ON LINEAR LIE ALGEBRAS OF A CERTAIN DIMENSION

TERUKIYO SATÔ

(Received August 21, 1959)

Let C be a complex number field, and K be an arbitrary field of characteristic 0. And we denote by $\mathfrak{Gl}(n, K)$ (or briefly by \mathfrak{G}) a Lie algebra of all matrices of degree n with coefficients in K, and by $\mathfrak{Sl}(n, K)$ (or by \mathfrak{S}) Lie subalgebra of $\mathfrak{Gl}(n, K)$ composed of all matrices of trace 0.

On Lie subalgebras of $\mathfrak{Sl}(n, C)$, G. B. Gurevič [2] proved the following:¹⁾

There exist $(n^2 - 1)$ -dimensional Lie subalgebras of $\mathfrak{Sl}(n, C)$ different from $\mathfrak{Sl}(n, C)$ if and only if n = 2, and they are all conjugate to one another with respect to inner automorphism. And there exist (n^2-2) -dimensional Lie subalgebras if and only if n = 2 or n = 3, and for n = 3 they are divided into two conjugate classes with respect to inner automorphism.

In the present note, we shall investigate Lie subalgebras of $\mathfrak{Sl}(n, K)$ in regard to larger n and more general field K. Then our main result will be stated as follows:

Except for $\mathfrak{Sl}(n, K)$, there is no Lie subalgebra of dimension larger than $n^2 - n + 1$, and for $n \ge 3$, $(n^2 - n + 1)$ -dimensional Lie subalgebras are transformed to one another by automorphism of $\mathfrak{Sl}(n, K)$ and they are divided into two conjugate classes with respect to inner automorphism.

Here (and hereafter) we mean by inner automorphism of $\mathfrak{Gl}(n, K)$ (or $\mathfrak{Sl}(n, K)$) the automorphism $x \to XxX^{-1}$ of $\mathfrak{Gl}(n, K)$ (or $\mathfrak{Sl}(n, K)$) obtained by a matrix X which is regular (or whose determinant is 1) respectively (C. Chevalley [1]).

I wish to express my sincere gratitude to Prof. N.Iwahori for his invaluable suggestions.

LEMMA 1. Let \mathfrak{H} be a proper Lie subalgebra of \mathfrak{G} different from \mathfrak{S} , then we may find a sequence of matrix units $e_{i_1j_1}, e_{i_2j_2}, \cdots, e_{i_{n-1}j_{n-1}}$ such that

 $e_{i_{\nu}j_{\nu}} \in \{\{\mathfrak{H}, e_{i_{1}j_{1}}, \cdots, e_{i_{\nu-1}j_{\nu-1}}\}\},\$

and either $i_{\nu} = i_{\nu-1}$ and $j_{\nu} \in \{i_1, ..., i_{\nu-1}, j_1, ..., j_{\nu-1}\}$

¹⁾ This is due to Mathematical Reviews Vol. 19, and the author has no opportunity yet to see that paper.

T. SATÔ

or $j_{\nu} = j_{\nu-1}$ and $i_{\nu} \in \{i_1, ..., i_{\nu-1}, j_1, ..., j_{\nu-1}\},$

where {{*}} means a linear subspace generated by *.

PROOF. We shall construct $e_{i_{\nu}j_{\nu}}$ by induction on ν . First, if all $e_{ij}(i \neq j)$ belong to \mathfrak{H} , then we have $\mathfrak{H} \supseteq \mathfrak{S}$ because of $e_{ii} - e_{jj} = [e_{ij}, e_{ji}]$. But this contradicts to our assumption, whence we may find $e_{i_{1}j_{1}} \in \mathfrak{H}$. Next. we suppose that $e_{i_{1}j_{1},...,i_{\nu-1}}$ were already found ($\nu \leq n-1$). Since the set $\{i_{1},...,i_{\nu-1}, j_{1},..., j_{\nu-1}\}$ consists of ν elements, we may choose k from the set $\{1,..., n\}$ which does not belong to $\{i_{1},..., i_{\nu-1}, j_{1},..., j_{\nu-1}\}$. With respect to this k, if both $e_{i_{\nu-1}k}$ and $e_{kj_{\nu-1}}$ belong to $\{\{\mathfrak{H}, e_{i_{1}j_{1}}, ..., e_{i_{\nu-1}j_{\nu-1}}\}\}$, then we may express them as follows :

