NOTE ON THE INTEGRABILITY OF A CERTAIN STRUCTURE ON DIFFERENTIABLE MANIFOLD

Chen-Jung Hsu

(Received March 15,1960)

In this short note we consider an n-dimensional differentiable manifold of class C^{∞} on which a structure is defined by three tensor fields (generally complex) $F_{1}^{\prime},{\underset{2}{2}}_{j}^{\prime},{\underset{3}{(1)}}_{(1)}$, of class C^{∞} satisfying one of the following two systems of onditions:

System A:

$$
\mathrm{A}\left\{\begin{array}{l}
\mathrm{A}_{1}: F_{1}^{\prime}, F_{2}^{j} \text { are non trivial and not proportional. } \\
\mathrm{A}_{2}: F_{1}^{\prime} F_{1}^{k}=\lambda_{1}^{2} \delta_{i}^{k}, F_{2}^{\prime} F_{2}^{k}=\lambda_{2}^{2} \delta_{i}^{k}, \text { where } \lambda_{1}, \lambda_{2} \text { are } \\
\quad \text { fixed non zero complex numbers. } \\
\mathrm{A}_{3}: F_{1}^{j} F_{2}^{k}=F_{2}^{j} F_{1 .}^{k} .
\end{array}\right.
$$

In this case, if we put

$$
\begin{equation*}
F_{1}^{\prime} F_{2}^{\prime} F_{j}^{k}=F_{2}^{j} F_{1}^{k} \equiv-F_{3}^{k}, \tag{1}
\end{equation*}
$$

then we have

$$
\begin{align*}
& F_{3}^{j} F_{3}^{k}=\lambda_{1}^{2} \lambda_{2}^{2} \delta_{i}^{k}, \tag{2}
\end{align*}
$$

System B :

$$
\mathrm{B}\left\{\begin{aligned}
& \mathrm{B}_{1}: F_{1}^{\prime}, F_{2}^{j} \\
& \mathrm{~B}_{2}: F_{1}^{\prime} F_{1}^{k}=\lambda_{1}^{2} \delta_{i}^{k}, F_{2}^{\prime} F_{2}^{k}=-\lambda_{2}^{2} \delta_{i}^{k}, \text { where } \lambda_{1}, \lambda_{2} \\
& \text { are fixed non zero complex numbers. } \\
& \mathrm{B}_{3}: F_{1}^{j} F_{2}^{k}=-\underset{2}{F_{i}^{j}} F_{1}^{k} .
\end{aligned}\right.
$$

In this case if we put

1) The Latin indicies $i, i, k \cdots \cdots$ vary from 1 to n.

$$
\begin{equation*}
F_{1}^{j} \underset{2}{j} F_{j}^{k}=-\underset{2}{F_{i}^{j}}{\underset{1}{k}}_{k}^{k} \equiv F_{3}^{k}, \tag{3}
\end{equation*}
$$

then we have

$$
\begin{align*}
& {\underset{3}{i}}_{i}^{j}{ }_{3}^{k}{ }_{j}^{k}=\lambda_{1}^{2} \lambda_{2}^{2} \delta_{i}^{k} \tag{4}
\end{align*}
$$

We call the structure satisfying system A or system B respectively the structure A or structure B for convenience sake.

Such structures are said to be integrable if at each point of the manifold, there exists a complex coordinate system (i. e. n independent complex valued functions of the local coordinates of the points in the neighborhood) in which the fields ${\underset{1}{1}}_{j}^{i},{\underset{2}{2}}_{i}^{i}$ and ${\underset{3}{i}}_{j}^{j}$ have simultaneously numerical components [1] ${ }^{2}$.

In the following, after some preparations the conditions for the integrability of structure A and structure B are studied by different ways.

It is evident that structure A contains as special cases the case II $\left(\lambda_{1}^{2}=1\right.$, $\lambda_{2}^{2}=\lambda_{1}^{2} \lambda_{2}^{2}=-1$ or $\lambda_{1}^{2}=\lambda_{2}^{2}=-1, \lambda_{1}^{2} \lambda_{2}^{2}=1$) and the case IV ($\lambda_{1}^{2}=\lambda_{2}^{3}=\lambda_{1}^{2} \lambda_{2}^{2}$ $=1)$, the structure B contains the case $\mathrm{I}\left(\lambda_{1}^{2}=-1, \lambda_{2}^{2}=1\right)$ and the case III $\left(\lambda_{1}^{2}=\right.$ $-1=\lambda_{2}^{2}$ or $\lambda_{1}^{2}=\lambda_{2}^{2}=1$) of a previous note of the present author [3]. In these cases, all the tensors $F_{1}^{j}, F_{2}^{j}, F_{3}^{i}$ are real. The results obtained below hold also for these cases.

1. In this section we treat the structure A and obtain its integrability conditions by applying a result in a previous paper of the present author [4].

A manifold is said to be endowed with an $r-\pi$-structnre if there exist r distributions (differentiable) $T_{1}, T_{2}, \ldots \ldots T_{r}$ of (complex) tangent subspaces such that $T_{P}^{\prime}=T_{1}+\ldots \ldots+T_{r}{ }^{\prime}$ (direct sum) holds at each point, where T_{P}^{C} is the complexification of the tangent space at P and T_{t} is the subspace at P belonging to the distribution $\underset{t}{T}[2]$ [4]. Then we have

THEOREM 1. If the manifold has a structure A , then the manifold is endowed with a $4-\pi$-structure or with a $3-\pi$-structure. In the latter situation, there is the following relation:

$$
\frac{1}{\lambda_{2}} F_{2}^{\prime}-\frac{1}{\lambda_{1}} F_{1}^{j}-\frac{1}{\lambda_{1} \lambda_{2}} F_{i}^{\prime}=\delta_{i}^{\prime} .
$$

The converse also holds good.

