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1. Introduction. Let M be an ^-dimensional connected complete Rieman-
nian manifold of class C2 admitting a parallel field of r dimensional tangent
vector subspaces. Then, M admits the parallel field of ^-dimensional tangent
vector subspaces, where s = n — r, orthogonal to the given field. M is also
regarded as a Riemannian manifold whose homogeneous holonomy group
fixes an r- (or s-) dimensional tangent vector subspace. The purpose of this
note is to treat of the global structure of M. In a case where r = n — 1,
i.e. 5 = 1, the author [3] already attempted to clarify geometrically the global
structure. Hare let us discuss the structure in the case where 1 Ŝ r,
s ^ n — 1, from the view-point of fibre bundle. For the main results, see
Theorems 1 — 7. Especially Theorem 3 shows a general structure of M and
from the other theorems we may know structures in respective cases. Notice
that these theorems all hold good even if R and S in these theorems are
exchanged for each other (see Remark 1).

From now on the word "^-dimensional" is abbreviated as "k-", say like
£-space (but, such a prefix does not necessarily mean dimension). Let us
suppose that indices run as follows : a, b = 1,2,..., r; i, j = r + 1, r + 2,...,
n; a = 1,2,..., n. The following conventions in a Riemannian manifold X are
also applied to all of Riemannian manifolds : The parallelism in X means
the one of Levi-Civita. A neighborhood in X is always an open set homeo-
morphic to Euclidean space. Take any x,y ^ X. Let [.£, 3>] denote a geodesic
arc joining x to y. And further, take a unit tangent vector v at x. Given a
real number c, g(x, v, c) is defined to be the geodesic arc issuing from x,
whose length is \c\ and whose initial vector is v or — v according as c > 0
or < 0. Let {x, v, c) denote its terminal point. Note that a geodesic arc is not
necessarily simple and sometimes may be closed. Let a curve a: x(t) (say,
0 ^ t ^ 1) be given in X At x0 = x(0) we take a unit vector v0 tangent to
X. Corresponding to each t, let v(i) denote the unit vector at x(t) parallel to
v0 along ct. Moreover, if a geodesic arc g(xOi v0, c) is given, each geodesic
arc g(x(t), v(t), c) is said to be parallel to g(x0, v0, c) along a. And to displace
ths latter arc parallelly along a is to obtain the former arcs. A covering
manifold C{X) of X is defined to be a connected covering manifold of X
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with the Riemannian metric naturally induced from X by the covering map
p. Especially, if p~ι(x) (x € X) consists of just k points, C(X) is called a
k-covering manifold of X. The notation " x " always means the operation of
metric product.

For models of RS-manifolds in Remarks 2 — 6, cf. [3].

2. Preliminaries. As already denned, let M be a connected complete
Riemannian ^-manifold (n > 1) of class C2 admitting a parallel field of tan-
gent vector r-subspaces (1 ^ r ^ n — 1). More precisely, to each point of M
a tangent vector r-subspace is assigned so that all of them form a parallel
field. We call it the R-field over M. Let us take the field of tangent vector
s-subspaces, s = n — r, which is orthogonal to the i?-field at each point of M.
It is obvious that the field forms a parallel field over M. We call it the S-field
over M. Throughout the whole discussion, M is such a manifold which will
be called an RS-manίfold of dimension n. In M the following fact is very
well-known:

At any x0 £Ξ M there is a coordinate neighborhood U wiίh coordinate
system (x*) which satisfies the following properties :

1) The transformation from the system (xa) to an admissible coordinate
system of M at x0 is of class C3;

2) The Riemannian metric in U is expressed by the form completely
decomposed as follows :

ds2 = gab(x\ ,xr) dxadxb + 9ij{χr+\ , χn)dxdxj

where gab and gt) are functions of class C1 independent of x* and xa

respectively
3) A system of equations x = const, expresses an integral manifold of

the R-field and a system of equations xa = const, expresses one of the S-field.

For the proof, see [1], say.

A coordinate neighborhood of x° € M with the same property as U above
is called a reduced coordinate neighborhood of xθ9 if its coordinate system
(xΛ) consists of all of (x*ys such that a" < x" < ba(a", b* are constants).

Let U, U' be two reduced coordinate neighborhoods of x0. Let (xΛ) and
(xa) be their coordinate systems respectively. Let W be the connected com-
ponents of U Π U' containing x0. In W the coordinate systems (xa) and
(xa) are combined by the relations completely decomposed as follows :

a f \ \ , x \ x* = / V + 1 n )
where f'a and f* are functions of class C2 independent of χι and xa

respectively. Moreover we can see that through x0 € M there passes a pair



204 s KASHIWABARA

of the maximal connected integral manifolds of the i?-and S-fields. Let R(x0)
and S(x{)) denote the ones respectively. We give them the Riemannian metric
which is naturally induced from M and call them R- and S-sub manifolds
of M respectively. They form Riemannian manifolds of class C1. The follow-
ing fact is well-known : All of the R- and S-sub manifolds are totally geodesic,
and complete as Riemannian manifolds. Let I(x0) denote the set R(x0) Π S(x0).

In M, suppose that there exists a connected open submanifold M° which
satisfies the following conditions 1) and 2), or 1) and 3) :

1) M° is a union set of 2?-submanifolds and the closure of M° is M;
2) M° is the maximal subset in which each point x is a limit point of

I(x) relative to S(x), or
3) M° is a maximal subspace which becomes a fibre bundle where each

fibre is an i?-submanifold. (By the word "maximal" it is meant that there
are no subspaces, 3 M°, =4= M°, which have the same property.)

When M° satisfies 1) and 2), M is said to be of almost R-clustered type
with kernel M°. In this case, if M = M°, M is simply said to be of R-clustered
type.

When M° satisfies 1) and 3), M is said to be of almost R-fibred type
with kernel M°. In this case, if M = M\ M is simply said to be of R-fibred
type.

REMARK 1. Throughout this note, infield and S-field, so i^-submanifold
and /S-submanifold, can not be intrinsically distinguished. Accordingly, the
statements all hold good even if we exchange the roles of them. If for ex-
ample a definition is given, the new definition is obtained by exchanging R
and S in it for each other. Of course it holds good. Let us suppose that the'
new definition is given there, although it is not explicitly stated. This is also
applied to notations, lemmas, theorems, and so on. Besides, it is a matter of
course that definitions, notations, and so on, in M are used for any RS-manifolds
under the same senses.

