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1. Introduction. In a recent paper [1] some properties of subalgebras g
of a general linear Lie algebra gl(R") on an z-dimensional linear space R" over
the field of real numbers were studied. When a base S composed of a set of n
linearly independent vectors ex (A =1, ...... ,n) is taken in R", g is represented
by a set 8(g,S) of matrices of degree n. If there is no possibility of confusion,
it may be denoted by ® for short. - & is a linear space, hence, if K, € &,
K, € & N, € R, \, € R, then \,K, + M,K, € & Moreover we have [K,, K,]
€ & for bracket operation. If we take another base E(EA) such that S = AS,
€, = A% es, then g is represented by & where § = A"'® A. In short we have
R(g, AS) = A*R(8,S) A. The set of matrices V which satisfy K%, V¥, =0
for all matrices K%, of ® is denoted by L(g,S) or by B for short.” B is a

linear space and is transformed as follows
T = By, AS) = A B3, H4.

If Ke R and Ve B, then [K,V] € L, which fact may be expressed by
[R,B]c V.

If dim g = 7, then dim B = n® — . If a base S of R" and a base M of
B(g, S) composed of the matrices Y(A =1,...... , n® — r) are taken suitably,

then the matrices V assume special forms and we get the notion of d series. This
4

is a sequence of natural numbers 4,,...... ,dps, satisfying d; +...... + dpiy = n.
Unless otherwise specified indices are used as follows,

d,B,%X,#,DZL ...... , n,

t,u, v, x,y, 2=n—mn; +1,...... , M,
S, T, U=1,...... ,Por P+ 1,
hT, iT, -jT, kT:n—nT'-l+ 1; """ F) n-nT,

tr, Ur, Ur, Try Yr, r=n —np + 1,...... , n,

1) Matrices are denoted by letters such as M, K, V or by the elements M{\H, K{‘F,
Vf\“. Parentheses may be used but they are omitted especially when the elements are

complicated expressions.
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where Np-1 — ne =dr, no = n, np,, = 0.
We adopt the summation convention with respect to indices in small letters, so
that for example

Ip

i
is a sum of dr diagonal elements of M. By an n,-submatrix of a matrix M,
is meant the following matrix of degree nr
2y
M7,
Then the results obtained in [1] are as follows.
If a base S of R" is chosen suitably, then LB is decomposed as follows

(1] §6)
B=V, +...... + Br + B,
} (1<T=<P)
B = Br1 + 5I}(m"-l)

where the matrices V' of B3 satify V?, = 0 for

A=1,..... , n; p=1,...... , M — Ny,
A=n—n+1,... , n; p=n—n +1,.... s M — Mgy
A=n—nr+1,..... , N p=n—1nra+1,..... s, N — nr
Moreover they satisfy ([1] (48))
(1.1)r V7. =0
if dr=2. By is spanned by d(n — d, —--+-—dr) or de(n — dy, —- — dr)
+ 1 linearly independent matrices
kp
(1.2)r 14
ap
or
, kp 1
(1.2")r IT/, 1% (Ilf means Tl/' of [1] §5)
r

whose property will be shown at once. If we get (1.2)r, then this fact is
indicated by T € C 1, while if we get (1.2')r this fact is indicated by T € C 2.
Since we have B2, = By + Bs, the matrices (1.2)r, (1.2")r must belong
to B(ray. Now, there are five possible cases in each step, ([1] §5)

(i)r: dr =1, TeCl,
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(i) :  dr=2 TeCl,
(i) : dr=1, TeC2
(V) : dr=2  TeC2,
(v)k: dr=3 TeC2

If we get (i)r or (ii)r, then we have

kr kp

(1. 3) Vi =0 V7, =875

If we get (iii)y, then?

Jr 7 r T
(1. 4 kp kp
o _ p &7 ofr
Vie,=0, V5 = 0 O
ZZ, ZT

t i z
r __ olr T _

V=85, VT,=0,

K, K k

T T T
3 z z z, k
T _ T __ r  __ &fr oFr

(1. 5)1’ Z “dp T O, X “Up 0, ;[:’ Iy SZT 8}1,,

K i i K

Tip kp_ Yrtp Lty

14 Yr - Vp T T T *r

*p Zp Yp Yr

If we get (v)r, then
i i z
V=8 VT, =0

(1‘ 6)1' th sz x k,
ZV 7.=0, ZV Tu=28; 8.
T T
Moreover we have for (iv);
s ' “p kT ip Zp
1. Dr zV “zp T:.,,T +Y g Vi = 0,
T T
and
kT [T 2 *r iT 2, _
(1' 8)1' ;‘:.xr .yT+}T/-yT V'ZT*O

2) Of course in this case indices such as ir can take only one value d,+

303
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for all matrices V of 8s.

We can construct a base M of & such that M contains a base (1.2), or
(1.2")r of By for each T(1 < T <P+ 1) and a base of Bpt1. Such a base
S of R" and the base M of 8 just obtained compose a base (S, M) of the
fourth order. Of course B}, is nothing else but Bp,; in [1].