[^0]PROOF. Let the linear transformation induced by ${\underset{a}{i}}_{i}^{i}(a=1,2,3)$ in T_{P}^{C} be denoted as $\underset{a}{\widetilde{\gamma}}$. The proper subspaces of $\underset{1}{{\underset{F}{F}}^{c}}$ corresponding to the proper value λ_{1} and $-\lambda_{1}$ are respectively denoted as $T_{1^{\prime}}$ and $T_{1^{\prime \prime}}$. If we use the adapted basis of T_{P}^{G} [i. e. the basis of which the former $n_{1}\left(=\operatorname{dim} T_{1^{\prime}}\right)$ vectors are in $T_{1^{\prime}}$ and the other $n_{2}\left(=\operatorname{dim} T_{1^{\prime \prime}}\right)$ vectors are in $\left.T_{1^{\prime \prime}}\right]$, we have

$$
\underset{1}{\underset{\sim}{\psi_{1}}}=\lambda_{1}\left(\begin{array}{cc}
E_{n_{1}} & 0 \tag{5}\\
0 & E_{n_{2}}
\end{array}\right) \text { and } \underset{2}{\underset{\sim}{6}}=\left(\begin{array}{cc}
A n_{1} & 0 \\
0 & A n_{2}
\end{array}\right)
$$

 the $n_{1} \times n_{1}$ unit matrix, whereas $A n_{1}$ denotes a $n_{1} \times n_{1}$ matrix. Since ${\underset{2}{2}}_{2}^{2}=\lambda_{2}^{2}$ \mathfrak{J} (\widetilde{J} : identily transformation), we have $A_{n_{1}}^{Z}=\lambda_{1}^{2} E_{n_{1}}, A_{n_{2}}^{2}=\lambda_{2}^{2} E_{n_{2}}$. Hence $A_{n_{1}}$ and $A n_{2}$ corresponds respectively to the linear transformation $\underset{2}{\frac{\xi_{2}^{\prime}}{2}}$ and $\frac{\zeta_{2}^{\prime \prime}}{}{ }^{\prime \prime}$ induced by $\underset{2}{\underset{F}{F}}$ in $T_{1^{\prime}}$ and $T_{1^{\prime}}$. If $\underset{2}{{\underset{F}{f}}^{\prime}}$ and $\underset{2}{{\underset{\sim}{r}}_{\prime \prime}^{\prime \prime}}$ are non trivial on $T_{1^{\prime}}$ and $T_{1^{\prime \prime}}$, respectively, then we denote the proper subspaces of $\underset{2}{\frac{\zeta_{2}^{\prime}}{\prime}}$ in $T_{1^{\prime}}$ corresponding to λ_{2} or $-\lambda_{2}$ respectively as $T_{\left(1^{\prime} 2^{\prime}\right)}, T_{\left(1^{\prime} 2^{\prime \prime \prime}\right)}$ and the proper subspaces of $\underset{2}{\zeta_{2}^{\prime \prime}}$ in $T_{1^{\prime \prime}}$ corresponding to λ_{2} or $-\lambda_{2}$ as $T_{\left(1^{\prime} \%^{\prime}\right)}$ and $T_{\left(1^{\prime} 2^{\prime \prime}\right)}$. It is now evident that the manifold is endowed with a $4-\pi$-structure defined by the four distributions: $T_{\left(1^{\prime} 2^{\prime}\right)}, T_{\left(1^{\prime} 2^{\prime \prime}\right)}$, $T_{\left(1^{\prime} 2^{\prime}\right)}$, and $T_{\left(1^{\prime} 2^{\prime} \prime \prime\right.}$. If we denote the projection operations from T_{P}^{f} to $T_{\left(1^{\prime} 2^{\prime}\right)}$, $T_{\left(1^{\prime 2} 2^{\prime \prime}\right)}, T_{\left(1^{\prime \prime} 2^{\prime}\right)}$ and $T_{\left(1^{\prime \prime} 2^{\prime \prime}\right)}$ respectively as P_{1}, P_{2}, P_{3} and P_{4}, then we have

$$
\begin{align*}
& \tilde{J}=P_{1}+P_{2}+P_{3}+P_{4}, \quad \mathfrak{F}=\lambda_{1}\left(P_{1}+P_{2}-P_{3}-P_{4}\right) \tag{6}\\
& \underset{2}{\mathfrak{F}}=\lambda_{2}\left(P_{1}-P_{2}+P_{3}-P_{4}\right) \quad \underset{3}{\tilde{\gamma}}=-\lambda_{1} \lambda_{2}\left(P_{1}-P_{2}-P_{3}+P_{4}\right) .
\end{align*}
$$

