REMARKS ON THE REALIZABILITY OF WHITEHEAD PRODUCT

(Received September 25, 1959)

Kôichi Iwata and Hiroshi Miyazaki

1. A. H. Copeland [2] ${ }^{1 \text { 1 }}$ investigated the problem of finding an H-structure of a $C W$-complex with two non-trivial homotopy groups. In the course of his study, an interesting result is obtained which combine the EilenbergMacLane invariant and the Whitehead product of a $C W$-complex whose nontrivial homotopy groups are of dimensions n and $2 n-1$ ($n>1$) (cf. Proposition 7 of [2]).

The arguments through his paper are true for a connected $C W$-complex Y with the following properties:

1) the product $Y \times Y$ is a $C W$-complex whose cells are of the form $E^{p} \times E^{q}$ for p-cell E^{p} and q-cell E^{q} of Y,
2) for any integer m there exists a $C W$-complex $X \supset Y$ such that X satisfies the property 1) and the inclusion map induces isomorphisms $\pi_{i}(X)$ $\approx \pi_{i}(Y)$ for $1 \leqq i<m$ and $\pi_{i}(X)=0$ for $i \geqq m$.

In his paper, it is assumed that Y is a connected locally finite $C W$ complex. But this may be replaced by a weaker assumption that Y is a connected countable $C W$-complex ${ }^{2}$. For, if Y is a connected countable $C W$ complex, then, by Theorem (1.9) of [5], Y has the property 1). On the other hand, by Theorem 13 in $\S 9$ of [7], Y is of the same homotopy type as a locally finite simplex Y^{\prime}. Hence Y^{\prime} is connected and so countable ${ }^{2)}$. Therefore, using the simplicial approximation theorem we may easily prove that the elements of $\pi_{i}(Y) \approx \pi_{i}\left(Y^{\prime}\right)$ for each i are countable. Thus we can construct a countable $C W$-complex $X \supset Y$ such that $\pi_{i}(X) \approx \pi_{i}(Y)(1 \leqq i<m)$ and $\pi_{i}(X)=0(i \geqq m)$. Since X is countable, its has the property 1). Thus properties 1) and 2) are satisfied for any connected countable $C W$-complex.

In § 2 we shall prove that Proposition 7 of [2] is also true for any $C W$ complex and so for any space whose first two non-trivial homotopy groups are of dimensions n and $2 n-1(n>1)$.

In § 3 , combining this proposition with results on $H(\Pi, n)$ due to Eilen-berg-MacLane [3], we shall give results on the realizability of a given homo-

[^0]morphism $T: \Pi \otimes \Pi \rightarrow G$ as the Whitehead products in spaces of types $K(\Pi$, $n ; G, 2 n-1)$ with $n=2,3,4,5$.
2. Let Y be an arcwise connected space which has the first two nontrivial homotopy groups Π and G in dimensions n and m with $1<n<m$. Such a space is said to be of the type $K(\Pi, n ; G, m ; \ldots \ldots)$ or $K(\Pi, n ; G$, $m ; \mathbf{k} ; \ldots .$.$) , where \mathbf{k} \in H^{m+1}(\Pi, n ; G)$ is the Eilenberg-MacLane invariant of Y. As usual, by a space of the type $K(\Pi, n)$ we shall mean a space X such that $\pi_{n}(X)=\Pi, \pi_{i}(X)=0$ for $i \neq n$, and it will be denoted by $\mathbf{K}(\Pi, n)$.

Let Π and G be abelian groups. Let $\psi^{*}, p_{1}^{*}, p_{2}^{*}: H^{2 n}(\Pi, n ; G) \rightarrow H^{2 n}$ $(\Pi+\Pi, n ; G)$ be the homomorphisms induced by the maps $\psi, p_{1}, p_{2}: \Pi$ $+\Pi \rightarrow \Pi$ defined by

$$
\psi(a, b)=a+b, \quad p_{1}(a, b)=a, \quad p_{2}(a, b)=b
$$

for $a, b \in \Pi$.
Let $\Theta^{*}: H^{\underline{2 n}}(\Pi+\Pi, n ; G) \rightarrow \operatorname{Hom}(\Pi \otimes \Pi, G)$ be the homomorphism determined by the Künneth formula.