Addendum. According to [1] §5, if we get (i) in the first step, this is
not an intrinsic property of g. In order to get rid of this inconveniency we
make a rule that the vector v, is chosen in such a way that we get (iii)
whenever this is possible. Hence, if M;” in [1] page 173 is not empty, the
choice of w, must be changed so that we get (iii). This is easily seen from
the form of the matrix (i)’ in [1] page 175. Thus we get (i) only when all
matrices V' of LB1 assume the form V?, =8, V¥, 8. Similarly in the T the
step (iii)r is preferred if possible. Hence (1. 1), is satisfied by the matrices V
of By not only when dr = 2 but also when we get (i)r.

Let M’, be a matrix of degree n. Its dr rows obtained by putting

)\,:dlﬁl_ ...... +dr-1+1, ...... ,d1+ ...... +d7,
will bz called rows of T. Similarly thz d; columns obtained by putting
/,,:d1+ ...... +d1'_1+1, ...... ,d1+ ...... +d],

will bz called columns of 7. A submatrix whose elements are the elements of
M beloaging to rows of S and columns of T simultaneously will be called an

{‘%}submatrix of M. A [gJ-submatrix is called a T-submatrix for short. A

1-submatrix is a T-submatrix where "= 1 and so on. Such a mode of expres-
sion is not misleading since an zn,-submatrix will not be called an 7-submatrix
even if ny = m. An expression M € I(T) means that A takes on the values
d, +- +dpa+ 1,000 s dy e + dr or it belongs to some of the above
numbers. Since the notion of a base M of B will not be often used hereafter,
in a base (S, M) of higher order M may be omitted.

As a d series of a linear Lie algebra g is obtained by choosing a base S
of R’ suitably, it may happen that another d series is obtained by choosing
another base. But it is obvious that to a g correspond a set of d series and
conversely to a d series correspond a set of g’s whose possible forms will be
studied now.

2. d series containing d, =2, T € C2. If we get (iv),, we have

-

VT, =0

.
T
“p

in general and these must satisfy (1.7)z, (1.8)r, which are rather complicated
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relations. But such inconveniency is removed by changing the choice of the

base S suitably.
First we assume that we obtained (iv) in the first step. Let S be a base of

R" of the third order for the moment. Since we have

1
vy =8,

if S is another base of the third order such that S = AS, A, =8}, AL =3,
then the part of 11/' in B, is played by the matrices A, A~?! TI/ A in %1 = A"
xz 13

B, A. This fact is easily understood from
[Al, A7 V AT, = 8!

and means that S — S induces a transformation

1 1

Vi >[4, A™? Y AT,

If we put
1 1
vy =[AL, AV AT, =V, Al A%,
t t
then we get vz, = — v,, since
! 2 ! 2
vi=-T

Moreover, if the submatrix A%, is chosen suitably, ., become such that
U3y = — Uyg —=--..-- = Usm-1 2m — — Vzm 2m-1 — 1’
other v, =0

where 2m — 2 is the rank of the matrix (vs). This fact means that, once
we get (iv),, a base S of the third order can be chosen in such a way that

the matrices (1.2"), satisfy

1 1 1 1
R 2 —_ 2 _— 2 —_
[ Vi=-Vihi=w=Vi,=-Vih, =1,
3 4 2m

Then, since we have (1.5),, we find immediately that the following 2(n
— 2 m) matrices belong to B,
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1 2
2. 2 Vi=288., Vi=28,82
14 (4
Again, as we have (1.5), and (2. 1), we can find out 3 + 4(m — 1) linearly
independent matrices
5o, — s, & 88,
8L+ &8s, &8L— 88,
Q&M — 8m b, &M+ Sim S,
A" + SBn-18h, B — Sno1 B

from &. Then we get by bracket operation the following m(2 m + 1) linearly
independent matrices which naturally belong to &,

2. 3) 8 8L — (— 1) &) &Y

P =p+1if pisodd, p =p — 1 if p is even,
g =q+1if gisodd, ¢ =g — 1 if q is even.
As the matrices V of B, satisfy V!, = V?, = 0 by virtue of (1.5), and

(2.1), & also contains the matrices in the right hand sides of (2.2). Applying
bracket operation to matrices of (2.2) and (2. 3), we find 2 m(n — 2 m) matrices

2. 4) 85 o

which naturally belong to 8.
Since the matrices (2. 2) belong to & and [], B] < B, (2.4) belong also
to B.

Hence we get

(2. 5) Vi,=0
for all matrices V of LB and
2. 6) K7, =0

for all matrices K of £.
Consequently B is spanned by the matrices (2.4) and some matrices V
such that

3) In §2 the following indices are used.
T, p=1,...... , 2m,
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@ 7 Ve, =0, V% =0,

which we shall study now.
First, since & contains the matrices (2. 3), these must satisfy

2. 8) VL, =(—=D"" VY,
which is a system of m(2m + 1) linearly independent equations and contains
among others
Ve=Vi3=... = V" = V% =0,
Vi=Vh ... , VP oy = Vil
On the other hand B contains the matrices
58, + 88, &8s — &8s,
&5, — a8, 88+ ad,
Smoa 8 + 88, O b — &,
Om-16p — 818, Om b+ 8O

by virtue of (1.5), and (2.1). Applying bracket operation between these matrices
and the matrices of (2.3) we find that the matrices

2.9 & + (=18 8 (.2 +4.9)

belong to V. It must be noticed that the pair of numbers p, p" must be different
from ¢,q in (2.9). It is also found that B contains the matrices

(2. 10) 8L+ O — Sy 8T — 8 8, L.,

Shas 20 + By 87 — By 81 — B BT

There are m(2 m — 1) — 1 linearly independent matrices in (2.9) and (2.10)
altogether, which satisfy (2.8) obviously.