 portional and this case is excepted. So if $\underset{2}{c \xi_{2}^{\prime}}$ is trivial on $T_{1^{\prime}}$, then $\underset{2}{\mathfrak{F}^{\prime \prime}}$ is non trivial on $T_{1^{\prime \prime}}$. In this case $\underset{2}{\gamma_{2}^{\prime}}$ has only one proper value and its proper subspace is $T_{1^{\prime}}$, itself. Whereas ${\underset{2}{2 "}}_{\pi^{\prime \prime}}$ has two proper subspaces $T_{\left(1^{\prime \prime},^{\prime}\right)}$ and $T_{\left(1^{\left.\prime, 1^{\prime \prime}\right)}\right.}$ in T_{1}, corresponding to the proper valuer λ_{2} and $-\lambda_{2}$. Thus the manifold is endowed with a $3-\pi$-structure defined by $T_{1^{\prime}}, T_{\left(1^{\prime} 2_{2}^{\prime \prime}\right)}$ and $T_{\left(1^{\prime} \prime_{2}, \prime\right)}$. Denote the projection operations from T_{P}^{C} to $T_{1^{\prime}}, T_{\left(1^{\prime \prime} 2^{\prime}\right)}$ and $T_{\left(1^{\prime} \prime_{2}, \prime\right)}$ respectively as P_{1}, P_{2} and P_{3}, then we have

$$
\begin{align*}
& \mathfrak{J}=P_{1}+P_{2}+P_{3}, \quad \underset{1}{\mathfrak{F}}=\lambda_{1}\left(P_{1}-P_{2}-P_{3}\right), \tag{7}
\end{align*}
$$

From which we have

$$
\begin{align*}
& \frac{1}{\lambda_{2}} \Re_{2}-\frac{1}{\lambda_{1}} \mathfrak{F}-\frac{1}{\lambda_{1} \lambda_{2}}{\underset{F}{3}}^{\Re_{3}}=\mathfrak{J}, \tag{8}\\
& \text { i. e. } \frac{1}{\lambda_{2}} F_{i}^{\prime}-\frac{1}{\lambda_{1}} F_{i}^{\prime}-\frac{1}{\lambda_{1} \lambda_{2}} F_{i}^{\prime}=\delta_{i}^{\prime} .
\end{align*}
$$

Conversely, if the manifold is endowed with a $4-\pi$-structure and the projection operations from T_{P}^{ϵ} to the four subspaces induced in T_{P}^{G} by the distributions are denoted as P_{1}, P_{2}, P_{3} and P_{4}, then the tensor fields corresponding to the linear transformations $\underset{a}{i}$ in (6) define a structure A. In case the manifold is endowed with a $3-\pi$-structure, the tensor fields corresponding to the linear transformation $\underset{a}{\underset{\gamma}{7}}$ in (7) define a structure A for which the relation (8) holds.

Let the tensor associated to the π-structure is denoted as F_{i}^{i} and the linear transformation induced by F_{i}^{\prime} in T_{P}^{c} be denoted as $\mathfrak{F} \equiv \bar{\zeta}^{1}$. If a $4-\pi^{-}$ structure corresponds to the considered structure A, then we have

$$
\begin{equation*}
\mathfrak{F}=\lambda\left(P_{1}+\omega_{1}^{3} P_{2}+\omega_{1}^{2} P_{3}+\omega_{1} P_{4}\right) \tag{9}
\end{equation*}
$$

where λ is a non zero complex number and ω_{1} is a fourth power root of unity. If we solve P 's from (6) and put them in (9) we have

$$
\begin{equation*}
\varlimsup_{\mathfrak{F}}=\frac{\lambda}{2 \lambda_{1}}\left(1+\omega_{1}^{3}\right) \mathfrak{F}_{1}+\frac{\lambda}{2 \lambda_{2}}\left(1+\omega_{1}^{2}\right)_{2} \mathscr{F}_{2}-\frac{\lambda}{2 \lambda_{1} \lambda_{2}} \Re_{1} \tag{10}
\end{equation*}
$$

i. e.

$$
F_{i}^{\prime}=\frac{1}{2 \lambda_{1}}\left(1+\omega_{1}^{3}\right) F_{3}^{j}+\frac{\lambda}{2 \lambda_{2}}\left(1+\omega_{1}^{2}\right) F_{2}^{\prime}-\frac{\lambda}{2 \lambda_{1} \lambda_{2}} F_{3}^{\prime}
$$

From which we have

$$
\begin{align*}
& \stackrel{2}{\mathscr{F}}=\frac{\lambda^{2}}{2}\left(1+\omega_{1}^{2}\right) \tilde{\Im}+\frac{\lambda^{2}}{2 \lambda_{2}}\left(1-\omega_{1}^{2}\right) \frac{\mathfrak{F}}{2}, \tag{11}
\end{align*}
$$

where $\stackrel{2}{\mathscr{F}} \equiv \mathfrak{F}^{2}$ and $\stackrel{3}{\mathfrak{F}} \equiv \mathscr{F}^{3}$ denotes respectively the linear transformation induced

If a $3-\pi$-structure corresponds to the structure A, then we have

$$
\begin{equation*}
\hat{F}=\lambda\left(P_{1}+\omega_{1}^{2} P_{2}+\omega_{1} P_{3}\right), \tag{12}
\end{equation*}
$$

where λ is any non zero complex number and ω_{1} is a cubic power root of unity. Solving P 's from (7) and put them in the above expression (12) we
have

$$
\begin{align*}
& \frac{1}{\mathscr{F}}=\frac{\lambda}{2 \lambda_{1}} \underset{1}{\mathscr{F}_{1}}-\frac{\lambda \omega_{1}}{2 \lambda_{2}} \underset{2}{\mathscr{F}}+\frac{\lambda \omega_{1}^{2}}{2 \lambda_{1} \lambda_{2}} \mathscr{F}_{3}, \tag{13}\\
& \text { i. e. } F_{i}^{\prime}=\frac{1}{2 \lambda_{1}} F_{1}^{\prime}-\frac{\lambda \omega_{1}}{2 \lambda_{2}} F_{2}^{\prime}+\frac{\lambda \omega_{1}^{2}}{2 \lambda_{1} \lambda_{2}} F_{3}^{\prime} .
\end{align*}
$$