3. Fundamental lemmas. Take any x0 € M. An R-neighborhood of
x0 is a neighborhood in R(x0). An R-normal vector at x0 is a unit tangent
vector at xΰ orthogonal to R(x0). Take a connected open subset OR of R(x0)
(x0 € OR) and an JR-normal vector n0 at x0. At each x € OR we plant an
Λ-normal vector n{x) where n(x0) = n0. If for any xl9 x2 € OR, n(xτ) is parallel
to n(x2) along any of curves of class D1 in OR joining xτ to x2, the set
\n(x)\x € OR] is called the R-normal vector field over OR parallel to nd

(= n(x0)).
Again take x0 € M and an .R-normal vector n0 at x0. For a constant c,

put y0 = (x0, nθ9 c). Then we have
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LEMMA 3. 1. There is an R-neighborhood UR at x0 which satisfies the
following conditions :

1) Over UR the R-normal vector field \n(x)\x € UR\ parallel to n0

does exist
2) (x, n(x), c) € R(y0) for all x € UR;
3) The map

f:UR^ R(y0) defined by f(x) = (x, n(x\ c)

is an isometric into-homeomorphism of class C3.

PROOF. First let us consider the case where the geodesic g(x0, n0) c) is
contained in a reduced coordinate neighborhood U. Let UR be the connected
component of U Π R(xo) containing x0. In U, let (x"), (y"), and (w?) denote

xθ9 yθ9 and n0 respectively. Here, n% = 0. It is verified that all of the vectors

n(x), x € UR, which have in U the same components as n0, form the
.R-normal vector field parallel to n0. So, 1) holds good. In U let (a?) denote
any x € UR. Here, x = xι

ϋ. Moreover we can see that a point (x, n(x), c) is

denoted by (xa, y'o). As x% = ya

0, (x, n{x), c) € R(y0), i. e., 2) holds true. 3) is
now obvious by § 2.

Next let us consider the case where the geodesic g(x0, n0, c) is not con-
tained in a reduced coordinate neighborhood. Take a finite system of reduced
coordinate neighborhoods £/λ(λ = .1,2, , h) such that each U\ contains a

geodesic arc [xλ_i, Xχ] where the product curve [x0, x-[\ \xl9x^\ "- \xh-i9 χΛ

becomes g(x0) n0> c). For each pair U\ and [x\-ι, X\], there is an ̂ -neighborhood

of X\-ι which satisfies the conditions 1) —3), as already proved. Hence, it is

easy to find an i?-neighborhood £/λ which satisfies our conditions 1) —3).

Under the same notations as Lemma 3. 1? let x(t) {a 5Ξ t <̂  b\ x(a) = x0,

be a curve of class D1 in R(x0). For each t, let n{t) be the i^-normal vector

at x(t) parallel to n0 along the curve. We put y(t) = (x(t), n(t), c). Let n\t) be

the vector at y(t) parallel to n(t) along the geodesic g(x(t), n(t), c). Since

g(x(t), n(t), c) (H S(x(t)), n(t) is an Λ-normal vector. Then we have

LEMMA 3. 2. 1) The curve y{t) {a ^ t <; b) is a curve of class D1 in

R(yo);

2) \n(t)\a <^ t ^ b\ consists of R-normal vectors parallel to one another

along the curve y(t).

PROOF. For any t0 (a ^ t0 <^ b) if we cover the geodesic g(x(t0), n(to),c)

by a finite number of reduced coordinate neighborhoods, it is seen that in a

suitable interval of t containing t0, 1) and 2) hold good (cf. Proof of Lemma

3. 1). Accordingly, 1), 2) are proved.
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In M, let R, S be any R-, xiv-submanifolds respectively. Then we have

LEMMA 3. 3. The set R Π S is at most countable and non-empty.

PROOF First note that the second countability axiom holds in M, R, S
respectively. Now take a countable (or finite) system of reduced coordinate
neighborhoods U\ which cover M. Then U\ Π R consists of a system of
non-intersecting ^-neighborhoods, which is at most countable. (Of course the
system may be empty). For Uκ Π S, too, it holds good. These properties are
obvious by the second countability axiom.

Accordingly, Uκ Π R Π S is at most countable. Hence R Π S is at most
countable. For the assertion that R Π S is non-empty, see [2], p. 23

4. A general structure. For any two points xlfx2 of the same i?-sub-
manifold in M, let dR(xly x2) denote the length of a minimizing geodesic [xl9

x2~\ in the i?-submanifold. Take any x0 ^ M and a constant a > 0. Let
CR(X0; a) denote the part of R(x0) defined by the subset {x\x € R(x0), dR{x^x)
Ŝ a}. If a set \x\x € R(x0), dilx^x) < a\ forms an i?-neighborhood of x0

which can be covered by a normal coordinate system in R(x0) with center
xQ, this neighborhood is called a normal R-neighborhood of x0 and denoted
by NR(X0; a). Moreover such a constant a is called a normal R-radius at x0.
Let TR(x0) denote the Euclidean vector r-space tangent to R(x0) at x0. The
map expff at x0 € M is defined to be the map TR(X0) -> R(x0) such that exp^
v = x0 for the zero vector v € TR(x0) and expβ v = (x0, v/ \ v \, | v \) for any
non-zero vector z; € TR(x0), where |t;| denotes the length of v.

Again at x0 € M let eR(x0) denote the greatest lower bound of {dR(x0,x)
Ix € I(x0) — xo\ if /(^o) ~ -̂ o is non-empty. If I(x0) — Xo is empty, we put
eR(xo) = oo. Accordingly, 0 ^ ^κ(̂ :) ^ °° for any x € M.

LEMMA 4. 1. 1) If eR(x0) = 0, *«0r) = 0 for all x € S(x0) (so, if e^x^)
> 0, eR(x)> 0 / o r all x € 5(Λ:0)).

2) If e^Xo) > 0, ίΛere is a constant a > 0 sŵ /i 2/*<zί ^ ^ r / 5 CR(x;a)
for all x € S(x0) do not intersect one another.