We shall refer Proposition 7 of [2], i. e.,
PROPOSITION 1. Let Y be a countable $C W$-complex of the type $K(\Pi$, $n ; G, 2 n-1 ; \mathbf{k} ; \ldots .$.$) . Then the Whitehead product W: \Pi \otimes \Pi \rightarrow G$ in Y is given by

$$
W=\Theta^{*}\left(\psi^{*}-p_{1}^{*}-p_{2}^{*}\right) \mathbf{k} .
$$

We shall prove the following
PROPOSITION 2. Let Y be any space of the type $K(\Pi, n ; G, 2 n-1$, $\mathbf{k} ; \ldots .$.$) . Then the Whitehead product W: \Pi \otimes \Pi \rightarrow G$ in Y is given by

$$
W=\Theta\left(\psi^{*}-p_{1}^{*}-p_{2}^{*}\right) \mathbf{k} .
$$

Since $W, \Theta^{*}, \psi^{*}, p_{1}^{*}, p_{2}^{*}$ are natural, Proposition 2 may be easily proved by Proposition 1 and the following lemmas.

Lemma 1. Let Y and Y_{0} be spaces of the types $K(\Pi, n ; G, m ; \mathbf{k} ; \ldots .$. and $K\left(\Pi_{0}, n ; G_{0}, m ; \mathbf{k}_{0} ; \ldots ..\right)$ respectively. For a map $h: Y_{0} \rightarrow Y$ we have relation

$$
f^{*} \mathbf{k}=g^{\#} \mathbf{k}_{0}
$$

where $f: \Pi_{0} \rightarrow \Pi$ and $g: G_{0} \rightarrow G$ are homomorphism induced by h, and

$$
\begin{aligned}
f^{*}: H^{m+1}(\Pi, n ; G) & \rightarrow H^{m+1}\left(\Pi_{0}, n ; G\right), \\
g^{\#}: H^{m+1}\left(\Pi_{0}, n ; G_{0}\right) & \rightarrow H^{m+1}\left(\Pi_{0}, n ; G\right)
\end{aligned}
$$

are homomorphisms induced by f and g, respectively.

Proof. Let X be a space obtained from Y by attaching i-cells ($i \geqq m$ $+1)$ such that $\pi_{i}(X) \approx \pi_{i}(Y), 1 \leqq i<m$ and $\pi_{i}(X)=0, i \geqq m$. Let $\mathbf{k}^{\prime} \in$ $H^{m+1}(X, Y ; G)$ be the first obstruction to retracting X onto Y. Then $\mathbf{k}=$ $j^{*} \mathbf{k}^{\prime}$, where $j^{*}: H^{m+1}(X, Y ; G) \rightarrow H^{m+1}(X ; G)$ is the homomorphism induced by the inclusion map, and $H^{m+1}(X ; G)$ is identified with $H^{m+1}(\Pi, n ; G)$ under the natural isomorphism. Let $X_{0}, \mathbf{k}_{0}^{\prime}$ and j_{0}^{*} be similar to X, \mathbf{k}^{\prime} and j.

The map $h: \quad Y_{0} \rightarrow Y$ has an extension $\bar{h}: \quad X_{0} \rightarrow X$, and we have $\bar{h}_{1}^{*} \mathbf{k}^{\prime}$ $=\bar{g}_{1}^{\#} \mathbf{k}_{0}^{\prime}$, where

$$
\begin{aligned}
& \bar{h}_{1}^{*}: H^{m+1}(X, Y ; G) \rightarrow H^{m+1}\left(X_{0}, Y_{0} ; G\right), \\
& \bar{g}_{1}^{\#}: H^{m+1}\left(X_{0}, Y_{0} ; G_{0}\right) \rightarrow H^{m+1}\left(X_{0}, Y_{0} ; G\right)
\end{aligned}
$$

are homomorphisms induced by \bar{h} and g.
In the following diagram, commutativities hold:

Therefore, since $\bar{h}^{*}=f^{*}, g^{\#}=\bar{g}^{\#}$, we have

$$
\begin{array}{lll}
f^{*} \mathbf{k}=\bar{h}^{*} j^{*} \mathbf{k}^{\prime}=j_{1}^{*} \bar{h}_{1}^{*} \mathbf{k}^{\prime}=j_{1}^{*} \bar{g}_{0}^{\#} \mathbf{k}_{0}^{\prime}=\bar{g}^{\#} j_{0}^{*} \mathbf{k}_{0}^{\prime}=\bar{g}^{\#} \mathbf{k}_{0} \\
f^{*} \mathbf{k}=g^{\#} \mathbf{k}_{0} . & \text { q. e. } \text { d. }
\end{array}
$$