$$e_{i_{\nu-1}k} = h_1 + \sum_{\mu=1}^{\nu-1} *e_{i_{\mu}j_{\mu}}$$
$$e_{kj_{\nu-1}} = h_2 + \sum_{\mu=1}^{\nu-1} *e_{i_{\mu}j_{\mu}}$$

where h_1 and h_2 are elements of \mathfrak{H} , and we mean by *'s suitable elements of K. Since $\{i_1, \ldots, i_{\nu-1}\} \cap \{j_1, \ldots, j_{\nu-1}\} = \phi$, we get $[e_{i_{\alpha}j_{\alpha}}, e_{i_{\beta}j_{\beta}}] = 0$ for $1 \leq \alpha$, $\beta \leq \nu - 1$. Then it follows that

$$\mathfrak{H} \ni [h_1, h_2] = [e_{i_{\nu-1}k} - \sum_{\mu=1}^{\nu-1} *e_{i_{\mu}j_{\mu}}, e_{kj_{\nu-1}} - \sum_{\mu=*}^{\nu-1} *e_{i_{\mu}j_{\mu}}] = e_{i_{\nu-1}j_{\nu-1}}$$

But this contradicts to our induction hypothesis. Hence either $e_{i_{\nu-1}k}$ or $e_{kj_{\nu-1}}$ does not belong to $\{\{\emptyset, e_{i_1j_1}, \dots, e_{j_{\nu-1}j_{\nu-1}}\}\}$. Therefore, if we put $i_{\nu} = i_{\nu-1}, j_{\nu} = k$ or $j_{\nu} = j_{\nu-1}, i_{\nu} = k$, then we conclude our induction. q.e.d.

From this lemma, easily we obtain

0

THEOREM 1. Except for $\mathfrak{Sl}(n, K)$, dimension of any Lie subalgebra of $\mathfrak{Sl}(n, K)$ is at most $n^2 - n + 1$.

LEMMA 2. If \mathfrak{H} is a $(n^2 - n + 1)$ -dimensional Lie subalgebra of \mathfrak{G} , then we have the following expression

$$\mathfrak{G} = \mathfrak{H} \bigoplus \{\{e_{i_{j_{1}},\dots,e_{i_{j_{n-1}}}}\}\}$$

$$r \qquad = \mathfrak{H} \bigoplus \{\{e_{i_{1}j_{1},\dots,e_{i_{n-1}j}}\}\} \qquad (direct \ sum),$$

where $i, j_1, ..., j_{n-1}$, or $i_1, ..., i_{n-1}$, j mean the mutually different integers from 1 to n.

PROOF. According to Lemma 1, we have

$$\mathfrak{G} = \mathfrak{H} \bigoplus \{\{e_{i,j}, \dots, e_{j_{n-1}j_{n-1}}\}\}$$

where either $i_{\nu} = i_{\nu-1}, j_{\nu} \in \{i_1, ..., i_{\nu-1}, j_1, ..., j_{\nu-1}\}$

72

or

$$j_{\nu} = j_{\nu-1}, i_{\nu} \in \{i_1, \ldots, i_{\nu-1}, j_1, \ldots, j_{\nu-1}\}.$$