Now consider a matrix V of & such that V7, =0, V% = 0. Since it
satisfies (2.8), we get a matrix V' of & such that V%, = 0 with the exception
of V™1, V*™, by subtracting from V some linear combination of matrices
of (2.9) and (2.10). We thus obtain a matrix V of 8 such that V*,=V%. =0,
Vi = v(8fa1 8" + 854 8;"). It may happen that for any matrix V with such
properties v becomes zero.

Gathering the results obtained we can state that the space 8 is spanned by
the following three sets of matrices, :

(@) the 2m(n — 2m) + m(2m — 1) — 1 matrices (2.4), (2.9), (2.10), which
satisfy V%, = 0,
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(b) a matrix satisfying

(2. 11) Vi = 8tn-a 871 + 85 83"
and Vie=V%=0,
(c) matrices such that

(2. 12) Vi = &, V¥ &

It may happen that (b) disappears.
Because of this property which & possesses the number 2 appears succes-
sively at least m times in the d series. The matrix (b) is the matrix V which
m

is a V such that T = m. The matrices (c) span L. Moreover it is clear that
T

we have already completed the m th step by getting such a base S of R". It
is also clear that the 1-submatrices, ...... , the m-submatrices of the matrices of
B are all scalar matrices.

Now we can begin the next step without being disturbed by such relations
as (1.8),. Suppose that we did not obtain (iv) in the next succeeding steps
until we encounter (iv)r,; for some 7. Then we apply the whole process con-
sidered above to the linear space B, spanned by the ny-submatrices of the
matrices of B, considering &) instead of &, where &) is the linear space
spanned by the n,-submatrices of those matrices of & in which the elements satisfy

K, =
for =n—n +1,.... s m; p=1,...... , N — Ny,
A=n—nr+1,...... ,ny; p=n—np1+1,....0. , M — Nr

(see §3 and [1] §6). Such process is repeated and at last we get the

THEOREM 1. Among the bases of the fourth order a base S of R" can
be chosen in such a way that B(g,S) possesses the following property. The
numbers T such that dr = 2, T € C2 appear in clusters where a cluster is
a set of m successive natural numbers and is divided in general into [
smaller parts, so that the numbers T of a cluster can be written as

T=T,T +1,.... y Ty +my — 1,

where T, + m, =T,, ...... sy Ty +mey =T, and m, +...... +m=m. We
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also write for convenience T, + m, = T,.,. The relation between B(8, S) and a
cluster is as follows. If T=T, — 1 and T = Ty, — 1 where i = 1,...... A
then Bt is spanned by Vi and B' where BT is a linear space spanned by
2mlnr — 2m) + m(2m, —1)— 1 or 2mfne — 2m,) + m,(2m, — 1) linearly
independent matrices not belonging to Bi. The np-submatrices of these
matrices of B' are matrices such as are obtained from the matrices (a)
(2.4), (2.9), (2.10)) and (b) by changing the range for the indices properly
and replacing n, m with nr, m,. (1.5), (1.7), (1.8) need not be taken into
account though all results stated in §1 are preserved.

Such a base S is called a base of order 5. d series takes the form
(... y 2 X My, e , 2 X Myy e ) where 2 X m, is a chain of 2’s in which 2
is repeated m, times. We write T () S when T and S are members of one

and the same part of a cluster. Otherwise we write T ] S.

EXAMPLE. Let n be even, n = 2m. The linear Lie algebra 8p(m, R) is
spanned by the matrices (2.3). We get I =1, T, = 1. d series is 2 X m and
we have the matrix (b). For a linear Lie algebra spanned by 3p(m, R) and
scalar matrices we also obtain /=1, T, = 1, and the d series is 2 X m, but
we have no matrix (b).

3. T-submatrices of 8.

3.1. It is already clear that the l-submatrices of all matrices of L are scalar
matrices. We now prove that all T-submatrices where 7" runs from 1 to P+ 1
are also scalar matrices if the base S is chosen suitably among the bases of
order 5. Let us begin this with 2-submatrices. Since it is clear that the 2-
submatrices of the matrices of L1 are scalar matrices, proof is needed only
for the matrices of B,. We assume d, = 2, for, if d, = 1, 2-submatrices are
of course scalar matrices.

