatorial homotopy, I, Bull. Amer. Math. Soc., 55(1949), 245-277.

MATHEMATICAL INSTITUTE, TÔHOKU UNIVERSITY.