ON LINEAR LIE ALGEBRAS OF A CERTAIN DIMENSION

TERUKIYo SATÔ

(Received August 21, 1959)

Let C be a complex number field, and K be an arbitrary field of characteristic 0 . And we denote by $\mathfrak{G l}(n, K)$ (or briefly by (5) a Lie algebra of all matrices of degree n with coefficients in K, and by $\mathfrak{S l}(n, K)$ (or by ©) Lie subalgebra of $\mathscr{H l}^{\prime}(n, K)$ composed of all matrices of trace 0 .

On Lie subalgebras of $\mathfrak{G l}(n, C)$, G. B. Gurevič [2] proved the following.: ${ }^{1}$
There exist $\left(n^{2}-1\right)$-dimensional Lie subalgebras of $\mathbb{H l}(n, C)$ different from $\mathfrak{S l}(n, C)$ if and only if $n=2$, and they are all conjugate to one another with respect to inner automorphism. And there exist ($n^{2}-2$)-dimensional Lie subalgebras if and only if $n=2$ or $n=3$, and for $n=3$ they are divided into two conjugate classes with respect to inner automorphism.

In the present note, we shall investigate Lie subalgebras of $\mathbb{S l}(n, K)$ in regard to larger n and more general field K. Then our main result will be stated as follows:

Except for $\mathfrak{C l}(n, K)$, there is no Lie subalgebra of dimension larger than $n^{2}-n+1$, and for $n \geqq 3$, $\left(n^{2}-n+1\right)$-dimensional Lie subalgebras are transformed to one another by automorphism of $\mathfrak{G l l}(n, K)$ and they are divided into two conjugate classes with respect to inner automorphism.

Here (and hereafter) we mean by inner automorphism of $\mathbb{H l}(n, K)$ (or $\mathfrak{C l}(n, K)$) the automorphism $x \rightarrow X x X^{-1}$ of $\mathfrak{G l l}(n, K)$ (or $\mathbb{C l}(n, K)$) obtained by a matrix X which is regular (or whose determinant is 1) respectively (C. Chevalley [1]).

I wish to express my sincere gratitude to Prof. N.Iwahori for his invaluable suggestions.

Lemma 1. Let \mathfrak{g} be a proper Lie subalgebra of \mathfrak{F} different from \mathfrak{S}, then we may find a sequence of matrix units $e_{i_{1} j_{1}}, e_{i_{2} j_{2}} \cdots, e_{i_{n-1} j_{n-1}}$ such that

$$
e_{i_{\nu} j_{\nu}} \bar{\in}\left\{\left\{\mathfrak{H}, e_{i_{1} j_{1}} \cdots, e_{i_{\nu-1} j_{\nu-1}}\right\}\right\},
$$

and either $i_{\nu}=i_{\nu-1}$ and $j_{\nu} \in\left\{i_{1}, \ldots, i_{\nu-1}, j_{1}, \ldots, j_{\nu-1}\right\}$

[^0]or $\quad j_{\nu}=j_{\nu-1}$ and $i_{\nu} \bar{\in}\left\{i_{1}, \ldots, i_{v-1}, j_{1}, \ldots, j_{v-1}\right\}$, where $\{\{*\}\}$ means a linear subspace generated by *.

PROOF. We shall construct $e_{i_{v} j_{\nu}}$ by induction on ν. First, if all $e_{i j}(i \neq j)$ belong to \mathfrak{H}, then we have $\mathfrak{K} \supseteq \mathbb{C}$ because of $e_{i i}-e_{j j}=\left[e_{i j}, e_{j i}\right]$. But this contradicts to our assumption, whence we may find $e_{i_{1 j 1}} \in \mathfrak{F}$. Next. we suppose that $e_{i_{1} j_{1}}, \ldots, e_{i_{\nu-1} j_{\nu-1}}$ were already found $(\nu \leqq n-1)$. Since the set $\left\{i_{1}, \ldots, i_{\nu-1}\right.$, $\left.j_{1}, \ldots \ldots, j_{\nu-1}\right\}$ consists of ν elements, we may choose k from the set $\{1, \ldots$, $n\}$ which does not belong to $\left\{i_{1}, \ldots, i_{\nu-1}, j_{1}, \ldots, j_{\nu-1}\right\}$. With respect to this k, if both $e_{i_{\nu-1} k}$ and $e_{k_{j}-1}$ belong to $\left\{\left\{\mathfrak{H}, e_{i_{1}{ }^{j} 1}, \ldots, e_{i_{\nu-1} j^{j}-1}\right\}\right\}$, then we may express them as follows:

$$
\begin{aligned}
& e_{i_{\nu-1} k}=h_{1}+\sum_{\mu=1}^{\nu-1} * e_{i_{\mu}{ }_{\mu}} \\
& e_{k j_{\nu-1}}=h_{2}+\sum_{\mu=1}^{\nu-1} * e_{i_{\mu}{ }^{j} \mu}
\end{aligned}
$$

where h_{1} and h_{2} are elements of \mathscr{S}, and we mean by *'s suitable elements of K. Since $\left\{i_{1}, \ldots, i_{\nu-1}\right\} \cap\left\{j_{1}, \ldots, j_{v-1}\right\}=\phi$, we get $\left[e_{i_{\alpha^{\prime}},}, e_{i_{\beta} \beta_{\beta}}\right]=0$ for $1 \leqq \alpha$, $\beta \leqq \nu-1$. Then it follows that

$$
\mathfrak{S} \ni\left[h_{1}, h_{2}\right]=\left[e_{i_{\nu-1} k}-\sum_{\mu=1}^{\nu-1} * e_{i_{\mu}{ }_{\mu}}, e_{k j_{\nu-1}}-\sum_{\mu=*}^{\nu-1} * e_{i_{\mu_{\mu}}{ }_{\mu}}\right]=e_{i_{\nu-1} j_{\nu-1}} .
$$

But this contradicts to our induction hypothesis. Hence either $e_{i_{\nu-1} k}$ or $e_{k j_{\nu-1}}$ does not belong to $\left\{\left\{\mathfrak{y}, e_{i_{1} j_{1}} \ldots, e_{j_{\nu-1} j_{\nu-1}}\right\}\right\}$. Therefore, if we put $i_{\nu}=i_{\nu-1}, j_{\nu}=k$ or $j_{v}=j_{v-1}, i_{v}=k$, then we conclude our induction. q.e.d.

From this lemma, easily we obtain
THEOREM 1. Except for $\mathfrak{S l}(n, K)$, dimension of any Lie subalgebra of $\mathfrak{G l}(n, K)$ is at most $n^{2}-n+1$.

LEMMA 2. If \mathfrak{S} is a $\left(n^{2}-n+1\right)$-dimensional Lie subalgebra of \mathfrak{G}, then we have the following expression

$$
\begin{aligned}
\mathfrak{H} & =\mathfrak{S} \oplus\left\{\left\{e_{i j_{1}}, \ldots, e_{i j_{n-1}}\right\}\right\} \\
& =\mathfrak{S} \oplus\left\{\left\{e_{i_{1} j}, \ldots, e_{i_{n-1}}\right\}\right\} \quad \text { (direct sum), }
\end{aligned}
$$

where $i, j_{1}, \ldots, j_{n-1}$, or $i_{1}, \ldots, i_{n-1}, j$ mean the mutually different integers from 1 to n.

Proof. According to Lemma 1, we have

$$
\mathfrak{G}=\mathfrak{H} \oplus\left\{\left\{e_{i_{1},}, \ldots, e_{j_{n-1} j_{n-1}}\right\}\right\}
$$

where either $i_{\nu}=i_{--1}, j_{\nu} \in\left\{i_{1}, \ldots, i_{\nu-1}, j_{1}, \ldots, j_{v-1}\right\}$
or $\quad j_{\nu}=j_{\nu-1}, i_{\nu} \in\left\{i_{1}, \ldots, i_{\nu-1}, j_{1}, \ldots, j_{\nu-1}\right\}$.
Since it is clear in the case $n \leqq 3$, we may assume that $n>3$. Now we suppose that $i_{1}=i_{2}=\ldots=i_{\mu-1} \neq i_{\mu}(\mu>2)$, then, in virtue of property of i_{ν}, j_{ν} as the above, we have $j_{1} \neq j_{2}, j_{\mu}=j_{\mu-1} \neq j_{1}$ Now we express $e_{i_{\mu} j_{1}}$ and $e_{j_{1} j_{\mu}}$ as follows,

$$
\begin{aligned}
& e_{i_{\mu} j_{1}}=h_{1}+\sum * e_{i_{\nu} j_{\nu}} \\
& e_{j_{1} j_{\mu}}=h_{2}+\sum * e_{i_{\nu} j_{\nu}}
\end{aligned}
$$

where h_{1} and h_{2} are elements of \mathfrak{H}, and *'s are suitable elements of K. Then it holds that

$$
\begin{aligned}
{\left[h_{1}, h_{2}\right] } & =\left[e_{i_{\mu^{\prime}}{ }_{1}}-\sum * e_{i_{\nu^{j}}}, e_{j_{1} j_{\mu}}-\sum * e_{i_{i} j_{\nu}}\right] \\
& =e_{i_{\mu} j_{\mu}}-* e_{i_{1} j_{\mu}}=e_{i_{\mu} j_{\mu}}-* e_{i_{\mu-1} j_{\mu-1}} \in \mathscr{S} .
\end{aligned}
$$