3) A necessary and sufficient condition for eR(x0) > 0 is that the
topology of S(x0) coincides with the relative one induced from M.

PROOF. 1) is evident by Lemma 3. 1. To prove 2), at x0 take a
normal Λ-radius c < eR(x0). Then for any x € So = S(x0), CR(x; c) Π So

consists of x only. For, otherwise, there is x € So such that CR(x; c) Π So

contains a point x(^=x). Let [x, x"\ be a minimizing geodesic in R(x). And
let [.r0, x"\ be the geodesic parallel to [ΛVC'] along a curve in So. Hence,
x" € So by Lemma 3 . 2 , [ J O , / ] C C B ( ^ ; C), and xo^=x". Here, diix^x
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< βilpOo). These results contradict with the definition of eR(x0). So, CR(x c) Π So

for each x € *SΌ consists of x only. Now, put a = c/2. Then it is obvious
that the constant a is a constant a in 2). 3) is easily proved by using 2).

Let x0 be a point of M. Take a closed curve β of class D1 in Λo = i?(.ro)
starting from x0. For any t; € Ta(x0), we obtain the vector v at the terminal
point x0 by displacing z; parallelly along β. Of course, 7/ € T6(.r0). Then the
map fβ of TH(XQ) onto itself, defined by /^(^) = t/, is a congruent transfor-
mation in Ts(xo) This is said to be the congruent transformation induced
from β. All of such transformations form a group. We denote it by G(R0, x0)
or G(R0) (it being independent of x0 as abstract group).

LEMMA 4. 2. G(R0,x0) is isomorphic with a factor group of the funda-
mental group T^RQ XQ). Hence the order of G(R0, x0) is at most countable.

PROOF. Let β0 be a closed curve of class D1 in Ro, starting from x0

and in Ro homotopic to xQ. Then the congruent transformation fβ0 in Ts(xo)
induced from βύ is the identity. For, otherwise, we can find a unit vector
v € Tχ(x0) such that fβo(v) \=v. Let c be a normal ^-radius at x0. So, for
a constant δ(0 < δ < c), g(x0, v, δ) is parallel to g(x0, fβO(v), δ) along β0. Here
if we deform β0 to x0, we obtain a curve in Ns(xol c) joining yβo = (xυ, fβo(v\δ)
to y — (x0, v, δ) as the locus of yβo. This curve is contained in I(y). As yβo-Jry,
this is contrary to Lemma 3. 3. The fact above gives rise to the homomorphic
map of TΓ^RQ, X0) onto G(R0, x0) naturally. So the former part is proved. The
latter part is clear because 7rτ(Rtiy x0) is at most countable.

In M, let x0, y0 be two points of an -S-submanifold. Let [̂ 0,̂ 0] D e a
geodesic arc in S(x0). Put [^0^0] = y{xn,nύyc). If R(x0) admits the jR-normal
vector field [n(x)\x € R(xo)\ parallel to n0, we can consider the map

/ : R(x0) -> R(yo) defined by f(x) = (x, n(x)9 c)

by Lemma 3.2. / i s said to be the map induced from Dro,j;o].

LEMMA 4.3. f is locally an isometric horneomorphism of class C2 and
f is also a covering map.

PROOF. From Lemmas 3. 1 and 3. 2, the map f is onto and locally an
isometric homemorphism of class C2. For any y € R(y0) the subset f~Ί(y) of
R(x0) is at most countable by Lemma 3.3. Let .rλ(λ = 1,2, ) denote all of
the points oί f'\y). Here, f~Ky) is contained in a compact subset Cs(y; \c\).
By covering Cs(y; \c\) by a finite number of reduced coordinate neighborhoods,
we can find an Λ-neighborhood Wβ(y) of y and the R-neighborhoods WR(XK)

of xκ for all λ, such that all WR(x\) are isometrically homeomorphic to WR(y)
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under /. Then, all of WR(xκ) do not intersect one another. For, suppose that

WE(xμ) Π WR{xv) + 0 for xμ, xv € / - Ky) (xμ + xv\

If we take a curve CL c: WR(xμ) U WR(xv) joining xμ to xv, ΐhen we have
f(a) c: WR(y). This gives rise to a contradiction. Accordingly, our lemma is
proved.

In M suppose that Ro is an 22-submanifold such that G(R0) consists of
the identity only. Then Ro is said to be R-maximal in M. Here, note the
following property: Take x0 € Ro, y0 € S(x0). Let [xo,yo] be a geodesic in
S(x0). Put 22 α = 22(3/0).' Then, there exists the map / : Ro -> 22 2 induced from
[̂Ό> 3>o] By Lemma 4. 3, 22O is regarded as a covering manifold of 22χ under
f. Moreover, if Rτ is 22-maximal, it is easy to see

LEMMA 4. 4. The map f is an isometric homeomorphism of class C2,
of Ro onto Rτ.

Let V be a Euclidean vector d-space which is topologized by regarding
as Euclidean space. Let G be an effective group of congruent transformations
in V, which is at most countable. We denote all of the elements of G by
#λ(λ = 0,1,2, ), where g0 is the identity. For each 3 λ ( λ φ 0 ) , put Vλ =
j v I gxv — v}. V\ forms a subspace of dimension < d in V. Let y° denote
V — U Γ=i Vλ- Then, V° is non-empty. For any v € V°, the vectors

V, g2v,

are all distinct from one another. This is easily verified. Such a vector v is
said to be completely variant under G. It follows that V° consists of all of
the vectors completely variant under G.

First, suppose that G is finite. Then we have

LEMMA 4. 5. I) V° is an open set of V and the closure of V° is V.
2) For any unit vectors u} u € V°, there is a sequence of unit vectors:

Uτ(= U), U2, , Uk( = u), CZV°

such that uμ, uμ+1 belong to the same connected component of V° or are G-
connected (μ = 1,2, , k — l).

By the word "G-connected" it is meant that uμ+1 = g(μ)uμ for a suitable
g(μ) € G. k suffices to be an integer > 1.