Since it is clear in the case $n \leq 3$, we may assume that n > 3. Now we suppose that $i_1 = i_2 = \ldots = i_{\mu-1} \neq i_{\mu}(\mu > 2)$, then, in virtue of property of i_{ν} , j_{ν} as the above, we have $j_1 \neq j_2$, $j_{\mu} = j_{\mu-1} \neq j_1$ Now we express $e_{i_{\mu}j_1}$ and $e_{j_1j_{\mu}}$ as follows,

$$egin{aligned} & e_{\epsilon_{\mu}j_{1}} = h_{1} + \sum * e_{\epsilon_{\nu}j_{
u}} \ & e_{j_{1}j_{\mu}} = h_{2} + \sum * e_{\epsilon_{
u}j_{
u}} \end{aligned}$$

where h_1 and h_2 are elements of \mathfrak{H} , and *'s are suitable elements of K. Then it holds that

$$\begin{split} [h_1, h_2] &= [e_{i_{\mu}j_1} - \sum *e_{i_{\nu}j_{\nu}}, \ e_{j_1j_{\mu}} - \sum *e_{i_{\nu}j_{\nu}}] \\ &= e_{i_{\mu}j_{\mu}} - *e_{i_1j_{\mu}} = e_{i_{\mu}j_{\mu}} - *e_{i_{\mu-1}j_{\mu-1}} \in \mathfrak{H}. \end{split}$$

However this is impossible. Hence $i_1 = i_2$ implies that $i_1 = i_2 = ... = i_{n-1}$. In the case $j_1 = j_2$, it may be proved similarly.

LEMMA 3. For any $(n^2 - n + 1)$ dimensional Lie subalgebra \mathfrak{H} , we can express \mathfrak{G} as follows:

$$\mathfrak{Y}=\sigma\tau_0^{a}\mathfrak{H}\oplus\{\{e_{12},\ldots,\ e_{1n}\}\}$$

where σ is an inner automorphism, τ_0 is a certain automorphism of \mathfrak{G} independent of \mathfrak{H} , and a is an integer equal to 0 or 1.

PROOF. Put
$$X_{ij} = e_{ij} - e_{ji} + \sum_{k \neq i, j} e_{kk}$$
 $(i \neq j)$, then we have $X_{ij} e_{kl} X_{ij}^{-1}$

 $= \pm e_{\sigma_{ij}(k)\sigma_{ij}(l)}$, where σ_{ij} means transposition (i, j). We also denote by σ_{ij} the automorphism $x \to X_{ij}xX_{ij}^{-1}$, and by τ_0 the automorphism $x \to -^t x$. Then by operating an automorphism $\sigma \tau_0^{a}$ which is represented as product of some σ_{ij} 's (and τ_0 if necessary) on the both sides of equality in Lemma 2, we may obtain our lemma.

LEMMA 4. For $(n^2 - n + 1)$ -dimensional Lie subalgebra \mathfrak{H} if it holds that

$$\mathfrak{G} = \mathfrak{H} \bigoplus \{\{e_{12}, \dots, e_{1n}\}\},\$$

then we can find an inner automorphism σ such that σ leaves invariant $\{\{e_{12},..., e_{1n}\}\}$ and $\sigma \mathfrak{H}$ contains \mathfrak{h} , where we mean by \mathfrak{h} the abelian Lie subalgebra $\{\{e_{11},..., e_{nn}\}\}$.

PROOF. Put

$$e_{ii}=e'_{ii}+\sum_{l=2}^{n}\alpha_{il}e_{ll} \qquad (e'_{ll}\in\mathfrak{H},\ \alpha_{il}\in K).$$

If $i \neq 1$, $j \neq 1$, and $i \neq j$, it holds that

$$\mathfrak{H} \ni [e'_{ii}, e'_{jj}] = [e_{ii} - \sum \alpha_{il}e_{1l}, e_{jj} - \sum \alpha_{jl}e_{1l}] = \alpha_{ji}e_{1i} - \alpha_{ij}e_{1j}$$

Hence we have $\alpha_{ji} = \alpha_{ij} = 0$, and consequently

$$e'_{ii} = e_{ii} - \alpha_{ii}e_{1i}$$
 (*i* = 1).