However this is impossible. Hence $i_{1}=i_{2}$ implies that $i_{1}=i_{2}=\ldots=i_{n-1}$. In the case $j_{1}=j_{2}$, it may be proved similarly.

Lemma 3. For any $\left(n^{2}-n+1\right)$ dimensional Lie subalgebra \mathfrak{y}, we can express $(\mathbb{S}$ as follows:

$$
\mathfrak{B}=\sigma \tau_{0}{ }^{a} \mathfrak{H} \oplus\left\{\left\{e_{12}, \ldots, e_{1 n}\right\}\right\}
$$

where σ is an inner automorphism, τ_{0} is a certain automorphism of \mathbb{B}_{5} independent of $\mathfrak{S g}$, and a is an integer equal to 0 or 1.

Proof. Put $X_{i j}=e_{i j}-e_{j i}+\sum_{k \neq i . j} e_{k i}(i \neq j)$, then we have $X_{i j} e_{k i} X_{i j}^{-1}$ $= \pm e_{\sigma_{i, j}(k) \sigma_{t,}(l)}$, where $\sigma_{i j}$ means transposition (i, j). We also denote by $\sigma_{i j}$ the automorphism $x \rightarrow X_{i j} x X_{i j}^{-1}$, and by τ_{0} the automorphism $x \rightarrow{ }^{t} x$. Then by operating an automorphism $\sigma \tau_{0}{ }^{a}$ which is represented as product of some $\sigma_{i j}$'s (and τ_{0} if necessary) on the both sides of equality in Lemma 2, we may obtain our lemma.

Lemma 4. For $\left(n^{2}-n+1\right)$-dimensional Lie subalgebra \mathfrak{F} if it holds that

$$
\mathfrak{G}=\mathfrak{S} \bigoplus\left\{\left\{e_{12}, \ldots, e_{1 n}\right\}\right\}
$$

then we can find an inner automorphism σ such that σ leaves invariant $\left\{\left\{e_{12}, \ldots, e_{1 n}\right\}\right\}$ and $\sigma \mathfrak{S}$ contains \mathfrak{h}, where we mean by \mathfrak{h} the abelian Lie subalgebra $\left\{\left\{e_{11}, \ldots, e_{n n}\right\}\right\}$.

Proof. Put

$$
e_{i t}=e_{i i}^{\prime}+\sum_{l=2}^{n} \alpha_{i l} e_{1 l} \quad\left(e_{i t}^{\prime} \in \mathfrak{H}, \alpha_{i l} \in K\right) .
$$

If $i \neq 1, j \neq 1$, and $i \neq j$, it holds that

$$
\mathfrak{F} \ni\left[e_{i i}^{\prime}, e_{j j}^{\prime}\right]=\left[e_{i i}-\sum \alpha_{i l} e_{1 l}, e_{j j}-\sum \alpha_{j l} e_{1 l}\right]=\alpha_{j i} e_{1 i}-\alpha_{i j} e_{1 j} .
$$

Hence we have $\alpha_{j i}=\alpha_{i j}=0$, and consequently

$$
e_{i i}^{\prime}=e_{i i}-\alpha_{i i} e_{1 i} \quad(i \neq 1)
$$

On the other hand, for $i \neq 1$ similarly we have

$$
\left[e_{i i}^{\prime}, e_{11}^{\prime}\right]=\left[e_{i i}-\alpha_{i i} e_{1 i}, e_{11}-\sum \alpha_{1 i} e_{1 i}\right]=\alpha_{1 i} e_{1 i}+\alpha_{i i} e_{1 i}=0
$$

Therefore we obtain

$$
e_{11}^{\prime}=e_{11}+\sum_{l=2}^{n} \alpha_{l l} e_{1 l} .
$$

Now if we denote by σ an automorphism $x \rightarrow\left(E+\sum \alpha_{l l} e_{1 l}\right) x\left(E+\sum \alpha_{l l} e_{1 l}\right)^{-1}$ (where E is a unit matrix), then we have $\sigma e_{i i}^{\prime}=e_{i i}(1 \leqq i \leqq n)$ and $\sigma e_{1 j}=e_{j j}$ ($j \neq 1$). Hence we get our assertion.