PROOF. AS 1) is obvious, we prove 2). If V° is connected, the sequence:
uτ(= u), u2(= u\ satisfies our condition. Accordingly we consider the case
where V° is not connected. Then, among Vλ(λ = 1, 2, , h — 1; h = the order
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of G), there is at least one of dimension d — 1. Let us suppose Vτ to be such

one. Take v € F°. The vector is represented by uΎ + vτ where &i(4= 0) is

perpendicular to Vx and vλ € W Then we have g1(u1 + vx) = — uτ 4- i^.

I. e., the vector t; is G-connected with v' = ~ uγ + vx. The vector vf belongs

to the side distinct from v with respect to Vτ. Here, if v € V° is suitably
chosen, v belongs to V°. From this fact, 2) is proved.

Next, suppose that G is infinite (i. e., countable). Let V' be the set of all
of v €ί V such that the vectors gκv (λ = 0, 1,2, ) indeed consist of a

finite number of vectors distinct from one another. Any vector of V ~ V is

said to be infinitely variant under G.

LEMMA 4. 6. 1) If v € F ' , #Λz; € V";
2) V' forms a vector subspace of V;
3) For the dimension d of V\ 0<^d' <d — 1;
4) V — V' is a connected open subset of V.

PROOF. 1) and 2) are obvious. To prove 3), suppose that d = d — 1.
By 1)? 9κ V = V' for any gκ € G. Hence, for a vector e normal to V, gke
= e or — e. So, e € V'. I. e., V' = V. This is contrary to the existence of
vectors completely variant under G. Accordingly, 3) holds good. From 3), 4)
follows immediately. This completes the proof.

THEOREM 1. In M suppose that the topology of every R-submanifold
coincides with the relative one induced from M. Then there are R-maximal
R-submanifolds. In all of them let M° be the subspace of M which is their
union set. Then M° is a connected open submanifold of M whose closure
is M and a maximal subspace which becomes a fibre bundle where each
fibre is a R-submanifold. In other words, M is of almost R-fibred type with
kernel Λf°.

PROOF. 1) For any R-submanifold R, G(R) is finite. In fact, suppose

that it is infinite (i. e., countable by Lemma 4. 2). Denote all of the elements

of G(R, x\ x € R, by #λ(λ = 0, 1, 2, ) where g0 is the identity. Then we

can find a unit vector v € Ts(x) completely variant under G(R, x). Let a be
a normal ^-radius at x. For a constant b (0 < b < a) put xκ =• (x, gκv, b). Then

.rλ(λ = 0,1, 2, ) are distinct from one another. And, xκ € R(x0) Γ) Cs (x b).

Cs(x;b) being compact, we have es(x0) = 0. This contradicts with the assumption

of our theorem by Lemma 4. 1. So, G(R) is finite.

2\ Take an 22-submanifold Ro = R(xo) Let k0 be the order of G(R0, x0).

By 1), k0 is finite. Denote all of the elements of G(R0, x0) by g (λ = 0, 1, ,

k0 — 1) where g0 is the identity. We have es(x0) > 0. Let a be a normal
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at x0 such that 0 < a < es(xo)/2. Let v0 be a unit vector of
completely variant under G(R0) x0) For a constant δ (0 < δ < a) put j / λ =
( 3~o, 9*Po> S). Let p(^0, w0, δ) denote the geodesic [3^, x0"] in 7Vs(.r0 α). Put
#1 = #(3Ό). Then, Rτ Π N£xo;a) = b>λ|λ = 0, 1, , .Jfeβ - 1}. For, take 3; €
jRt Π Nχ(xo;a) and displace £y0, ,r0] parallelly along a curve of class D1 in
jR2 joining 3/0 to y. At 3/, we obtain the geodesic [j/, :rό] in S(x0). Here

> 3O + ΛC^* x'o) < a + δ <

So, :r0 = x'Q. From this manner, we can see that y € J3>λ|λ = 0, 1, , k0 — 1}
by Lemma 3. 2. Accordingly, 2?! Π Ns(xoia) consists of ^ ( λ = 0,1, , k0 — 1)
only.

Now over Rt there is the ^-normal vector field parallel to u0. For,
otherwise, by displacing u0 parallelly along a suitable closed curve in Rt we
can obtain a vector uΌ at y0 distinct from u0. Of course, u0 £Ξ T.s(yo) By
Lemma 3. 2, ^ό = (3/0? wό, δ) € R(x0). So ^ ^ I(xo). Here, ΛΌ H= X'U and we have

^(ΛΓ 0 , X'O) ̂  ds(x0, y0) + ds(y0, x'o) ̂  2 δ < e s(.r0).

This is contrary to the definition of es(xo)- So our assertion is true. Hence
there is the map / : Rτ-^ Ro induced from the geodesic [3^, ^ol By Lemma
4. 3, i?j is a &0-covering manifold of Ro under /.

2)2 We prove that Rt is Λ-maximal. Denote all of the elements of G(Rl9 y0)
by hμ(μ = 0, 1, , kτ — 1) where h0 is the identity and kx is the order. By
1), 1 rg &! < 00. Now suppose &! > 1. We take a constant 8 < es(^0)/2, which
becomes at each 3/λ a normal ^-radius, such that all Ns(y>,;£) are contained
in Ns(xol&) and do not intersect one another. Here we can find a unit vector
w0 € Ts(y0) completely variant under GsCRi, y0) and perpendicular to wo All
of the vector hμzv0 are perpendicular to u0. Put z0 = (3^, WOJ ^ ) for a constant
£', 0 < S' < θ. Then there is a map / ' : R(z0) -> 2?x induced from the geodesic
[̂ Oί JO] m Ns(yo',£). Under f\ R(z0) is the ^-covering manifold of Rx. This
is verified by the same way as 2\. Let \_z0, xo~] be the geodesic in Ns(x0;cι).
Then, there is a map / " : R(z0) -> Ro induced from [z0, xo~\. Under the map
/ " , R{zQ) is a ^o^rcovering manifold of i?0. This is easily verified, too. These
results implies that G(R0, x0) has order > koku so > k0. This being a cont-
radiction, kτ must be one. I.e., Rτ is JR-maximal.

2)3 In the case where Ro is i?-maximal, we can see by 2)2 that the R-
submanifolds R(y) for all y €Ξ Ns(x?> Λ) are R-maximal.