From which we have moreover

$$
\begin{equation*}
\stackrel{2}{\mathscr{F}}=\frac{\lambda^{2}}{2 \lambda_{1}} \underset{1}{\mathscr{F}}-\frac{\lambda^{2} \omega_{1}^{2}}{2 \lambda_{2}}{\underset{F}{\gamma}}_{2}+\frac{\lambda^{2} \omega_{1}}{2 \lambda_{1} \lambda_{2}}{\underset{F}{\xi}}_{3}, \tag{14}
\end{equation*}
$$

where $\stackrel{2}{\mathscr{F}}$ is defined by the same way as above. From (8),(13) and (14) we can

Now let us consider the relation between the integrability of the structure A and that of corresponding π-structure.

By definition, an r - π-structure defined by r distributions $T(t=1, \ldots \ldots, r)$ is said to be integrable if at each point of the manifold there is a complex coordinate system(i. e. n independent complex valued functions of class $C^{\infty} z^{1}, \ldots \ldots, z^{n}$ of local courdinates) such that the subspace T_{t} is represented as $d z^{\bar{t}_{t}}=0$, i. e. $d z^{i}=0$ except $d z^{a_{t}}$ where a_{t} varies from $n_{t}+\ldots \ldots+n_{t-1}+1$ to $n_{1}+\ldots \ldots+n_{t} \quad\left(n_{l}=\right.$ $\left.\operatorname{dim} T_{t}\right) t=1, \ldots \ldots, r$ [2] [4]. Then we have

THEOREM 2. A structure A on the differentiable manifold is integrable if and only if the corresponding π-structure is integrable.

Proof. Suppose the considered structure A is integrable, then there exists a complex coordinate system in which $F_{1}^{\prime}, F_{2}^{j}$ and ${\underset{3}{3}}_{j}^{\prime}$ have simultaneously numerical components. If the corresponding π-structure is a $4-\pi$-structure, we can obtain a new coordinate system z^{i} (each z^{i} is a linear combination of the old ones with constant coefficients) in which the three tensor fields are expressed as follows:

$$
\begin{align*}
& \left(F_{1}^{j}\right)=\lambda_{1}\left(\begin{array}{ll}
E_{r} & \\
E_{s} & 0 \\
-E_{t} & \\
0 & -E_{u}
\end{array}\right),\left(F_{z}^{j}\right)=\lambda_{2}\left(\begin{array}{lll}
E_{r} & & \\
-E_{s} & 0 \\
& & E_{t} \\
0 & -E_{u}
\end{array}\right), \tag{15}\\
& \left(F_{3}^{\prime}\right)=-\lambda_{1} \lambda_{2}\left(\begin{array}{lll}
E_{r} & & \\
-E_{s} & 0 \\
& -E_{t} & \\
0 & & E_{u}
\end{array}\right),
\end{align*}
$$

where E_{r} denotes the $r \times r$ unit matrix, $r=\operatorname{dim} T_{\left(1^{\prime} 2^{\prime}\right)}, s=\operatorname{dim} T_{\left(1^{\prime} 2^{\prime}{ }^{\prime}\right)}, t=$ $\operatorname{dim} T_{\left(1^{\prime \prime} 2^{\prime}\right)}, u=\operatorname{dim} T_{\left(1^{\prime \prime 2^{\prime \prime}}\right)}$ and $n_{1}=r+s, n_{2}=t+u, n_{1}+n_{2}=n$. From (10) and (15) we have

$$
\left(F_{i}^{\prime}\right)=\lambda\left(\begin{array}{lllll}
E_{r} & & & & \tag{16}\\
& \omega_{1}^{3} & E_{s} & & \\
0 & & \omega_{1}^{\prime} & E_{t} & 0 \\
& & & & \omega_{1} E_{u}
\end{array}\right) .
$$

From the above expression it is evident that $\frac{\partial}{\partial z^{n_{t}}}$ form a basis of the subspace $\underset{t}{T}$, i. e. T_{t} is expressed by $d z^{\bar{a}_{t}}=0$. Thus the $4-\pi$-structure is integrable.

Conversely if the correspondi..g $4-\pi$-structure is integrable, in the coordinate system in which T_{t} is expressed by $d z^{\overline{\bar{q}_{t}}}=0$, we have (16) and consequently $\left(F_{i}^{j}\right),\left({ }_{2}^{\prime}\right),\left(F_{3}^{i}\right)$ have simultaneouly numerical components as these tensors can be expressed as linear combinations of $\left(\delta_{i}^{\prime}\right),\left(F_{i}^{\prime}\right),\left({ }_{F}^{\left(F_{i}^{\prime}\right)}\right.$ and $\left(\stackrel{3}{F_{i}^{\prime}}\right)$ with constant coefficients.