LEMMA 2. Let Y be a $C W$-complex of the type $K(\Pi, n ; G, m, \mathbf{k} ; \ldots .$. and abelian groups Π_{0}, G_{0} and homomorphisms $f: \Pi_{0} \rightarrow \Pi, g: G_{0} \rightarrow G$ be given. Let a cocycle $k_{0} \in Z^{m+1}\left(\Pi_{0}, n ; G_{0}\right)$, such that $f^{*} k=g^{\#} k_{0}$ for some cocycle k belonging to \mathbf{k}, be given, where $f^{*}: Z^{m+1}(\Pi, n ; G) \rightarrow Z^{m+1}\left(\Pi_{0}, n ; G\right)$, $g^{\#}: Z^{m+1}\left(\Pi_{0}, n ; G_{0}\right) \rightarrow Z^{m+1}\left(\Pi_{0}, n ; G\right)$ be homomorphisms induced by f and g. Then there exist a $C W$-complex Y_{0} of the type $K\left(\Pi_{0}, n ; G_{0}, m ; \mathbf{k}_{0} ; \ldots ..\right)$ and a map $h: Y_{0} \rightarrow Y$ which induces f and g, where \mathbf{k}_{0} is the cohomology class of k_{0}. Moreover, if Π_{0}, G_{0} are countable groups, then Y_{0} may be chosen to be a countable $C W$-complex.

Proof. We shall consider a $C W$-complex $|K(G, m+1)|$ which is the geometric realization of the Eilenberg-MacLane complex $K(G, m+1)$ Let E be the space of paths in $|K(G, m+1)|$ terminating in the unique 0 -cell of $|K(G, m+1)|$ with the fibre map $p: E \rightarrow|K(G, m+1)|$ and the fibre $\mathbf{K}(G, m)$. Let $b \in Z^{m+1}(G, m+1 ; G)$ be the basic cocycle and $\mathbf{b} \in H^{m+1}$
($G, m+1 ; G$) be its cohomology class. By Theorem 5.1 of [4], there exists a c. s. s. map $\lambda: K(\Pi, n) \rightarrow K(G, m+1)$ such that $\lambda^{*}(b)=k$, where λ^{*} denotes the cochain map induced by λ. Then λ defines a map $|\lambda|:|K(\Pi, n)|$ $\rightarrow|K(G, m+1)|$ and $|\lambda|$ induces a space Y^{\prime} and maps q, F such that the diagram

is commutative and Y^{\prime} is a fibre space over $|K(\Pi, n)|$. Since $|K(\Pi, n)|$ is a space of the type $K(\Pi, n)$ and $|\lambda|^{*}(\mathbf{b})=\mathbf{k}, Y^{\prime}$ is a space of the type $K(\Pi$, $n ; G, m ; \mathbf{k} ; \ldots \ldots$). (cf. Proof of Proposition 9 of [2]). Therefore the geometric realization $\left|S\left(Y^{\prime}\right)\right|$ of the singular complex of Y^{\prime} is also a space of the type $K(\Pi, n ; G, m ; \mathbf{k} ; \ldots \ldots)$. Hence $\left|S\left(Y^{\prime}\right)\right|$ and Y are of the same homotopy type and so there exists a map

$$
h_{1}:\left|S\left(Y^{\prime}\right)\right| \rightarrow Y
$$

which induces the identities on homotopy groups.
Similarly we shall consider the diagram

where $\mu: K\left(\Pi_{0}, n\right) \rightarrow K\left(G_{0}, m+1\right)$ is a c.s.s. map such that $\mu^{*}\left(b_{0}\right)=k_{0}$ for the basic cocycle $b_{0} \in Z^{m+1}\left(G_{0}, m+1 ; G_{0}\right)$. The space Y_{0}^{\prime} is also of the type $K\left(\Pi_{0}, n ; G_{0}, m ; \mathbf{k}_{0} ; \ldots \ldots\right)$.

The homomorphisms f and g induce c.s.s. maps $K\left(\Pi_{0}, n\right) \rightarrow K(I I, n)$ and $K\left(G_{0}, m+1\right) \rightarrow K(G, m+1)$, and these maps are denoted again by f and g respectively. Then $|g|:\left|K\left(G_{0}, m+1\right)\right| \rightarrow|K(G, m+1)|$ induces a map $\bar{g}: E_{0} \rightarrow E$ such that $p \circ \bar{g}=|g| \circ p_{0}$.