Let us consider the case where Ro is not i?-maximal and where there is a unit
vector v € T^x0) which is not completely variant under G(R0, xo) P u t y =

(x0, v, δ) where 0 < δ < a. Then, R(y) is not i?-maximal. To prove this, at y
take a normal S-radius b < es(y)/2. On the other hand, there is g (4= 9o) ^
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G(R0, x0) such that gv = v. Hence, we can find a unit vector v* € Ts(x0)
such that jΛ ^y* a n d / , y* € Ns(y; b) for 3;* = (x0> v*9 δ), yt = O 0 , 9v*9 δ).
Let [y*9 y] be the geodesic in Ndy b). Displace \_y*9 y] parallelly along a
curve of class D1 in R(y*) joining j>* to y*. At y* we obtain the geodesic
ly*> y'li Of course [yϊ,y'~] c S(x0). As ds(y, y') < e^y), we have y = y'. This
means that the order of G(R(y), y) is not one. So, R(y) is not 2£-maximal.

3) Take an S- sub manifold S of M. In 5 let S° be the subspace consisting
of all x € £ such that i?(.r) is Λ-maximal. By 2)3, 5° is open in 5. We
prove that in S the closure of S° is 5. It suffices to consider the case only
where S — S° is non-empty. Take x0 € 5 — S° and at r0 a normal -5-radius
c < es(.ro)/2. We put i?0 = -R(̂ o)- The order of G(R0> x0) is greater than one.
Let V° be the set of all vectors of T^x0), each of which has length < c
and is completely variant under G(ROf x0). Then, exp^y0 = S° f] N6(x0 c)
by 2)2, 2)3. From Lemma 4. 5, we can see that in N^x0 c) the closure of
expsF0 is Nj^x0 c). So, x0 is contained in the closure in S of 5°. Accordingly
our assertion is proved.

Now, by Lemma 3.3 M° is regarded as the union set of \R(x)\x € S°\.
From the above facts and Lemma 3. 1, M° is an open submanifold of M whose
closure is M.

Next, we prove that M° is connected. For this, it suffices to show
that any two points xl9 x2 € S° are joined by a curve in M°. Let a be a
curve in S joining xΎ to x2. Cover a by a finite number of normal /S'-neighbor-
hoods N.,(yκ : αλ) (λ = 1, 2, , h) where yκ € a, ak < e^yλ)/2. For some λ
if 3;λ € 5°, iVs(3/λ ax) C 5° by 2)3. If ;yλ ^ 5°, we denote by Wκ the subspace
of M which is the union set of [R(x)\x € S° Π Ns(yκ ^λ)l Moreover let
Vλ be the set of all vectors of TJiyA)9 each of which has length < aκ and
is completely variant under G(R(yκ), yκ). Here, expβVλ = S° Γ\ Ns(y\ aκ) If
we give Ts(y\) the topology by regarding as Euclidean space, Vi has the
same property as the part of V° in Lemma 4. 5. Hence, we can see that Wλ

is open in M and connected. These facts, together with the property that in
S the closure of S° is S, show that xl9 x2 are joined by a curve in M°. So,
M° is connected.

4) Take x0 € 5° and at x0 a normal 5-radius α < es(x0)/2> Then, Ns

(x0 a) C S° by 2)3. For 2; € N^x0 α) let [Λ:OJ Z] be the geodesic contained
in Nj,x0 Λ). Then there is the map fz: R(x0) -> i?(^) induced from [.r0, 2;].
This map jΓ2 is an isometric homeomorphism by Lemma 4. 4. Denote i?Gr0) X
N^x0 Λ) by V(x0). Hence, any x € V(x0) is represented by a pair (y, z)
where y € R(x0), z € Ns(x0 I a)- Define a map

/ : V(xo)-+M° by f(x) = fz(y).

The map / is one-to-one. For, otherwise, there are xl9 x2 € V(x0), xx 4= x2y
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such that f(xτ) = f(x2). Represent xτ by (yl9 zx) and x2 by (y2, z2). Hence
fzι(yi) = fz*(y*\ s 0 ^(*i) = ^ 2 ) . As *!, *2 € JVsOro a) and i^OO Π Ns(x<> Λ)
consists of #! only, we have 2χ = z2. It follows that yτ = y2. I. e., ^ ! = r2.
This is a contradiction. So, / is one-to-one. It is verified that/ is an isometric
into-homeomorphism such that f(R(x0), z) = R(z) for all z € Ns(x0 I a),
f(y, NJixo a)) C S(y) for all 3; € 2φ;0).

In *S°, if x, y € 5° belong to the same i?-submanifold, we say that they
are equivalent to each other. By this equivalence relation, we construct the
quotient space of S° and denote it by B. Then, B becomes a manifold and
over B a Riemannian metric is naturally indued from S°. Thus B is regarded
as a connected Riemannian s-manifold of class C1. Next, for any x € M°, let
[x] denote the point of B representing R(x) Π S°. Then the map

7r: M° -» B denned by τr(x) = [x]

is an onto-map. Thus we can prove that M° becomes a fibre bundle where
each fibre is an R- sub manifold, the base space is B, and the projection is IT.
The proof is omitted, as it is too long to give here (cf. [5]).

5) If M = M°, our theorem holds good, M being of Λ-fibred type. So it
remains to consider the case where M4=M°. For x € M — M°, the order of
G(R(x), x) is not one. Hence by 2)2 it follows that any ^-neighborhood of x
contains at least two points of an R- sub manifold which is contained in M°.
This shows that there is no subspace, ZD M°, =)= M°. which is a union set of
i?-submanifolds and a fibre bundle where each fibre becomes an Λ-submanifold.
Accordingly, M is of almost JR-fibred type with kernel M°. This completes
the proof of our theorem.

THEOREM 2. In M suppose that the topology of at least one R-sub-
manifold does not coincide with the relative one induced from M. In all
of such R-submanifolds let M° be the subspace of M which is their union
set. Then M° is a connected ope?ι submanifold of M whose closure is M,
and the maximal subset of M in which each point x is a limit point of
I(x) relative to S(x). In other words, M is of almost R-clustered type with
kernel M°.