If the corrsponding π-structure is a $3-\pi$-sturcture, then there is a coordinate system (z^{t}) in which

$$
\begin{gather*}
\left(F_{i}^{j}\right)=\lambda_{1}\left(\begin{array}{ll}
E_{n_{1}} & -E_{t} \\
0 & -E_{u}
\end{array}\right),\left(F_{z}^{\prime}\right)=\lambda_{2}\left(\begin{array}{lll}
E_{n_{1}} & & 0 \\
0 & E_{t} & -E_{u}
\end{array}\right), \tag{17}\\
\left(F_{3}^{\prime}\right)=-\lambda_{1} \lambda_{2}\left(\begin{array}{lll}
E_{n} & 0 \\
0 & -E_{t} & E_{u}
\end{array}\right) .
\end{gather*}
$$

Putting there expressions in (13) we have

$$
\left(F_{i}^{\prime}\right)=\lambda\left(\begin{array}{llr}
E_{n_{1}} & & 0 \tag{18}\\
& \omega_{1}^{2} E_{t} & 0 \\
0 & & \omega_{1} E_{u}
\end{array}\right) .
$$

Then the remaining reasoning is the same as in the case of $4-\pi$-structure. Q . E. D.

It is shown in [4] that if the manifold is analytic and both the real and imaginary parts of F_{i}^{i} are real analytic functions of the local coordinates, then the π-structure is integrable if and only if the torsion tensor of the π-strucutre vanishes identically.

For $4-\pi$-structure, the torsion tensor of the π-structure is the following:

$$
\begin{equation*}
t_{j k}^{m}=\frac{1}{4^{2} \lambda^{4}}\left\{-3 \sum_{a=1}^{3} \stackrel{a}{M_{j k}^{p r}} \stackrel{x}{f_{p q}^{m}}+\frac{1}{\lambda^{4}} \stackrel{N}{N}_{j k}^{p 3} f_{p k}^{m}\right. \tag{19}
\end{equation*}
$$

$$
\left.+\left(\stackrel{1}{C}_{i k}^{p q}+\frac{1}{\lambda^{4}} \stackrel{3}{C}_{j k}^{p q}\right) f_{p q}^{m}+\stackrel{12}{N}_{j_{j k}^{p q}}^{f_{p q}^{m}}\right\}
$$

where

$$
\begin{align*}
& \stackrel{a}{M_{j, ~}^{p q}}=\delta_{j}^{\eta} \stackrel{a}{F_{k}^{q}}+\delta_{k}^{\tau} \stackrel{a}{F_{i}^{p}}, \quad \stackrel{a}{f_{p q}^{m}}=\partial_{p} \stackrel{a}{F_{q}^{m}}-\partial_{q} \stackrel{a}{F_{p}^{m}}, \tag{20}\\
& \stackrel{a b}{N_{j k}^{p q}}=\stackrel{a}{F_{j}^{d}} \stackrel{b}{F_{k}^{q}}+\stackrel{b}{F_{j}^{p}} \stackrel{a}{F_{k}^{q}}, \quad \stackrel{a}{C_{j k}^{p q}}=\stackrel{n}{F_{j}^{p}} \stackrel{a}{F_{k}^{q}} .
\end{align*}
$$

Putting (10) and (11) in (19), we have by simple calculation the following:

$$
\begin{align*}
& t_{j k}^{m}=\frac{-1}{4^{2}}\left\{\frac{3}{2 \lambda_{1}^{2}}\left(1-\omega_{1}^{?}\right) M_{1}^{p q} f_{1 p q}^{m}+\frac{1}{2 \lambda_{2}^{2}}\left(7+\omega_{1}^{2}\right) M_{2}^{p q} f_{2}^{m}\right. \tag{21}\\
& +\frac{3}{2 \lambda_{1}^{2} \lambda_{2}^{2}}\left(1-\omega_{1}^{2}\right) M_{3}^{p a} \int_{3}^{m} m+\frac{1}{2 \lambda_{1}^{2} \lambda_{2}^{2}}\left(1-\omega_{1}^{2}\right)
\end{align*}
$$

where

$$
\begin{align*}
& f_{a}^{m}=\partial_{p}{ }_{a} F_{q}^{m}-\partial_{q} F_{a}^{m}, \tag{22}
\end{align*}
$$

It is evident that the Nijenhuis tensor $\left.N_{j k}^{m} \underset{a}{F}\right)$ of $\underset{a}{F_{j}^{i}}$ is a constant multiple of $\underset{a}{M_{j k}^{p q}} f_{p q}^{m}$. Since $t_{j k}^{m}$ is a tensor, it follows that the following $M_{j k}^{m}\left(F_{1}, F_{2}, F_{3}\right)$ is also a tensor :

$$
\begin{aligned}
& =\left(F_{2}^{p}{ }_{3} F_{k}^{q}+\underset{3}{F_{j}^{p}} \underset{2}{F_{k}^{q}}\right)\left(\partial_{p} F_{q}^{m}-\partial_{q} F_{1}^{m}\right) \\
& +\left(F_{1}^{p} \underset{3}{F_{k}^{q}}+\underset{3}{F_{j}^{p}} \underset{\mathrm{I}}{F_{k}^{q}}\right)\left(\partial_{p} \underset{2}{F_{q}^{m}}-\partial_{q} \underset{2}{F_{p}^{m}}\right) \\
& +\left(\underset{1}{F_{j}^{p}} \underset{2}{F_{k}^{q}}+\underset{2}{F_{j}^{p}} \underset{1}{F_{k}^{q}}\right)\left(\partial_{p}{\underset{3}{m}}_{F_{q}^{m}}-\partial_{q}{\underset{3}{m}}_{p}^{p} .\right.
\end{aligned}
$$