Since $g^{*} b=g^{\#} b_{0}$, by $f^{*} k=g^{\#} k_{0}$, we have

$$
\begin{aligned}
(\lambda f)^{*} b= & \left(f^{*} \lambda^{*}\right) b=f^{*} k=g^{*} k_{0} \\
= & g^{\#} \mu^{*}\left(b_{0}\right)=\mu^{*} g^{\#} b_{0}=\mu^{*} g^{*} b=(g \mu)^{*} b, \\
& (\lambda f)^{*} b=(g \mu)^{*} b .
\end{aligned}
$$

i. e.,

Therefore, by Theorem 5.1 of [4], we know that $\lambda f=g \mu$, hence $|\lambda| \circ|f|$ $=|g| \circ|\mu|$. Therefore we can define a map

$$
h_{0}: Y_{0}^{\prime} \rightarrow Y
$$

by $h_{0}(r, s)=(|f|(r),|g|(s))$ for $r \in\left|K\left(\Pi_{0}, n\right)\right|, s \in E_{0}\left(p_{\wedge}(s)=|\mu|(r)\right)$.
Then we have a commutative diagram:
\bar{g}

Therefore it is easily seen that h_{0} induces the homomorphisms f and g on homotopy groups. Thus if we put $Y_{0}=\left|S\left(Y_{0}^{\prime}\right)\right|$ and $h=h_{1} \circ\left|\bar{h}_{0}\right|$, then Y_{0} and h have the required properties, where $\bar{h}_{0}: S\left(Y_{0}^{\prime}\right) \rightarrow S\left(Y^{\prime}\right)$ is the c.s.s. map induced by h.

If Π_{0} and G_{0} are countable groups, then by Theorem (5.1) of [1], we know that the minimal subcomplex M of $S\left(Y_{0}^{\prime}\right)$ is countable. Therefore $|M|$ and $h||M|$ have the required properties. q. e. d.

Lemma 3. Let Π, G be abelian groups and we assume that Π is countable. For any element $\mathbf{k} \in H^{m+1}(\Pi, n ; G)$ there exist a countable subgroup $G_{0} \subset G$ and an element $\mathbf{k}_{0} \in H^{m+1}\left(\Pi \quad n ; G_{0}\right)$ such that $\mathbf{k}=g^{\#} \mathbf{k}_{0}$, where $g^{\#}: H^{m+1}\left(\Pi, n ; G_{0}\right) \rightarrow H^{n+1}(\Pi, n ; G)$ is the homomorphism induced by the inclusion map $G_{0} \subset G$.

PROOF. By the universal coefficient theorem $H^{m+1}(\Pi, n ; G)=$ Hom $\left(H_{m+1}(\Pi, n), G\right)+\operatorname{Ext}\left(H_{m}(\Pi, n) G\right)$, hence we have $\mathbf{k}=\mathbf{k}_{1}+\mathbf{k}_{2}$ for some $\mathbf{k}_{1} \in \operatorname{Hom}\left(H_{m+1}(\Pi, n), G\right)$ and $\mathbf{k}_{2} \in \operatorname{Ext}\left(H_{m}(\Pi, n), G\right)$. Since Π is countable, the complex $K(\Pi, n)$ is countable, hence $H_{i}(\Pi, n)$ for each i is a countable group. Hence $G_{1}=\mathbf{k}_{1}\left(H_{m+1}(\Pi, n)\right)$ is countable.

Next, we shall consider an exact sequence

$$
0 \rightarrow R \xrightarrow{i} F \stackrel{j}{\rightarrow} H_{m}(\Pi, n) \rightarrow 0
$$

where F is a free group. Since $H_{m}(\Pi, n)$ is countable, we may assume that F and also R are countable. By the definition of Ext,

$$
\operatorname{Ext}\left(H_{m}(\Pi, n), G\right)=\operatorname{Hom}(R, G) / i^{*} \operatorname{Hom}(F, G),
$$

hence we can choose an element $a \in \operatorname{Hom}(R, G)$ which represents \mathbf{k}_{2}. Then $a(R)=G_{2}$ is countable. Hence $G_{0}=G_{1} \cup G_{2}$ is countable and it is obvious that there exists an element $\mathbf{k}_{0} \in H^{m+1}\left(\Pi, n ; G_{0}\right)$ such that $\mathbf{k}=g^{\#} \mathbf{k}_{0}$.

q. e. d.