We considered in [1] §6 a subspace &, of ®. &, can be defined as a
subspace spanned by those matrices K of & which satisfy K% = 0. A matrix
K of &, is obtained by taking a matrix K% of degree 7, such that

(3. 1) KLVy=0 (Ve By)

for all matrices V of B3, by taking elements K’, K% in such a way that
[1] (29) or (30) is satisfied, and by putting K% = 0. Then, as the elements

k, are arbitrary or at most only K% is determined by the second equation of
[1] (30), a linear space &, spanned by the matrices K’ just mentioned is in
general homomorphic with £, as a linear Lie algebra,

3. 2 £, ~ ).
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The kernel of homomorphism (3. 2) is given by the matrices K satisfying
3. 3) K% =0,K';=0, K% =0
or
3. 3) Ki=0 K =0,Ky=0, Kt=0
according as 1 € C1 or 1 € C2. Now we obtain the
LEMMA 1. A subspace 8 of & spanned by matrices K, such that
3. 4) =0, Ki=0, KY = (when 1 € C1)

or

Y= (—KuVa/d,) 8
(3. 4) . (when 1 € C2)
K%= - K%V7%, Ky=0

is isomorphic with 8¢y as a linear Lie algebra.

PROOF. If 1€ C1 or d, =1 this lemma is evidently correct. Suppose
1€ C2 and d, = 2. Then the space J, spanned by those matrices K which
satisfy (3.3") is not 0-dimensional and is an ideal of &,. Let a matrix of ¥,
be denoted by K’ and a matrix of &, by K. Then we get K% K% = 0 where
K% are restricted by K% = 0 only. This proves K% = 0.2 Hence &, is a direct
sum of & and §, where & is a linear Lie algebra. We thus obtain

3. 5) ffF = &,/3, = Ra.

An isomorphic mapping f; of &F onto &, is obtained by taking for each
matrix of & its n,-submatrix. This mapping will be denoted more precisely
by fi(n,). Tts inverse (fy(n,))~! is obtained from (3.4) or (3.4').

If we consider the second step in the sense of [1] §6, we can take as
a matrix K% satisfying (3.1) any matrix K such that

(3. 6) Kl?lz = O, Kk:zxz = O, Ky.gjz = O, Ky?zg = 0.

As we have assumed d, = 2, the elements K%, are arbitrary within K%,
= 0. A linear space spanned by matrices K, obtained in accordance with
(3.4) or (3.4") from those matrices K% which satisfy (3.6) will be denoted by
K. Then &y C &F and &y = 3l(d,). Since [3l, 3l] = 8l we get [Ri, Rzl =R
which proves that any I-submatrix of &, is a zero matrix.

In the case of 1 € C2 we find from (3.4") that

4) This is also obtained from [1] (30) directly.
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1

K%, V*,=0  whenever K%, =0.
1

1
Hence the 2-submatrix of the matrix V is a scalar matrix.
1

3.2. Next we prove that when the base S of R" is chosen suitably the
k

2-submatrices of matrices V' become scalar matrices. Since these are a zero
z

matrix except the case of d;, = 1,1 € C 2, we consider this case only. We first
prove the next lemma where indices are used as follows

X, y,2dy + 1, ...... , n,
EEmm p o, T dy + 1y ey dy + day
oY =d +d, +1,.... , 7.
LEMMA 2. Assume that a (d,)? — 1 dimensional linear space % spanned

by a set of (d,)® matrices f( such that
B.7) | Ku=88—(18/d) 8,
K%, =0

is a faithful representation of a linear Lie algebra. Then there are numbers
a’, such that

(3. 8) Ip('.“, = & d" — d, & a*..

k4

Moreover we have
(3.9 K', =0.

This lemma and the corollary can be obtained as a special case of Weyl’s
theorem. But the following proof will not be superfluous for our purpose.

PROOF. We immediately get 2 == 8[(d,) by virtue of (3.7) and dim & = (d,)*
— 1. Then we get [2, 8] = &, which proves (3.9). Now we obtain from (3.7)
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£ £ 3
(K, Kl =K* K°, — K" K",
7 = 7 = = 7
£ £ )
— K 5 — ke ot — L (8¢K", — 8EKY),
n kA 2 7N T
£ o £ p ot
[K, K¥, =K$, K7, — K% K",
n n T
= 8 878§ — 8 8 &
£
=8 K¢ — 8K
7 z

The latter formulas show that
£ P P £
[K, K]=8&K— §K,
7 T 7 T
from which we get

4 £
K% — 8 KE =[K, K,
n T n T
£ P 1 £ p
=K% 8 — K* 8 — ——(8:K", — 8tK™).
n z dz n T

Putting p = 7 and summing we get

1

_ Kk st
K48+

SKE =0,

hence

get

d,K* =K* & — K%,
7 n
which we write as follows
p p
d,K* + K* =&K*,

Then putting
K% = — [(d) — 1],

we get (3.8) immediately.
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COROLLARY. Under the assumption made in Lemma 2 consider a

transformation S = AS such that

(3. 10) =8+ 85,8
where
(3. 11) bfq‘ = - dz af.,.

Then L= A"'R A is spanned by (d,)® matrices such that
(A" K5, A% = 88, — (3 87/d)o%
PROOF. The first member of this equality becomes

(82 — 8 by 8K, (5 + 887, 87)
P P
— k% - 8otk

P
If we put w = j, this becomes zero. If we put A=y, u =2z, we get K7,
k4

For A=%, p = @ and also for A = %, p = 7 this becomes zero since we have
(3.11).

3.3. Now 8, satisfies the same condition as assumed to be satisfied by &
in Lemma 2. Hence according to the Corollary we can choose another base

S = AS of R" in such a way that we get
K%, =0 whenever K € A R A.