For the $3-\pi$-structure the torsion tensor of the π-structure is as follows :

$$
\begin{equation*}
t_{j k}^{m}=\frac{1}{3^{2} \lambda^{3}}\left\{-2 \sum_{a=1}^{2} \stackrel{a}{M_{j k}^{p p}} \stackrel{a}{f_{p q}^{m}}+\frac{1}{\lambda^{3}} \stackrel{2}{C}_{j k}^{p q} \stackrel{2}{p q}_{m}^{m}+{ }_{C}^{C_{j k}^{p o}}{ }_{p q}^{1} f_{p q}^{m}\right\} . \tag{24}
\end{equation*}
$$

Before transforming this formula, we first obtain some relations to be used later :

From (8) we have

$$
\begin{equation*}
\frac{1}{\lambda_{2}} f_{2}^{m}-\frac{1}{\lambda_{1}} f_{p q}^{m}-\frac{1}{\lambda_{1} \lambda_{2}} f_{3}^{m}=0 \tag{25}
\end{equation*}
$$

and

$$
\begin{align*}
I_{j k}^{p \tau}=\frac{1}{\lambda_{1}^{2}} C_{1}^{p q} & +\frac{1}{\lambda_{2}^{2}} C_{2}^{p q}+\frac{1}{\lambda_{1}^{2} \lambda_{2}^{2}} C_{3}^{p \eta} \tag{26}\\
& -\frac{1}{\lambda_{1} \lambda_{2}} N_{12}^{p r}+\frac{1}{\lambda_{12}^{2} \lambda_{2}} N_{13}^{p q}-\frac{1}{\lambda_{1} \lambda_{2}^{2}} N_{23}^{p p_{k k}^{p}}
\end{align*}
$$

in which we have put

$$
\begin{equation*}
I_{j k}^{p q}=\delta_{j}^{p} \delta_{k}^{\eta}, \quad C_{a}^{p p}=F_{a}^{p}{ }_{a}^{p} F_{k}^{q} \tag{27}
\end{equation*}
$$

We can also reduce the following formula from (8).

$$
\begin{equation*}
2 I_{j k}^{p q}=\frac{1}{\lambda_{2}} M_{z}^{p q}-\frac{1}{\lambda_{1}} M_{1}^{p j}-\frac{1}{\lambda_{1} \lambda_{2}} M_{3}^{p q} . \tag{28}
\end{equation*}
$$

On the other hand from the definition (29) we have

$$
\begin{equation*}
M_{1} M_{1 k_{1}}^{j \epsilon} M_{1}^{j q}=2 \lambda_{1}^{2} I_{j j_{1} k_{1}}^{p q}+2 \underset{1}{C_{1,1 k_{1}}} \tag{29}
\end{equation*}
$$

and

Multiplying (28) by $M_{1}^{j k} j_{1 k_{1}}$, and sum up with respect to j, k we have

$$
\begin{align*}
& -\frac{1}{\lambda_{1} \lambda_{2}}\left(-\lambda_{1}^{\eta} M_{2}^{p 1_{1} k_{1}}+{\underset{13}{11_{1}}}_{N_{1} c_{1}}^{p}\right) . \tag{31}
\end{align*}
$$

Similarly

$$
\begin{align*}
& 2 \underset{2}{M_{j 1 k_{1}}^{p q}}=\frac{1}{\lambda_{2}}\left(2 \lambda_{2}^{2} I_{j, k_{1}}^{p q}+2 \underset{2}{C_{j, k_{1}}^{p q}}\right)-\frac{1}{\lambda_{1}}\left(-\underset{3}{M_{j, 1}}{ }^{p q}+\underset{12}{N_{12} p_{1}}\right) \tag{32}\\
& -\frac{1}{\lambda_{1} \lambda_{2}}\left(-\lambda_{2}^{2} \underset{1}{M_{12}^{p q}}+\underset{23}{p \xi_{1}} N_{1 k_{1}}^{p q}\right),
\end{align*}
$$

$$
\begin{aligned}
& -\frac{1}{\lambda_{1} \lambda_{2}}\left(2 \lambda_{1}^{2} \lambda_{1}^{2} I_{j_{1}, k_{1}}^{p q}+2 C_{3}^{j_{1} k_{1}}{ }^{p,}\right) .
\end{aligned}
$$

Substitute (13) and (14) in (24), then make use of the above relations (25), (26), (31) and (32), we get

$$
\begin{aligned}
& t_{j k}^{m}=-\frac{1}{16}\left\{3\left(\frac{1}{\lambda_{1}^{2}} M_{1}^{p q} f_{1}^{p q}+\frac{1}{\lambda_{2}^{2}} M_{2}^{j_{i}}{\underset{2}{2}}_{p_{1}}^{m}+\frac{1}{\lambda_{1}^{j} \lambda_{2}^{2}} M_{3}^{p_{k} f_{3}} f_{p_{l}}^{m}\right)\right.
\end{aligned}
$$

From the above preparation, we have the following :
THEOREM 3. Assume that the manifold is of class C^{ω} and both the real and imaginary parts of each of the tensors $F_{1}^{j}, F_{2}^{j}, F_{3}^{j}$ of the structure A are analytic functions of the local coordinates. Then the structure A is integrable if and only if all the Nijenhuis tensors $N_{j k}^{\prime \prime}(F), N_{j k}^{m}(\underset{2}{F}), N_{j k}^{m}(F)$ and the tensor $M_{j k}^{m}(\underset{1}{F}, \underset{2}{F}, \underset{3}{F})$ vanish identically.