3. Let Π, G be abelian groups. Then for integers n, m with $1<n<m$ and for each element $\mathbf{k} \in H^{m+}(\Pi, n ; G)$ there exists a space of the type $K(\Pi, n ; G, m ; \mathbf{k} ; \ldots \ldots)$. Therefore, by Proposition 2, in order that a given homomorphism $W: \Pi \otimes \Pi \rightarrow G$ is realizable as the Whitehead product in a space of the type $K(\Pi, n ; G, 2 n-1 ; \ldots \ldots)$ it is necessary and sufficient that $W \in \Theta^{*}\left(\psi^{*}-p_{1}^{*}-p_{2}^{*}\right) H^{2 n}(\Pi, n ; G)$. For $n=2,3,4,5, \Theta^{*}\left(\psi^{*}-p_{\mathrm{I}}^{*}-p_{2}^{*}\right)$ $H^{2 n}(\Pi, n ; G)$ are computable and we have the following

THEOREM 1. In order that a given homomorphism $W: \Pi \otimes \Pi \rightarrow G$ is realizable as the Whitehead product in a space of the type $K(\Pi, n ; G, 2 n$ $-1 ; \ldots .$.) for $n=2$ or 4 , it is necessary and sufficient that there exists a map $\eta: \Pi \rightarrow G$ such that $\eta(x)=\eta(-x)$, and $W(x \otimes y)=\eta(x+y)-\eta(x)$ $-\eta(y)$ for any $x, y \in \Pi$.

THEOREM 2. ${ }^{3)}$ In order that a given homomorphism $W: \Pi \otimes \Pi \rightarrow G$ is realizable as the Whitehead product in a space of the type $K(\Pi, n ; G$, $2 n-1 ; \ldots \ldots)$ for $n=3$ or 5 , it is necessary and sufficient that $W(x \otimes x)$ $=0$ for any $x \in \Pi$.

PROOF OF THEOREM 1. We shall consider the following commutative diagram which is seen in the proof of Theorem 21.1 of [3]:

If we restrict to the subgroups of degree 4 and if we put $n=2$, this diagram gives the following commutative diagram:

3) Theorem 2 for $n=3$ covers Theorem 8 of [6].
where $\Gamma_{4}\left(\Pi_{1}\right) \otimes 1, H_{4}\left(\Pi_{1}, 2\right) \otimes H_{0}\left(\Pi_{2}, 2\right)$ and $\Gamma_{0}\left(\Pi_{1}\right)$ etc. are naturally identified with $\Gamma_{4}\left(\Pi_{1}\right), H_{4}\left(\Pi_{1}, 2\right)$ and Π_{1} etc. respectively. And under these identifications, g and Ψ are defined by

$$
\begin{gathered}
\left\{\begin{array}{l}
g\left(\gamma_{4}(x)\right)=\gamma_{4}(x, 0), \\
g\left(\gamma_{4}(y)\right)=\gamma_{4}(0, y), \\
g(x \otimes y)=\gamma_{4}(x, y)-\gamma_{4}(x, 0)-\gamma_{4}(0, y),
\end{array}\right. \\
\Psi= \begin{cases}\theta_{1, \Gamma} & \text { on } \Gamma_{4}\left(\Pi_{1}\right), \\
\theta_{2, \Gamma} & \text { on } \Gamma_{4}\left(\Pi_{2}\right), \\
\text { identity } & \text { on } \Pi_{1} \otimes \Pi_{2} .\end{cases}
\end{gathered}
$$

By Theorem 18.4 and Theorem 21.1 of [3]; g and Ψ are onto isomorphisms. Let $i: \Pi_{1} \otimes \Pi_{2} \rightarrow H_{4}\left(\Pi_{2}, 2\right)+H_{4}\left(\Pi_{2}, 2\right)+\Pi_{1} \otimes \Pi_{2}$ and $i: \Pi_{1} \otimes \Pi_{2} \rightarrow \Gamma_{4}\left(\Pi_{1}\right)$ $+\Gamma_{4}\left(\Pi_{2}\right)+\Pi_{1} \otimes \Pi_{2}$ be the inclusion maps. Then the composition homomorphism $i \circ \pi_{*}$ induces the homomorphism
$\operatorname{Hom}\left(i \circ \pi_{*}\right): \operatorname{Hom}\left(H_{4}\left(\Pi_{1}+\Pi_{2}, 2\right), G\right) \rightarrow \operatorname{Hom}\left(\Pi_{1} \otimes \Pi_{2}, G\right)$.
Since $H_{3}(\Pi, 2)=0$, by the universal coefficient theorem we have