On the other hand, for $i \neq 1$ similarly we have

$$[e_{ii}, e_{11}] = [e_{ii} - \alpha_{ii}e_{1i}, e_{11} - \sum \alpha_{1i}e_{1i}] = \alpha_{1i} e_{1i} + \alpha_{ii} e_{1i} = 0.$$

Therefore we obtain

$$e'_{11} = e_{11} + \sum_{l=2}^{n} \alpha_{ll} e_{1l}.$$

Now if we denote by σ an automorphism $x \to (E + \sum \alpha_{il} e_{1l})x(E + \sum \alpha_{il} e_{1l})^{-1}$ (where E is a unit matrix), then we have $\sigma e'_{ii} = e_{ii}$ $(1 \le i \le n)$ and $\sigma e_{1j} = e_{jj}$ $(j \ne 1)$. Hence we get our assertion.

LEMMA 5. If the Lie subalgebra \mathfrak{h} is contained in the Lie subalgebra \mathfrak{H} such that

$$\mathfrak{G} = \mathfrak{H} \bigoplus \{\{e_{12}, \dots, e_{1n}\}\},\$$

then \mathfrak{H} must be $\{\{\mathfrak{h}, e_i, (i \neq 1, i \neq j)\}\}$.

(Hereafter this Lie subalgebra $\{\{\emptyset, e_{ij}(i \neq 1, i \neq j)\}\}$ will be denoted by \mathfrak{H}_{n-1}).

PROOF. We take an element $x = \sum \xi_k e_{kk}$ of \mathfrak{h} . If we put $e_{ij} = \sum \alpha_i e_{1l}$ + $h(i \neq 1, i \neq j, \alpha_l \in K$, and $h \in \mathfrak{H}$, then we have

$$[x, h] = \left[\sum \xi_k e_{kk}, e_{ij} - \sum \alpha_l e_{1l}\right] = (\xi_i - \xi_j)e_{ij} - \sum \alpha_l(\xi_1 - \xi_l)e_{1l}$$
$$\equiv \sum_l \alpha_l(\xi_i - \xi_j)e_{1l} - \sum_l \alpha_l(\xi_1 - \xi_l)e_{1l}$$
$$\equiv \sum_l \alpha_l(\xi_i - \xi_j - \xi_1 + \xi_l)e_{1l} \mod \mathfrak{H}.$$

Here, since [x, h] belongs to \mathfrak{H} , $\alpha_i(\xi_i - \xi_j - \xi_1 + \xi_i)$ must be equal to 0. Hence, if we had selected ξ_1, \ldots, ξ_n previously such as $\xi_i - \xi_j - \xi_1 + \xi_i \neq 0$, then we could get $\alpha_i = 0$, which implies $e_{ij} \in \mathfrak{H}$. q. e. d.

74

THEOREM 2. Any $(n^2 - n + 1)$ -dimensional Lie subalgebras of $\mathfrak{Sl}(n, K)$ (except for $\mathfrak{Sl}(2, K)$ in the case n = 2) are transformed to each other by automorphisms of $\mathfrak{Sl}(n, K)$. And the number of conjugate classes of these subalgebras with respect to inner automorphism of $\mathfrak{Sl}(n, K)$ is 1 in the case n = 2, and is 2 in the case $n \ge 3$.

PROOF. We denote by \mathfrak{H} the Lie subalgebra as in the theorem. Then from Lemma 3 we have the following expression

$$\mathfrak{G} = \boldsymbol{\sigma} \tau_0^{\ a} \mathfrak{H} \bigoplus \{\{e_{12}, \dots, e_{1n}\}\},\$$

and apparently we may suppose that always a = 0 in the case n=2. Moreover by Lemma 4, there exists an inner automorphism σ' such that

$$\mathfrak{G} = \sigma' \sigma \mathfrak{r}_0^{\ a} \mathfrak{H} \bigoplus \{ \{ e_{12}, \dots, e_{1n} \} \} \qquad \text{and} \ \sigma' \sigma \mathfrak{r}_0^{\ a} \mathfrak{H} \supset \mathfrak{h}.$$