PROOF. In the case where the topology of every R- sub manifold does
not coincide with the relative one induced from M, es(x) = 0 for all x € M
by Lemma 4. 1. So, M is of ^-clustered type. Our theorem holds good.
Accordingly consider the other case. Then, there is at least one R- sub manifold
Ro whose topology coincides with the relative one. Let Rj denote an i?-sub-
manifold whose topology does not coincide with the relative one.

1) For x0 € R0; we have es(xo) > 0 by Lemma 4. 1. Let us prove that
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G(R0) is infinite, i. e., countable. Take y0 € Rτ Π S(x0), so e^y0) = 0. Let [y0>

xo~} be a minimizing geodesic in S(x0). Put L = ds (yo, Xo) Let α be a normal
-S-radius at y0. We denote N^y0 α) Π i?i by \yκ\X = 0,1,2, }, it being
countable. For each λ let βκ be a curve of class D1 in Rt joining ^ 0 to j / λ .
Displace [y0, xo~\ parallelly along βκ. As the locus of the terminal point x0

we obtain a curve ct\ and at yκ the geodesic [3/λ, xκ~\. .rλ is the terminal point
of 0Lκ and by Lemma 3.2, # λ c: i?0. Moreover, {:rλ|λ = 0, 1, 2, } C /( ro)>
and ci Cs(yo, a + L). From the compactness of C^y0, a + L) and Lemma
4.1, the set jx λ | λ = 0, 1, 2, } must be finite. Hence, there is an infinite
subset {λ1? λ2, ,λfc, I of {0,1,2, } such that xkΛ = xλ2 = =

Xλk = Displace the geodesic [yλl9 x^Y1 = g(x\Ί, vθ9 c) (c > 0) parallelly
along each product curve ot^ *OL\1(. At x^k = xkλ, we obtain the geodesic [y*k,
Xx^]'1. \yxk} being however infinite, it follows that the vector v'o is infinitely
variant under Gt^o, -̂ λi) So, G(R0, xλΛ), i. e., G(R0) is infinite.

From this proof, it is seen that if we put [y0, Xo]'1 = 9(XQ, V0, C), the
vector v0 is infinitely variant under G(R0, x0).

2) Take any 5-submanifold S. Let S° be the maximal subset of S such
that each point x satisfies e^x) = 0. In our case, S° =)= S. For any x0 ^ S — S°,
es(xo) > 0 and G(R'O, x0), Ro = R(xo), is infinite by 1). Take a normal *S-
radius a at x0. Let V° be the set of all vectors in TJ,x0) with lengths < a,
infinitely variant under G(%, *o) Then, expsV° = Ns(x0 a) Π S°. For, it
is obvious that exp,* V° C NJix0 a) Π 5°. Take any y0 € JV^o a) Π 5°.
If ^(^o, ^o, δ) is the geodesic [_x0, yo] in iV/^o a), the vector t;0 is infinitely
variant under G(R'O, x0) by 1). I. e., y0 € exp^F0. So, our assertion is true.
Here, by using Lemma 4.6, it is shown that exp^V0 is a connected open
subset of Ns(x0 a) and its closure in Ns(x0 #) contains x0. Accordingly,
in S the closure of S° is 5.

Moreover, S° is open in S. For, if 3>0 €Ξ S° is not an inner point of 5°
relative to S, we can find x0 ^ S — S° and a normal *S-radius <z at x0 such
that 3/0 € Ns(x0 <2). However, N^x0 α) Π 5° is a connected open subset of
NS(XQ a) containing ^o This is a contradiction. So, S° is open in S.

Next, we prove that S° is a connected subset of S. In fact take two points
xl9 x2 € S°. Let a be a curve in S joining xx to x2. Cover a by a finite number
of normal iS-neighborhoods Ns(y\ aκ), yκ ^ a (λ = 1,2, , h), such that if
yκ € *S° for some λ, Ns(yκ ', &\) ^ S°. Then, by the properties above, we can
verify that xΎ, x2 are joined by a curve in S°. So, S° is connected.

3) By Lemmas 3.3 and 4.1, M° is regarded as the union set of {R(x) | x € 5° (
In other words, M° is the maximal subset of M in which each point x is a
limit point of I(x) relative to S(x). From 2), it follows that M° is a connected
open submanifold of M whose closure is M. Therefore M is of almost R~
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clustered type with kernel M°.

Summing up Theorems 1, 2, we have

THEOREM 3. M is of almost R-fibred type or almost R-clustered type.

REMARK 2. There exist RS-manifolds of the following respective type :
R-fibred type almost R-fibred type (not R-fibred type) R-clustered types
almost R-clustered type (not R-clustered type).

5. Fundamental groups and structures. Take any x0 € M and put
Ro = R{xQ), SO = S(x0). Let iR: Ro -> M be the inclusion map. Let i%: 7r1

(Ro, x0) -* 7rτ(M, x0) be the homomorphism induced by the map in ([4], p. 75).
It is already known that the map i% is into-isomorphic ([2], p. 22). We denote
the image tR rπ 1{R^ x0) by iπ-^R^ x0). This is the subgroup of π-^M, x0).
Let U(M) denote the universal covering manifold of M. Let p denote the
covering map. So U(M) becomes naturally an RS-manifold of dimension n.
Take a point x0 € p~\x0). For the R-, S- sub manifolds R(xo)> S(x0) of U{M),
R(x0) X S(XQ) is a Riemannian manifold of class C1. Then the following
theorem is well-known: There is the isometric homeomorphism

j : R(x0) xS(xo)^U(M)

of class C2 such that j(x, x0) = x for all x € R(x0) and j(xo> x) = x for
all x € S(xQ) [1]. Hence, j(R(x0), x) = R(x) for x 6 S(x0) and j(x, S(x0))
= S(x) for each x € R(x0). Such a map is always denoted by j . The fact above
shows that U(M) is completely decomposed with respect to the R-, *S-sub-
manifolds. Now, using these notations, let us prove the following lemma.

LEMMA 5. 1. 1) The R-sub manifold R(x0) of U(M) is a universal
covering manifold of Ro, where pR = p\R(x0) is the covering map.

2) The subgroups i V^RQ, X^), i *πΎ (So, xQ) have no common element
except the identity of τrx(M9 xQ).

3) If I(x0) is infinite, frrΎ{M) is infinite.