PROOF. From (10) and (13) it follows that both the real and imaginary part of the tensor F_{i}^{j} associated to the π-structure corresponding to the considered structure A are also analytic functions of the local coordinates.

If the structure A is integrable, then the corresponding π-structure is integrable, so all of the Nijenhuis tensors $N_{j k}^{m}(\underset{1}{F}), N_{j k}^{m}(\underset{2}{F}), N_{j k}^{m}(\underset{3}{m})$, and the torsion tensor of the corresponding π-structure vanish identically. Hence from (21) and (23) it follows that $M_{j k}^{m}(\underset{1}{F}, \underset{2}{F}, \underset{3}{F})$ must also vanish identically Conversely, if all the Nijenhuis tensors $N_{j k}^{m}(\underset{1}{F}), N_{j k}^{m}(\underset{2}{F}), N_{j k}^{m}(\underset{3}{F})$ and the tensor $\left.M_{j k}^{m} \underset{1}{F}, \underset{2}{F}, \underset{3}{F}\right)$ vanish identically, then the torsion tensor of the corresponding π-structure (21) or (33) vanishes identically, so the π-structure and hence also the structure A is integrable.
2. In this section we digress to the $(\underset{1}{F}, \underset{2}{F})$-connection of the manifold having structure A . By definition a $(\underset{1}{F}, \underset{2}{F})$-connection of the manifold with a structure A (or B) is a linear connection which makes all the tensors $\underset{1}{F_{i}^{i},{\underset{V}{i}}_{i}^{i}}$ and ${\underset{3}{i}}_{i j}$ covariant constant [1]. A linear connection on a manifold with π-structure is called a π-connection if the connection makes the tensor F_{i}^{\prime} associated
to the π-structure covariant constant [2] [4]. Then from (10), (11), (13), (14) and the fact that $\mathfrak{F}_{1}, \mathfrak{F}_{2}, \mathfrak{F}$ can also be expressed as the linear combinations with constant coefficients of \mathfrak{J} and $\stackrel{a}{\mathfrak{F}}$'s $(a=1,2,3$ for $4-\pi$-structure, whereas $a=$ 1,2 for $3-\pi$-structure), it follows that a linear connection on the manifold with the structure A is a $(\underset{\mathrm{I}}{F}, \underset{2}{F})$-connection if and only if the connection is the π connection with respect to the corresponding π-structure. On the other hand it is shown that on the manifold with a π-structure, there exists a connection having the torsion tensor of the π-structure as its torsion tensor [4]. Thus we have

THEOREM 4. On the manifold with a structure A, there exists a $\underset{1}{F}, \underset{2}{F})$ connection which is symmetric if the structure is integrable.
3. Finally we consider a manifold with a structur B. For this case, we have in place of theorem 1 the following:

THEOREM 5. If the manifold has a structure B, then it is of even dimensional ($n=2 m$) and there exist two complementary distributions of m dimensional subspaces $T^{\prime}, T^{\prime \prime}$ (i.e. $T_{P}^{c}=T_{P}^{\prime}+T_{P}^{\prime \prime}$: direct sum) and a system of isomorphisms S of class $C^{\infty}: S_{P}: T_{P}^{\prime} \rightarrow T_{P}^{\prime \prime}$. The converse also holds good.

PROOF. Using the notations as in theorem $1, \mathfrak{F}$ has the following form with respect to the adapted basis in T_{P}^{c} :

$$
\underset{1}{\mathfrak{F}}=\left(\begin{array}{lr}
\lambda_{1} E_{n_{1}} & 0 \tag{34}\\
0 & -\lambda_{1} E_{n_{2}}
\end{array}\right) .
$$

By B_{3} it follows that \mathfrak{F} is then represented as follows:

$$
\underset{2}{\mathfrak{F}}=\left(\begin{array}{lr}
0 & F_{\beta^{*}}^{\alpha} \tag{35}\\
F_{\beta}^{\alpha^{*}} & 0
\end{array}\right)
$$

where $\alpha, \beta=1, \ldots \ldots, n_{1} ; \alpha^{*}, \beta^{*}=n_{1}+1, \ldots \ldots, n_{1}+n_{2}=n$. Since $\underset{z}{\underset{F}{z}}$ is non singular, from (35) we have $n_{1}=n_{2} \equiv m$.

Now let $v \in T_{1^{\prime}}$, then $\underset{\sim}{\mathfrak{F}} v=\lambda_{1} v$, hence $\underset{1}{\mathfrak{F}} \mathfrak{F} v=-\underset{2}{\mathfrak{F}} \underset{1}{\mathfrak{F}} v=-\underset{2}{\mathfrak{F}}\left(\lambda_{1} v\right)=-\lambda_{1}$
 follows that $\underset{2}{\underset{2}{2}}$ is an isomorphism from $T_{1^{\prime}}$ onto $T_{1^{\prime \prime}}$.