Lemma 5. If the Lie subalgebra \mathfrak{h} is contained in the Lie subalgebra \mathfrak{F} such that

$$
\mathfrak{H}=\mathfrak{F} \oplus\left\{\left\{e_{12}, \ldots, e_{1 n}\right\}\right\}
$$

then \mathfrak{S} must be $\left\{\left\{\mathfrak{h}, e_{i j}(i \neq 1, i \neq j)\right\}\right\}$.
(Hereafter this Lie subalgebra $\left\{\left\{\mathfrak{G}, e_{i j}(i \neq 1, i \neq j)\right\}\right\}$ will be denoted by \mathfrak{g}_{n-1}).

PROOF. We take an element $x=\sum \xi_{k} e_{k k}$ of \mathfrak{h}. If we put $e_{i j}=\sum \alpha_{l} e_{1 \imath}$ $+h\left(i \neq 1, i \neq j, \alpha_{l} \in K\right.$, and $\left.h \in \mathfrak{F}\right)$, then we have

$$
\begin{aligned}
{[x, h] } & =\left[\sum_{k} \xi_{k k}, e_{i j}-\sum \alpha_{l} e_{1 l}\right]=\left(\xi_{i}-\xi_{j}\right) e_{i j}-\sum \alpha_{l}\left(\xi_{1}-\xi_{l}\right) e_{1 l} \\
& \equiv \sum_{l} \alpha_{l}\left(\xi_{i}-\xi_{j}\right) e_{1 l}-\sum_{l} \alpha_{l}\left(\xi_{1}-\xi_{l}\right) e_{1 l} \\
& \equiv \sum_{l} \alpha_{l}\left(\xi_{i}-\xi_{j}-\xi_{1}+\xi_{l}\right) e_{1 l} \quad \bmod \mathfrak{g} .
\end{aligned}
$$

Here, since $[x, h]$ belongs to $\mathfrak{H}, \alpha_{l}\left(\xi_{i}-\xi_{j}-\xi_{1}+\xi_{l}\right)$ must be equal to 0 . Hence, if we had selected ξ_{1}, \ldots, ξ_{n} previously such as $\xi_{i}-\xi_{j}-\xi_{1}+\xi_{l} \neq 0$, then we could get $\alpha_{l}=0$, which implies $e_{i j} \in \mathfrak{g}$.
q. e. d.

THEOREM 2. Any ($n^{2}-n+1$)-dimensional Lie subalgebras of $\mathfrak{G l l}(n, K)$ (except for $\mathfrak{C l}(2, K)$ in the case $n=2$) are transformed to each other by automorphisms of $\mathfrak{b l l}(n, K)$. And the number of conjugate classes of these subalgebras with respect to inner automorphism of $\mathfrak{H l}(n, K)$ is 1 in the case $n=2$, and is 2 in the case $n \geqq 3$.

Proof. We denote by \mathfrak{g} the Lie subalgebra as in the theorem. Then from Lemma 3 we have the following expression

$$
\mathfrak{G}=\sigma \tau_{0}^{a} \mathfrak{S} \bigoplus\left\{\left\{e_{12}, \ldots, e_{1 n}\right\}\right\},
$$

and apparently we may suppose that always $a=0$ in the case $n=2$. Moreover by Lemma 4, there exists an inner automorphism σ^{\prime} such that

$$
\mathfrak{G}=\sigma^{\prime} \sigma \tau_{0}{ }^{a} \mathfrak{H} \bigoplus\left\{\left\{e_{12}, \ldots, e_{1 n}\right\}\right\} \quad \text { and } \sigma^{\prime} \sigma \tau_{0}{ }^{a} \mathfrak{H} \supset \mathfrak{h} .
$$