PROOF. TO prove 1) it suffices to show p(R(x0)) = R0: R(x0) being
simply-connected. For x € R(x0), take a curve a in R(x0) joining So to x.
Then we can see p(a) cz Ro. Hence p(R(xQ)) a Ro. Conversely for x € Ro if
we take a curve β in Ro joining x0 to x, we can find the curve β in R(x0)

with the initial point 5r0 such that p(β) = β. Hence, p(R(x0)) ^ Ro So, p(R(xQ))

= RQ. I. e., 1) is proved.

To prove 2) suppose that i TΓ^RQ, XO\ Z7r1(/SΌ, xύ) have a common element
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A € 7Γ1(M, x0) which is not the identity. Let an, as be two closed curves
in RQ, SQ respectively, starting from x0 and representing A. Then the curves
ccs9 as starting from zr0 such that p(aR) = OLR7 p(cέs) = as, must have the same
terminal point. Moreover, this point is not x0, and CCR CI R(XQ), as CI S(xQ).
This contradicts with the fact that U(M) is completely decomposed. So, 2) is
true.

To prove 3) let us denote I(x0) by {.rλ|λ = 0,1, 2, }, I(x0) being

countable by Lemma 3. 3. For each λ, take xk € p'\xk) Π R(xo). As xQ € S(xκ),

p~\xQ) Π S(xκ) is non-empty. However, all of χκ are distinct from one another.
Hence all of S(xκ) are distinct from one another by the fact that U(M) is
completely decomposed. Accordingly p~\x0) is infinite and so 7Γ1(M) is infinite.

THEOREM 4. In M suppose that 7rτ{M) is finite. Then M is of almost
R-fibred type and further almost S-fibred type.

PROOF. For any x0 € M9 I(x0) is finite by Lemma 5. 1. Hence, eR(x0) > 0
and esixo) > 0. By Lemma 4. 1 and Theorem 1, our theorem is evident.

REMARK 3. There exist RS-manifolds, whose fundamental groups are
finite3 of the following respective types : i?-fibred type and further *S-fibred type;
almost JR-fibred type (not R-Ghred type) and further 5-fibred type .R-fibred
type and further almost S-fibred type (not S-fibred type).

In M suppose that all the i?-submanifolds are simply-connected. Moreover
if M is of almost i^-fibred type, we have

LEMMA 5. 2. M is of R-fibred type.

PROOF For any .R-submanifold R, G(R) consists of the identity only by
Lemma 4. 2. Hence, all the Λ-submanifolds are jR-maximal. As M satisfies the
assumption of Theorem 1, M is of jR-fibred type.

THEOREM 5. In M suppose that the order of irx{M) is finite and prime.
Then M is of one of the following three structures :

1) R-fibred type, where all the R-sub manifolds are simply connected
and TΓ^SQ) for at least one S- sub manifold So is isomorphic to 7Γ1(M).

2) S"fibred type, where all the S-submanifolds are simply-connected and
TΓ^RQ) for at least one R-submanifold Ro is isomorphic to π^M).

3) R-fibred type and further S fibred type, where all the R-, S-sub-
manifolds are simply-connected.

PROOF. For an S-submanifold SQ, suppose that SQ is not simply-connected.
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Then it follows that i TΓ^SQ, X0) = rττ{Mi x0) for any x0 € So. So, R(x0) is
simply-connected by Lemma 5.1. As xQ is any point of So, all the i?-submanifolds
are simply-connected by Lemma 3. 3. By Theorem 4 and Lemma 5. 2, M is
of i^-fibred type. So, M is of the structure 1). Similarly, if we suppose that
an i?-submanifold Ro is not simply-connected, we have the structure 2).

Finally, suppose that all the R-, S-submanifolds are simply-connected.
Then, by Theorem 4 and Lemma 5. 2, M is of the structure 3). This completes
the proof of our theorem.

REMARK 4. There exist RS-manifolds, in which the orders of the
fundamental groups are finite and prime, such that the conditions 1), 2), 3)
of Theorem 5 hold good respectively. (Especially, for a model in the case 3)
see § 4, [2].)

THEOREM 6. In M suppose that τrx(M) is infinite cyclic. Then M is of
one of the following structures :

1) R-fibred type, where all the R-submanifolds are simply-connected and
îC-SΌ) for at least one S-submanifold So is infinite cyclic.

2) S-fibred type, where all the S-submanifolds are simply-connected and
7ΓX(RQ) for at least one R-submanifold Ro is infinite cyclic.

3) All the R-9 S-submanifolds are simply connected.

PROOF. For any jR-submanifold R, w^i?) is the group of identity only
or an infinite cyclic group, being isomorphic into TT^M). This holds good for
any S-submanifold, too. Moreover, there is not a pair of R-9 *S-submanifolds
whose fundamental groups both are infinite cyclic. For, if such a pair (Ro, So)
does exist, we can find A € TΓ-^M, X0),

 χo ^ ^o Π So, which is not the identity
and belongs to both of i π^Ro, x0) and ifrr1{S0, x0). This is contrary to Lemma
5. 1. So, by Lemma 3. 3 the following three cases are considered :

a) All the i^-submanifolds are simply-connected and TΓ^SQ) for at least
one S-submanifold So is infinite cyclic.

b) All the S- sub manifolds are simply-connected and π^Ro) for at least
one jR-submanifold Ro is infinite cyclic.

c) All the R-, /S-submanifolds are simply-connected.
The case c) being the same as 3), it suffices to prove that M in the case

a) is of i?-fibred type. To prove this, take any x0 ^ So. Let a be a closed
curve with endpoint x0 which is a geodesic arc representing a generator of
TΓ^M, x0). AS ITΓ^SQ, X0) is infinite cyclic, we can find an integer m > 0
such that the product curve cΓ represents a generator of i TΓ-^SQ x0)- Let
x0 € U(M) be a point of P~\XQ). Let βτ be the curve starting from x0 such
that ρ(βτ) = cΓ. Here, the terminal point xm of βt is contained in the S-sub-
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manifold S(x0) of U(M) and P~\XQ) Π βi consists of w + 1 points. Accord-

ingly, we can find a part CR(X0 c) d R(x0) such that j(CR(x0 c) X S(x0))