When we prove that such a base S is obtained among the bases of order 5%,
and when we use this base as the base' S from the beginning, we get by
virtue of (3.4")

k
K", V’,=0 whenever K%, =
z

Then we get the

LEMMA 3. A base S of order 5 can be chosen in such a way that the
2-submatrices of all matrices of L are scalar matrices.

PROOF. Suppose that S is an arbitrary base of order 5. In order to obtain

5) Since d series is not uniquely determined by g, a base of order 5 may have no con-
nection with another base of order 5. But we do not consider for the present a trans-
formation between such bases. See the following proof of Lemma 3.
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a base S = AS such that K, = [A"*KAT, = 0 for all matrices K of &z, we
need only to put

A =8+ 345", 80

As we are considering only the case of d, = 1, 1 € C2, this can be written
as follows

AN, = 8) + 81 b, 80
Now what we must show is that S is a base of order 5 We have L = B
(g, §,) = A"18 A and its subspaces A~?* B, A, A"* B4 A which we shall write
as ﬁr, Bp. But it is easy to see that %T, B can play the same role in B as
Br, Bs respectively do in V. This is clear indeed with respect to %’ 4 and %T,

%; such that 2 < T < P + 1, for their second, ...... , nth rows as well as the
first columns remain intact. Consider A-* L, A. The matrix A~*V A has quite
1

similar form with V and plays the same part in fkl as V does in 8B,. The
1 _ 1

matrix
1
AT'WWA +88b,AT'V A
z 1

1 ~ 1
has quite similar form with V and plays the same part in 8B, as V does in
2z z

B, though of course their 2-submatrices are not the same. Hence S is a base
of order 5. This proves Lemma 3.

3.4. Consider a subspace of & spanned by matrices K such that

K\ =0
for AN=n—n+1,...... yny p=1,...... ,n—n,
3. 12)
! A=n—np+1,.... ,ny p=n—np,+1,...... , N — Nr,

and call it 8. A matrix K of &, is obtained by taking a matrix Ky.rzr of degree
ny such that

(3. 13) KT, V7T, =0 (V e Bs)

Tp

6) The set of matrices K=A-1KA where Ke Q2 can play the same rple as ®2j only when
this is shown.
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for all matrices V of B3 and by determining successively other elements with
the use of formulas (39); or (40)r, (39)r.1 or (40)r_1, -..... , (39), or (40), of
[1]. The linear space spanned by the matrices K”.T,T satisfying (3. 13) was de-
noted by & . This is a linear Lie algebra homomorphic with &7,

(3. 14-) Rr“’ R(T).

A homomorphic mapping f, is obtained by taking from each matrix of &, its
ny-submatrix and is denoted by f,(nr). Its inverse is obtained from formulas
39)r, (40)r, ...... , (39),, (40), of [1].

Let us assume that the 1-submatrix, ...... , the T-submatrix are scalar ma-
trices in each matrix V of L. Then it is clear that the kernel Jr of (3.14)
contains R5 for each S such that 1 <S8 =< T, where & is the linear space
spanned by the matrices K satisfying

(3. 15)s K%,=0, K\ =8 K, 8"
This is correct because, if (3.15)s is satisfied, we have
K", v j.SkS =0 whenever V € Q.

Moreover we can write

3. 16) Se= 3 R+ Ir
1=SsT
where 37 is'a space such that the 1-submatrix, ...... , the T-submatrix of each

matrix of Jr are all scalar matrices and that at least one of the 7" submatrices
mentioned above is not a zero matrix for each non zero matrix of 7.
The latter property of 37 is obtained since Jr is the inverse image of the
zero matrix of &, (See [1] (39) and (40).)
~ Consider a matrix K%, where the n;-submatrix Ky.",rr is a matrix of R

and other elements are determined successively from

(3. 17)» K", =0,K"., =0, K, =0 (when T € C1)
or
K7, = - LK v, 8
, I£1,

3. 17 ) Bpo et o when T € C2

(3. 17y K", =~ K", V7, ( )
SUp
K =0

7) This is cqual to zero unless dr=1.
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and (3.17)r—; or (3.17)r_1s ......,(3.17), or (3.17),. The set of all such matrices
will be denoted by ®% This is a linear space and £, is spanned by ®7 and
Fr. Any matrix of [R7, &7] is a matrix of ®7 and its S-submatrix is a zero
matrix for every S, 1 <S =< 7. Hence [87, 7] C &F + Jr. We show that
[R%, &7 < A%

Suppose that a matrix K has S-submatrices which are zero matrices for
1<S=<T and that K = K’ + K" where K' € Jy and K" € 8%. Let S" be a
number such that the S-submatrix of K is a zero matrix when S’ < ST
and the S'-submatrix of K is not a zero matrix. Then the same is true for
the matrix K. From the property of Jr such a number S° must belong to
C 1. But then (3.17)s must be used and we find that the S'-submatrix of K"
is a zero matrix. Hence such a number S  can not exist and we get K = 0.
This proves [&F, &7] < &%

Thus, 87 is a linear Lie algebra. Moreover, since [R7, Jz] © 3, and the
S-submatrices of the left hand member are zero matrices for 1 < ST, we
get

['ﬂ% \C}T] = O;