Then from Lemma 5 we obtain $\sigma' \sigma \tau_0^a \mathfrak{H} = \mathfrak{H}_{n-1}$, which implies that the number of conjugate classes with respect to inner automorphism is at most 2, and is 1 in the case n = 2. To prove that surely this is 2 for $n \ge 3$, we consider two Lie subalgebras $\mathfrak{H}_1 = \{\{e_{11}, e_{ij}(j \ne 1)\}\}$ and \mathfrak{H}_{n-1} . Then $\mathfrak{H}_i(i=1 \text{ or } n-1)$ is a whole of all matrices leaving invariant a certain *i*-dimensional subspace V_i of the space on which $\mathfrak{Gl}(n, K)$ operates, and such V_i is uniquely determined by \mathfrak{H}_i . If there exists a regular matrix X such that $X \mathfrak{H}_1 X^{-1} = \mathfrak{H}_{n-1}$, then \mathfrak{H}_i is a totality of all matrices which leave invariant (n-1)-dimensional subspace $X^{-1}V_{n-1}$, which is impossible. Hence there is no X as above, and we complete the proof.

COROLLARY. Dimension of any Lie subalgebra of $\mathfrak{Sl}(n, K)$ is at most $n^2 - n$. And any $(n^2 - n)$ -dimensional Lie subalgebras of $\mathfrak{Sl}(n, K)$ are transformed to each other by automorphism of $\mathfrak{Sl}(n, K)$, and the number of conjugate classes of these subalgebras with respect to inner automorphism of $\mathfrak{Sl}(n, K)$ is 1 in the case n = 2 and 2 in the case $n \ge 3$.

PROOF. We denote by \Re an arbitrary Lie subalgebra of \mathfrak{S} , and let m be its dimension. Then $\mathfrak{H} = \{\{E\}\} \bigoplus \mathfrak{R}$ is a Lie subalgebra of \mathfrak{S} of dimension m + 1 and we have $\Re = \mathfrak{H} \cap \mathfrak{S}$. Then Theorem 1 implies that $m \leq n^2 - n$. Let m be equal to $n^2 - n$. Then from the proof of Theorem 2, we can see that there exists an automorphism τ_0 and inner automorphisms σ , σ' such that $\sigma' \sigma \tau_0^a \mathfrak{H} = \mathfrak{H}_{n-1}$. Here, we can easily see that σ' , σ and τ_0 leave \mathfrak{S} invariant and σ' , σ may be regarded as inner automorphisms of \mathfrak{S} . Thus we obtain $\sigma' \sigma \tau_0^a \mathfrak{R} = \mathfrak{H}_{n-1} \cap \mathfrak{S}$. The rest is obvious.

REMARKS. 1. Any $(n^2 - n + 1)$ -dimensional Lie subalgebra of $\mathfrak{Gl}(n, K)$ is decomposed into the following form: for example

t*.* satô

$$\mathfrak{H}_{1} = \{ \{E, e_{11}, e_{12}, \dots, e_{1n} \} \} \bigoplus \left\{ \left\{ \sum_{i=2}^{n} \xi_{i} \; e_{ii} \left(\sum \xi_{i} = 0 \right), \\ e_{jk}(j \neq 1, \; k \neq 1, \; j \neq k) \right\} \right\},$$

where the first term of the right hand side is the radical and the second is a simple subalgebra.

2. Lie subalgebras \mathfrak{H}_1 and \mathfrak{H}_{n-1} may be considered as associative algebras, and hence so may be any $(n^2 - n + 1)$ -dimensional Lie subalgebra of $\mathfrak{Sl}(n, K)$ (except for $\mathfrak{Sl}(2, K)$). And of course, Theorem 1 also holds replacing "Lie subalgebra" by "associative subalgebra". But Theorem 2 does not hold, i.e. \mathfrak{H}_1 is not isomorphic to \mathfrak{H}_{n-1} (in the associative sence). In fact, $\{\{e_{11}\}\}$ is a left ideal of \mathfrak{H}_1 , but there is no 1-dimensional left ideal in \mathfrak{H}_{n-1} .

REFERENCES

- [1] C. CHEVALLEY, Théorie des groupes de Lie, II(1951).
- [2] G. B. GUREVIČ, Linear Lie algebras of dimension n^2-1 or n^2-2 . Tul'sk. Meh. Inst. Trudy. (1953). (Russian).

AIZU JUNIOR COLLEGE, AIZU-WAKAMATSU.