^ P~\xo) Π βi- Next β2 be the curve startinng from xm such that />(/32)

= am. The terminal point of β2 is also contained in S(x0). Hence, j(Cd$c0

c) xS(xv))ZDp-\xz) Π /?2. Thus we can verify that j(CB(£0 c) X S(χ0))

Now suppose that ej,xo) = 0. For any constant d > 0, we can find a
countable subset \x\\\ = 0, 1, 2, } of I(xQ) such that dj,xo, X\) < d. For
each xκ, there is 5*λ € S(χ0) Π />"1 Ĉ λ) where ds(xo, X\) < <i. By Lemma 5. 1,
R(XA) contains a point of p~Ί(xQ). Here, all of χk are distinct from one another.
Hence, all of R(χΛ) are distinct from one another by the fact that U(M) are
completely decomposed. Accordingly, a part j(CR(x0 c) X Cs(x0 <i)) of
U(M) contains an infinite subset of p~Xx0). It being however compact, this
contradicts with the property of covering. So, eR(xQ) > 0. Since xQ is any point
of So and the 22-submanifolds of M are all simply-connected, M is of R-fibred
type by Lemmas 4. 1, 5. 2, and Theorem 1. This completes the proof of our
theorem.

REMARK 5. There exist RS-manifolds, whose fundamental groups are
infinite cyclic, such that the conditions 1), 2), 3) of Theorem 6 hold good
respectively

In Euclidean J-space Ed suppose that there are given a point set Z

= )P λ | λ = integer} and a congruent transformation T leaving P o fixed, such

that the vector PλPλ+i is equal to the vector T λ P0PΊ for each λ. (Pλ's are

not necessarily distinct from one another.) Then we have

LEMMA 5. 3. There are two cases where Z is bounded or unbounded.
In the latter case, Po is not limit point of Z.

PROOF. We take an orthogonal coordinate system in Ed with origin P o .
where T is represented by the following matrix :

' - E2 0
(00

0

where El9 E2 denote the unit matrices of degrees rl9 r2 respectively and

' cos θv — sin θv

, sin θv cos θ
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for 0 < ft, < 7r (v = 1, 2, , £ rx + r2 + 2 k = d). So, the matrix represen-

tation of T λ is immediately obtained. Put t>λ = PJPK+1. Let (v™) denote the
vector vκ and let (PΓ) denote the point Pλ, where w = 1,2, , d. Here, if
λ > 0, Pt = vt + + vT-ι if λ < 0, P ? = - (iΛ + + vT). Then
for all λ, we can verify the following facts : a) Pi = λ τ>? (£ = 1, , r2), b)
I PI I < JV (7 = rx + 1, , d) where N is a constant independent of γ, λ.

Hence, in the case rx 4= 0 if vj = 0 for all /?, Z is bounded, and if vξ 4= 0
for some β, Z is unbounded and P o is not limit point of Z. Next, in the case
rτ = 0, Z is bounded. So our lemma holds good.

THEOREM 7. In M suppose that τrτ{M) is infinite cyclic and that all
the R-submanifolds are Euclidean space forms. Then M is of R-fibred type
or S-fibred type, both having simply-connected fibres.

PROOF. It suffices to prove our theorem in the case 3) of Theorem 6.

Accordingly, suppose that all the R-, /S-submanifolds are simply-connected. For

x0 € M we take a closed curve a issuing from x0 which is a geodesic arc
representing a generator of 7rx(M, x0). Let β be the curve in U(M) such that

p(β) is the product curve

a ct a QL a*

Then P~\XQ) CZ β. We denote all of the points of p~Ί(xQ) by xκ(X = integer),
where the subarc of β from xκ to 5λ+i is mapped to the arc a by p. Any
x € U(M) is represented by j(P, Q) where P € R(xo\ Q € S(xQ). Define a
map

/ : U(M)-+R(x0) by f(x) = P.

We put P λ = /(5 λ ) . The curve f(β) contains P λ and is a broken line in the
Euclidean r-space R(xQ). (Note that in our case all the P-submanifolds are
Euclidean r-spaces.) Moreover we can see that the point set Z = jP λ | λ = inieger}
satisfies the condition of Lemma 5. 3. Here T is the same as the congruent
transformation in TR(XQ) which is induced from the element associated with a
(or a'1) of the homogeneous holonomy group of M at x0.

1) The case where Z is bounded. Take a part CR(xQ c) of R(x0) which
contains Z. Hence, a part j{CE{xQ: c) X S(x0)) of U(M) contains ^'X-ZQ). Then
5̂(3̂ 0) > 0, for any y0 € S(x0). For. otherwise, we can find a countable subset
!^λ|λ = 0,1, 2, } of I(y0) such that d^y0, j>λ) < d for a constant d > 0.

For each yκ there is yκ € S(xQ) Π P'\yκ) such that J^y 0 , y>κ) < d. By Lemma

5. 1, P(y λ) contains a point of p'\yQ). Here all of yk are distinct from one

another. Hence all of i?(J>λ) are distinct from one another by the fact that
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U(M) is completely decomposed. Accordingly a part j(CE(xQ c) X Cs(y0 d))
of U(M) contains an infinite subset of p~Ί(yQ). It being however compact, this
contradicts with the property of covering. So, edyo) > 0 for any y0 ^ S(x0).
By Lemmas 4. 1, 5. 2, and Theorem 1, M is of î -fibred type.

2) The case where Z is unbounded. Then by Lemma 5.3, Po is not
limit point of Z. So there is a part CB(xo', c) of R(xo) such that R(x0) — CR(5 0 c)
ID Z. Take a positive constant d < c/3. By using the property of covering,
we can see that eR{x) > 0 for any x 6 CE(X0 d). From Lemma 4. 1, Theorems
1 and 2, and Lemma 5. 2, M is of iS-fibred type. This completes the proof.

REMARK 6. There exist RS-manifolds, whose fundamental groups are
infinite cyclic and whose jR-submanifolds are Euclidean space forms, of the
following respective types: jR-fibred type (not 5-fibred type) ^-fibred type (not
JR-fibred type) i?-fibred type and further *S-fibred type.

Finally the author wishes to express his sincere thanks to Prof. S. Sasaki
for his kind guidance and encouragement.
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