We also find that the decomposition $; = & + r has the following property
(3. 18) 7 =& /Jr = Ry

where = means isomorphism of Lie algebras.
.- An isomorphic mapping of 8% onto f(;, is obtained by - restricting f,(7nr)
and is denoted by fi(nr). Its inverse is obtained from (3.17), (3.17). -
Considering the decomposition B3 = By, + Ly we can take as a matrix

Ky.T,T of ‘&, an arbitrary matrix such that

=0, K™, =0,

Tryr T

i
T+1
K’, : iy

(3. 19) 7
K+, =, K", =0.

s Jry Tyl

A subspace of ®7 spanned by those matrices which are obtained from K?,ZT

satisfying (3.19) with the use of (3.17), (3.17") will be denoted by ..
Then we get ’

@l'”l] = gl(drn)
because of (3.18), hence
Rz Brird] = Srane

This shows that all S-submatrices of &, are zero matrices for 1 < S < T.
We can apply Lemma 2 and the Corollary to the 7,_,-submatrices of &,y



ON LINEAR LIE ALGEBRAS II 317

and find that, if the base S of R" is changed to S = AS where

AN =8 + 8 b7, 8T

“Jri1
and where the coefficients are taken suitably, then the only non zero elements

. k. . .
of the ny_;-submatrices of A™*§ir,,) A are the elements K *';  which satisfy

T
i
K7™, ~=0. Then we can apply Lemma 2 and the Corollary again to the

T+1
nr_»-submatrices of such A" *8&,,7 A4 and so on. We thus find at last that there
is a matrix

(3. 20) A =8+ 8y, S+
i k)
+ 8 b7, 8

such that the only non zero elements of A8y, A are the elements

kg
K",

ne . i1 _
Jpat which satisfy K i, = 0.
The coefficients in (3.20) must be chosen suitably, but, as the elements

K'S, of 741 are zero unless ds =1 and S € C2, (3.20) have the form

S

A\ =8+ Z* 8 b, 8T

'1T+1
where 2* means summation over S such that 1<S<T,ds=1, Se€C2
simultaneously. Hence (3.20) is obtained by making a product of the matrices
(3. 21) Au=8+ LB, &I
1ZS<T,ds=1, S C2).
We must only show that, if S is a base of order 5, then 3"= {ng is also

a base of order 5. This is easily done by examining the properties of %1=.§1'1

~

B A, ... SBr=A"BrA, ... straightforwardly. Again, all matrices V= 34"
S S N

VA of f’g have l-submatrices, ...... , T-submatrices which are all scalar matrices.
N
All these are true when A is replaced by A.
S

The result obtained can be summed up as follows.

If we assume that S is a base of order 5 such that all matrices of LB =
LB(g, S) have 1-submatrices, ...... , T-submatrices which are all scalar matrices,
then we can change the choice of S in such'a way that the matrices K of
Rir41y have the form

8) See (3.17), (3.17).
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]

S~1‘+1

i, >
1 T

k
T+1
Kn=8&, K"
i
T+1 —
K™, =0,

leaving other properties intact.
Then consider again (3.17)s and (3.17)s where 1 < S =< T. Since these
must be satisfied by the matrices of 1.1, we get, if S € C2,

K 3

yrr- 741
oc

L 811»1’

kS""l'+1
Iz/ * "T+1
N

We thus find that the (7" + 1)-submatrices of Ly, ...... , By are scalar matrices.
As the (T + 1)-submatrices of LB; are of course scalar matrices, this shows

that the (T + 1)-submatrices of X} are scalar matrices. This proves the follow-
ing

THEOREM 2. The base S of R" of order 5 can be chosen in such a
way that the 1-submatrices, ...... , (P + 1)-submatrices of all matrices V of
LB are scalar matrices.

Such a base S is called a base of order 6 and will be used constantly
hereafter. Thus we obtain the next

THEOREM 3. & satisfies &5 C &, where Ry, is determined by (3.15)s
for every S, 1 <S<P+ 1.
Of course R is significant only when d;== 2. We get again the
COROLLARY.. As a linear space 8 is decomposed into the direct sum
@ == 2@[31 -+ (v‘.ﬂ) - 2:@151),
where the S-submaitrices of all matrices of (& — 2 R.s) are scalar matrices.

4. The operator [7"]. Hereafter we shall consider only 7”s such that
dr = 2. When T is fixed dr will be denoted by 4 for simplicity.
Now we can take a matrix K of 8;; such that its 7-submatrix has the

3

form

|’ 1 0 ...... 0 ) ! 0 0 0 ..... 0
00 0...... 0 | 1 0 0...... 0
4.1 @& 10 0 0.... 0| or by 10 0 0 ...... 0

00 0. 0 0 0 0...... 0/.
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Let V be a matrix of B and K,, K, be matrices of Ry with 7T-submatrices
(4.1a), (4.1b) respectively. Then V' = [K,,[K,, V]] is a matrix of & such
that the second row in the rows of 7' and the first column in the columns
of T respectively are the same in V and V', with the exception of the elements
in the T-submatrix, which is a zero matrix in V  since the 7-submatrix of V
is a scalar matrix. Moreover, all other elements of V' are zero. This matrix
will be denoted by [T]. V.