Conversely, assume that the manifold is of even dimensional ($n=2 m$) and that there exist two complementary distributions of m dimensional subspaces $T_{1^{\prime}}, T_{1^{\prime \prime}}$ and a field of differentiable isomorphisms $S: S_{P}: T_{1^{\prime} P} \rightarrow T_{1^{\prime \prime} P \text {. }}$. Denote
the projection operations from T_{P}^{κ} to $T_{1^{\prime} P}$ and $T_{1^{\prime \prime} p}$ respectively as P_{1} and P_{2}. Then define

$$
\begin{align*}
& \mathfrak{F}_{1} v=\lambda_{1}\left(P_{1} v-P_{2} v\right) \tag{36}\\
& \mathfrak{F}_{2} v=\lambda_{2} S P_{1} v-\lambda_{2} S^{-1} P_{2} v,
\end{align*}
$$

where $v \in T_{P}^{c} ; \lambda_{1}$ and λ_{2} be any two fixed non zero complex numbers. Then we have

$$
\begin{equation*}
\mathfrak{F}_{1}^{2} v=\lambda_{1}^{n} v \tag{37}
\end{equation*}
$$

Since $S P_{1} v \in T_{1^{\prime \prime}}, S^{-1} P_{2} v \in T_{1^{\prime}}$, it follows from (36) that

$$
\begin{equation*}
P_{2} \underset{2}{\mathfrak{F} v}=\lambda_{2} S P_{1} v, P_{1} \mathfrak{F} v=-\lambda_{2} S^{-1} P_{2} v . \tag{38}
\end{equation*}
$$

Hence

$$
\underset{2}{\mathfrak{F}}(\underset{2}{\mathfrak{F}} v)=\lambda_{2} S P_{1}(\underset{Z}{(\mathfrak{F}} \boldsymbol{v})-\lambda_{2} S^{-1} P_{2}(\mathfrak{F} v)=-\lambda_{2}^{2} P_{2} v-\lambda_{2}^{2} P_{1} v,
$$

that is

$$
\begin{equation*}
\mathfrak{F}_{2}^{2} v=-\lambda_{2}^{2} v \tag{39}
\end{equation*}
$$

Moreover, since
we have

$$
\begin{aligned}
& \mathfrak{F} \mathfrak{F} v=\mathfrak{F}_{1}\left(\mathfrak{F}_{2} P_{1} v+\underset{2}{\mathfrak{F}} P_{2} v\right)=\lambda_{1} \mathfrak{F} P_{2} v-\lambda_{1} \mathfrak{F} P_{2} v, \\
& \underset{2}{\mathfrak{F} \mathfrak{F} v}=\underset{2}{\mathfrak{F}}\left(\lambda_{1} P_{1} v-\lambda_{1} P_{2} v\right)=\lambda_{1} \mathfrak{F} P_{1} v-\lambda_{1} \mathfrak{F} P_{2} v,
\end{aligned}
$$

therefore, we get

If we put

$$
\begin{equation*}
\underset{1}{\mathfrak{F} \mathfrak{Z}}=-\underset{2}{\mathfrak{F}} \mathfrak{F} \equiv \underset{3}{2}, \tag{41}
\end{equation*}
$$

then we have

$$
\begin{align*}
& \text { Q. E. D. } \tag{42}
\end{align*}
$$

Let the proper subspaces corresponding to the proper values $i \lambda_{2}$ and $-i \boldsymbol{\lambda}_{2}$ of $\underset{\sim}{\mathfrak{F}}$ be denoted respectively as $T_{2^{\prime}}$ and $T_{2^{\prime \prime}}$, then ${\underset{1}{3}}_{\substack{i}}$ restricted to $T_{2^{\prime}}$ is an isomorphism between $T_{2^{\prime}}$ and $T_{2^{\prime \prime}}$. Because, $\underset{F}{ }$ is non singular and if $u \in T_{2^{\prime}}$, we have ${\underset{F}{2}}_{\mathfrak{F} u}=i \lambda_{2} u$ and $\underset{2}{\mathfrak{F}} \underset{1}{\mathfrak{F} u)}=-\underset{1}{\mathfrak{F}}\left(\underset{2}{ }(\mathfrak{F} u)=-\underset{1}{\mathfrak{F}}\left(i \lambda_{2} u\right)=-i \lambda_{2} \mathfrak{F} u\right.$, thus $\underset{1}{\mathfrak{F} u}$
$\in T_{2^{\prime \prime}}$. Moreover, any two of $T_{1^{\prime}}, T_{1^{\prime \prime}}, T_{2^{\prime}}, T_{2^{\prime \prime}}$ are complementary to each other. For if $v \in T_{1^{\prime}}$, it follows $P_{2} v=0, P_{1} v=v$ and $\underset{2}{ } \mathfrak{F} v \in T_{1^{\prime \prime}}$. If $v \in T_{2^{\prime}}$, also holds, then $\mathfrak{F}_{2} v=i \lambda_{2} v$, hence $v \in T_{1^{\prime \prime}}$ and consequently $v=0$.

From the above, it is evident that the results of π-structure can not be applied to the structure B. For this case quite similar reasoning as in the case of the integrability of quaternion structure treated by Obata [1] can be applied and one can get an analoguous theorem to the Theorem 5.1 of Obata's paper. We do not go in detail in this matter.

In concluding, I express my sincere thanks to Prof. S. Sasaki for his kind guidance and valuable suggestions.

REFERENCES

[1] M. ObAta, Affine connections on manifolds with almost complex, quaternion or hermitian, structure, Jap. Jour. of Math., Vol XXVI (1956).
[2] G. LEGRAND, Étude d'un généralisation des structures presque complexes sur les variétés différentiables, Rendiconti Circolo Mat. di Palermo Serie II Tomo Vll (1958), Tomo VIII (1959).
[3] C. J. Hsu, On some structures which are similar to the quaternion structure. To appear in Tôhoku Math. Jeur.
[4] C. J. Hsu, On some properties of π-structures. To appear in Tôhoku Math. Jour.

[^0]: 2) Number in bracket refers to the references at the end of the paper.