$$
H^{4}\left(\Pi_{1}+\Pi_{2}, 2 ; G\right)=\operatorname{Hom}\left(H_{4}\left(\Pi_{1}+\Pi_{2}, 2\right), G\right)
$$

and if we put $\Pi=\Pi_{1}=\Pi_{2}$, then Hom ($i \circ \pi_{*}$) is Θ^{*} in Proposition 2.
Thus, from the above diagram and the naturality of θ_{4} we have the following commutative diagram :

where $\bar{\psi}, \bar{p}_{i}: \Gamma_{4}(\Pi+\Pi) \rightarrow \Gamma_{4}(\Pi)$ are homomorphisms induced by ψ, p_{i} and $\bar{\psi}^{*}=\operatorname{Hom}(\bar{\psi}), \bar{p}_{1}^{*}=\operatorname{Hom}\left(\bar{p}_{i}\right)$.

Therefore we have

$$
\begin{aligned}
& \Theta^{*}\left(\psi^{*}-p_{1}^{*}-p_{2}^{*}\right) \\
= & \operatorname{Hom}\left(g_{\circ}\right) \circ\left(\bar{\psi}^{*}-p_{1}^{*}-p_{2}^{*}\right) \circ \operatorname{Hom}\left(\theta_{4}\right) .
\end{aligned}
$$

Since θ_{4} is an onto isomorphism, we can identify $H^{4}(\Pi, 2 ; G)$ with Hom ($\left.\boldsymbol{\Gamma}_{4}(\boldsymbol{\Pi}), G\right)$ under the isomorphism Hom $\left(\theta_{4}\right)$. Then we have

$$
\Theta^{*}\left(\psi^{*}-p_{1}^{*}-p_{2}^{*}\right)=\operatorname{Hom}\left(g_{\circ}\right) \circ \circ\left(\bar{\psi}^{*}-\bar{p}_{1}^{*}-\bar{p}_{2}^{*}\right) .
$$

Thus, for $k \in \operatorname{Hom}\left(\boldsymbol{\Gamma}_{4}(\Pi), G\right)$ and $x, y \in \Pi$ we have

$$
\begin{aligned}
{\left[\Theta ^ { * } \left(\psi^{*}\right.\right.} & \left.\left.-p_{1}^{*}-p_{2}^{*}\right) k\right](x \otimes y) \\
& =\left[\operatorname{Hom}(g \circ i) \circ\left(\bar{\psi}^{*}-\bar{p}_{1}^{*}-\bar{p}_{2}^{*}\right) k\right](x \otimes y) \\
& =k \gamma_{4}(x+y)-k \gamma_{4}(x)-k \gamma_{4}(y) .
\end{aligned}
$$

Therefore, if we put $\eta(x)=k \gamma_{4}(x)$, then we have

$$
\left[\Theta^{*}\left(\psi^{*}-p_{1}^{*}-p_{2}^{*}\right) k\right](x \otimes y)=\eta(x+y)-\eta(x)-\eta(y),
$$

and since $\gamma_{4}(x)=\gamma_{4}(-x), \eta(x)$ satisfies the condition $\eta(x)=\eta(-x)$.
Conversely, let $T: \Pi \otimes \Pi \rightarrow G$ be a given homomorphism and if $T(x \otimes y)$ $=\eta(x+y)-\eta^{\prime}(x)-\eta^{\prime}(y)$ for some map $\eta: \Pi \rightarrow G$ such that $\eta(x)=\eta(-x)$, then $T(x \otimes(y+z))=T(x \otimes y)+T(x \otimes z)$ implies the relation

$$
\begin{aligned}
\eta(x+y+z) & -\eta(y+z)-\eta(z+x)-\eta(x+y) \\
& +\eta(x)+\eta(y)+\eta(z)=0
\end{aligned}
$$

Therefore, there exists a homomorphism $k: \Gamma_{4}(\Pi) \rightarrow G$ such that $k \gamma_{4}(x)=\eta(x)$. Hence $\Theta^{*}\left(\psi^{*}-p_{1}^{*}-p_{2}^{*}\right) k=T$. Thus the proof for $n=2$ is complete.