More generally, when M is a matrix of degree »n, [T]. M means a matrix
such that the second row of T and the first column of T respectively are the
same in M and [T]: M with the exception of the elements of the T-submatrix
which is a zero matrix in [T']'2 M, and moreover such that all other elements
of [T]:M are zero. Operators such as [T']; are defined similarly. Then, if we
put

(4. 2) (T]1=[TT:+ [T +...... + [T+ [TTh,
we get
(4. 3) [T]V e DB, A-[THV e B

for the matrices V of 8. [T']V is a matrix obtained from V by replacing all
elements by zeroes except those elements which are in rows of T or in columns
of T but not in the 7T-submatrix and consequently are left intact. (1 —[T])V
is a matrix obtained from V by replacing the elements in rows of T and
columns of T but not in the T-submatrix by zeroes and leaving other elements
intact.

5. Linear spaces 2;, 2", M;. Let us study the matrices [T]V more in

detail.
We use indices in this section as follows

h,i, j, kl,m e IT).
Then the matrix defined by
(5. 1) K, = 8)8. (i)
belongs to f7. Let V be a matrix of B and consider the matrix

5. 2) (K, [K, VT € B G+ kB,

where the elements are
(5. 3) S (VI — V8 — (8§ Vii— V&) 8.

As V', o 8, the elements (5.3) are equal to zero when either A, u € KT) or
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A p & I(T). On the other hand we have

k i
[f’ [I}’, .[/Y]]Yl = V,\-,j S;L ?:,
k i )
[1];{: [[j< V]J"}u’ = 8!? Sljc V.‘Mf,

where A, u’ are indices not belonging to I(T). If i=h and j =F &, the matrix
(5.2) has elements all of which are equal to zero except those in the %th
column, which are V' — v 8} where Vi, = v 8. If i==h and j=~k, the matrix
(5.2) has elements all of which are equal to zero except those in the 4 th row,
which are V!, — v38,. But, as we have assumed 7 == j and %k 4= A, such mat-
rices can not exist unless dr = 3. When dr = 2, i = h induces j = k. Then
the elements of the matrix (5.2) are equal to zero except those in the i th row
and those in the jth column, the jth column being V'; — v 8} and the ith
row being V!, — v 8.

Thus, if dr = 3, we obtain a set of matrices of L such that in each matrix
V' of the set either all rows are composed of 0’s except one or all columns
are so except one. But, if dr = 2, we obtain a set of matrices of LB such that
in each matrix V' the elements are zeroes except those which are in one row
and those which are in one column. In both cases such exceptional rows and
columns are only rows and columns of T, and besides, the T-submatrix is a
zero matrix in each matrix V'. Moreover it is important to notice that, if V
is a matrix of ¥ and d, = 3, we obtain a matrix V' by replacing all rows
by zero rows except some one among the rows of 7T and leaving intact those
elements of this row which are not in the T-submatrix. This holds good if we
replace “row” by “column”. If d, = 2, such proposition must be naturally
changed as it is clear from the above explanation. We get only [T']:V and
[TTV.

The matrix [I?, V'] where m == is a matrix such that its /th row is the

same with the mth row of V' and such that its mth column is the same

with the /th column of V' but bears opposite sign.

Hence, if dr =3, a matrix obtained by shifting the non zero row or
column of V' within the rows or columns of T is also a matrix of V. If
dr = 2, a matriz obtained from V' by permuting the rows of T and per-
muting the columns of T with change of sign simultaneously is also a
matriz of B.

Thus we obtain following lemmas.

LEMMA 4,. Suppose dr = 3 for the value of T under conside_mtion, and
take the first column of T in every V € B, replacing all elements in the
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T-submatriz by zeroes. The linear space spanned by the column vectors thus
obtained is denoted by Rr. Then, if vi|* is an arbitrary vector of S, the
matrix 'V where

(5. 4) Vi = vr|* 8, (z € KT))
is a matriz of B. Similarly we obtain a linear space 8" such that, if u"|,
is an arbitrary vector of &7, then the matrix V where

5. 5) Vie=284"]. (j € I(T))
is a matriz of B. Moreover, for any matrix V of B, [TV is a linear
combination of matrices such as are given by (5.4), (5.5).

LEMMA 5;. Suppose dr = 2 for the value of T wunder consideration,
and take the first column of T and the second row of T in every V € L,
replacing all elemenis in the T-submatrix by zeroes. The column vector and
the row vector thus obtained are arranged to form a wvector (vr\*, u”|,)
with formally 2 n components. The linear space spanned by such vectors is
denoted by Myr. Then, if (vr|, u"|.) € My, the matrices

(5. 6) vr|* 8 + & d”],
(5. 7) — v | 8 + & d,

belong to L. Moreover, for any matrix V. of B, [TV is a linear combina-
tion of matrices such as (5.6), (5.7).

REMARK TO LEMMA 4. We can take any one colurnn (row) of T instead
of the first column (row).

REMARK TO LEMMA 5. We can take the second column and the  first

row instead of the first column and the second row. Only the sign of either the
column vector or the row vector must be changed then to obtain a vector of .