Then from Lemma 5 we obtain $\sigma^{\prime} \sigma \tau_{0}{ }^{a} \mathfrak{S}=\mathfrak{S}_{n-1}$, which implies that the number of conjugate classes with respect to inner automorphism is at most 2 , and is 1 in the case $n=2$. To prove that surely this is 2 for $n \geqq 3$, we consider two Lie subalgebras $\mathfrak{S}_{1}=\left\{\left\{e_{11}, e_{i j}(j \neq 1)\right\}\right\}$ and \mathfrak{S}_{n-1}. Then $\mathfrak{S}_{i}(i=1$ or $n-1$) is a whole of all matrices leaving invariant a certain i-dimensional subspace V_{i} of the space on which $\operatorname{Gl}(n, K)$ operates, and such V_{i} is uniquely determined by \mathfrak{y}_{i}. If there exists a regular matrix X such that $X \mathfrak{Y}_{1} X^{-1}$ $=\mathfrak{F}_{n-1}$, then \mathfrak{K}_{1} is a totality of all matrices which leave invariant $(n-1)$ dimensional subspace $X^{-1} V_{n-1}$, which is impossible. Hence there is no X as above, and we complete the proof.

Corollary. Dimension of any Lie subalgebra of $\mathfrak{s l}(n, K)$ is at most $n^{2}-n$. And any $\left(n^{2}-n\right)$-dimensional Lie subalgebras of $\mathfrak{S l}(n, K)$ are transformed to each other by automorphism of $\mathfrak{S l}(n, K)$, and the number of conjugate classes of these subalgebras with respect to inner automorphism of $\mathfrak{\subseteq}(n, K)$ is 1 in the case $n=2$ and 2 in the case $n \geqq 3$.

Proof. We denote by Ω an arbitrary Lie subalgebra of \mathbb{S}, and let m be its dimension. Then $\mathfrak{I}=\{\{E\}\} \oplus \mathscr{R}$ is a Lie subalgebra of $\mathfrak{F s}$ of dimension $m+1$ and we have $\mathscr{\AA}=\mathfrak{G} \cap \mathfrak{S}$. Then Theorem 1 implies that $m \leqq n^{2}-n$. Let m be equal to $n^{2}-n$. Then from the proof of Theorem 2 , we can see that there exists an automorphism τ_{0} and inner automorphisms σ, σ^{\prime} such that $\boldsymbol{\sigma}^{\prime} \boldsymbol{\sigma} \tau_{0}{ }^{a} \mathfrak{y}=\mathfrak{K}_{n-1}$. Here, we can easily see that $\sigma^{\prime}, \boldsymbol{\sigma}$ and $\boldsymbol{\tau}_{0}$ leave \mathbb{S} invariant and σ^{\prime}, σ may be regarded as inner automorphisms of \mathbb{S}. Thus we obtain $\sigma^{\prime} \sigma \tau_{0}{ }^{a} \Re=\mathfrak{H}_{n-1} \cap \mathbb{S}$. The rest is obvious. q.e.d.

Remarks. 1. Any $\left(n^{2}-n+1\right)$-dimensional Lie subalgebra of $\mathfrak{G l}(n, K)$ is decomposed into the following form : for example

$$
\begin{aligned}
\mathfrak{Y}_{1}=\left\{\left\{E, e_{11}, e_{12}, \ldots, e_{1 n}\right\}\right\} & \oplus\left\{\sum_{i=2}^{n} \xi_{i} e_{i i}\left(\sum \xi_{i}=0\right),\right. \\
& \left.\left.e_{j k}(j \neq 1, k \neq 1, j \neq k)\right\}\right\},
\end{aligned}
$$

where the first term of the right hand side is the radical and the second is a simple subalgebra.
2. Lie subalgebras \mathfrak{H}_{1} and \mathfrak{S}_{n-1} may be considered as associative algebras, and hence so may be any ($n^{2}-n+1$)-dimensional Lie subalgebra of $\mathfrak{H l}(n, K)$ (except for $\mathfrak{C l}(2, K)$). And of course, Theorem 1 also holds replacing "Lie subalgebra" by "associative subalgebra". But Theorem 2 does not hold, i.e. \mathfrak{K}_{1} is not isomorphic to \mathfrak{S}_{n-1} (in the associative sence). In fact, $\left\{\left\{e_{11}\right\}\right\}$ is a left ideal of \mathfrak{Y}_{1}, but there is no 1 -dimensional left ideal in \mathfrak{S}_{n-1}.

REFERENCES

[1] C. Chevalley, Théorie des groupes de Lie, II(1951).
[2] G. B. Gurevič, Linear Lie algebras of dimension $n^{2}-1$ or $n^{2}-2$. Tul'sk. Meh. Inst. Trudy. (1953). (Russian).

[^0]: 1) This is due to Mathematical Reviews Vol.19, and the author has no opportunity yet to see that paper.