By Theorems 24.1, 24.2 and 27.3 of [3]

$$
\begin{aligned}
& \theta_{7}:{ }_{2} \Pi \simeq H_{7}(\Pi, 4) \\
& \theta_{8}: \Gamma_{4}(\Pi)+\Pi / 3 \Pi \simeq H_{8}(\Pi, 4), \\
& \theta^{8}: H^{8}(\Pi, 4 ; G) \simeq \operatorname{Hom}\left({ }_{2} \Pi, G / 2 G\right) \\
& \\
& \quad+\operatorname{Hom}\left(\Gamma_{4}(\Pi), G\right)+\operatorname{Hom}(\Pi / 3 \Pi, G)
\end{aligned}
$$

But it is easily seen that $\Theta^{*}\left(\psi^{*}-p_{1}^{*}-p_{2}^{*}\right)$ is trivial on the first and third summands of $H^{8}(\Pi, 4 ; G)$. Therefore the proof for $n=4$ is reduced to the above proof for $n=2$. Thus the proof of Theorem 1 is complete.

PROOF OF THEOREM 2. The proof is similar to that of Theorem 1, and so we shall sketch the proof. We shall consider an isomorphism

$$
g: \Lambda_{2}\left(\Pi_{1}\right)+\Lambda_{2}\left(\Pi_{2}\right)+\Pi_{1} \otimes \Pi_{2} \rightarrow \Lambda_{2}\left(\Pi_{1}+\Pi_{2}\right) \quad\left(\Pi=\Pi_{1}=\Pi_{2}\right)
$$

defined by

$$
\begin{aligned}
g\left(x \wedge x^{\prime}\right) & =(x, 0) \wedge\left(x^{\prime}, 0\right) \\
g\left(y \wedge y^{\prime}\right) & =(0, y) \wedge\left(0, y^{\prime}\right) \\
g(x \otimes y) & =(x, 0) \wedge(0, y)
\end{aligned}
$$

for $x, x^{\prime} \in \Pi_{1}, y, y^{\prime} \in \Pi_{2}$.
This isomorphism is the restriction of g on the subgroup of degree 4 which is defined in Theorem 19.2 of [3].

Let $i: \Pi_{1} \otimes \Pi_{2} \rightarrow \Lambda_{2}\left(\Pi_{1}\right)+\Lambda_{2}\left(\Pi_{2}\right)+\Pi_{1} \otimes \Pi_{2}$ be the inclusion map. Then, by the similar argument with that in the proof of Theorem 1 we know that

$$
\begin{aligned}
\Theta^{*}\left(\psi^{*}\right. & \left.-p_{1}^{*}-p_{2}^{*}\right) H^{2 n}(\Pi, n ; G) \\
& =\operatorname{Hom}(g \circ i) \circ\left(\bar{\psi}^{*}-\bar{p}_{1}^{*}-\bar{p}_{2}^{*}\right) \circ \operatorname{Hom}\left(\Lambda_{2}(\Pi), G\right)
\end{aligned}
$$

for $n=3$ or 5 .
Since $\Lambda_{2}(\Pi)$ is $\Pi \otimes \Pi$ modulo the diagonal, this proves Theorem 2.

REFERENCES

[1] E. H. Brown, Finite computability of Postnikov complex, Ann. of Math., 65(1957), 1-20.
[2] A. H. Copeland, On H-spaces with two non-trivial homotopy groups, Proc. of Amer. Math. Soc., 8(1957), 184-191.
[3] S. Eilenberg and S. MacLane, On the groups $H(\Pi, n)$, II, Ann. of Math., 60(1954), 49-139.
[4] -, On the groups $H(\Pi, n)$, III, Ann. of Math., 62(1954), 513-557.
[5] I. M. James, Reduced product spaces, Ann. of Math. 62(1955), 170-197.
[6] H. Miyazaki, On realizations of some Whitehead products, Tôhoku Math. Journ., 12 (1960), 1-30.
[7] J. H. C. Whitehead, Combinatorial homotopy, I, Bull. Amer. Math. Soc., 55(1949), 245-277.

Mathematical Institute, Tôhoku University.

[^0]: 1) Numbers in brackets refer to the references at the end of the paper.
 2) The fact that a connected locally finite $C W$-complex is countable is noticed in p. 223 of [7].