6. [;}-submatrices of B. Hereafter indices such as a, b,...... take only

numbers belonging to no one of IT)’s such that dr = 2. This fact will be
denoted by a, b,...... € I(R). On the other hand indices such as S, T, U will
take only numbers such that ds,dr, dy=2 unless otherwise specified. (SU T)-
submatrix is the matrix of degree ds + dr that is the crossing of the rows of

-
S and T with the columns of S and T, while 'gﬂl-submatrix is the crossing
of the rows of S with the columns of 7. Hence for example the non zero

elements of [S][T]V are only elements of the [g{l-submatrix and elements of
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the [g}-submatrix. A row (column) of R is a row (column) which is not a

row (column) of T for any 7. Submatrices such as R-submatrix, [?,]-submatrix

will be understood similarly. When all numbers T (d, = 2) are arranged as
follows T, <...... < T,, the set of all rows of R will be divided into Q + 1
components R, ...... , Rg.1 some of which may be vacuous.” Submatrices such

as [g‘}-submatrix will also be understood.
v

Now suppose dr = 3 for fixed T, and consider a matrix of L as given by
(5. 4), that is,

6. 1) VA = v |* 8L (vr|* € &, i € KT)).

Let h € I(S). Then, as the hth row vector is vy|" 8. where w indicates in-
dividual components, we get 8, € & as long as wvy|"==0. This shows the
following fact. If R} contains a vector v,|* such that for some value of A
belonging to I(S) the component v, |" is not equal to zero, then &, € {5 We
thus obtain

(6. 2) né.edB (h € IS), i € KT)).

Furthermore, once we get (6.2) for some value of A in I(S) and for some
value of 7 in I(T'), this holds good for all 2 € J(S) and all i € I(T). This is
obtained from the italicized sentense just before Lemma 4. Moreover this is
true even if ds = 2 as the columns of the matrix (6.1) are composed of 0’s
except the 7th column.

We cannot obtain (6.2) only when v,|" =0 for all v,|* € & and for
all & € I(S). Hence from the definition of &; we find that

If dr =3 and ds =2, then (6.2) holds good, or else we have

6. 3) Vi=0 forall VeDB,ie KT), h € IS).

This fact will be also expressed as follows, the {‘;J region of B is all or

none.

Similarly we find from (5.5) that the {gJ region of B is also all or none

if dp = 3 and ds = 2.

On the other hand, when S < T, the matrix V where the elements are
shown by (6.2) is, if it exists, a matrix of LB:y, so that it must satisfy
(1.1)s, which contradicts (6.2). Thus we find that, if S < T, we must get

9) For example, if "N 75, then Ry, ...... , Rj are vacuous.
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(6.3). But, if S> T, (6.3) fails to hold on account of some matrices of L.
Hence we must get (6.2) then. Thus we find that, if dy=2 and dr =3, the

[‘TS:J region of LB is none or all according as S << T or S> T respectively.

We get a similar result when we start from (5.5).
Gathering the results we can say as follows.

In case ds=2 and dy = 3 and also in case ds=3 and d, = 2, the [?’]

region of B is all if S > T and none if S < 7.
Next let us assume ds = dr = 2 for the given S and T and study the

behavior of the [ ,“IS:J-submatrix and the [g]-submatrix then. For the present we
use indices as follows.

pp € KS), p+p,

9 € IT), g4,

Then, if (v,|*, #"].) is a vector of My, the matrix
(6. 4) Vie=vr "8 + (= D" & o"|u

belongs to B by virtue of Lemma 5. Hence, considering the p th column and
the ' th row of this matrix, we get

(6. 5) (=D & u"|, (= 1) v |"8L) € M.
When p is given, we can take a vector (vy|", #«"|,.) of M; in such a way that

at least one of v,|"” and #"|, is not zero, unless the [%J-submatrix and the
[:I;J-submatrix are both zero matrices for every matrix of B. Assume for

example S > T. Then some matrices of B, have [%}-snbmatrices that are not

zero matrices. Hence it is immediately ascertained that for any given p € I(S)
there is a vector (vr|*, u”|,) of M; such that vr|” = 1. On the other hand
we can apply Lemma 55 with respect to the vector (6.5) and obain

(= 1) & a"])8 + (— 1) 8 (— 1) v |” &) € B.
Hence, if we put v,|” =1 and #«"|, = t,, we get
(— 1) 82,80 + 8 8 € D.
Again, if we interchange p and p  we get
(=D& 8ty + 88 € B.
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Then, by virtue of the italicized sentense just before Lemma 4, we find that
we can put £, = (— 1)*" ¢ and obtain
6. 6) S8L+ (— 1yt 8y 8y € V.

But the matrix (6.6) belongs to 8B, because of the assumption S > T.
Since the base S of R" in use is a base of order 5, the nr_;-submatrix of any
matrix of L7 must have special form as stated in § 2. Accordingly we must
have =0 or ¢ = 1. £ = 0 shows that S (1 T, while £=1 that SN T. We
immediately find that, if S N T, then (— 1)+ = (— 1)"*"

We then obtain the

THEOREM 4. If ds=>2, dv =2, S > T, and moreover S N T, then the
[“791} region of B is all, while the [gJ region of B is none. If ds=dr=2,
S > T and moreover S N T, then

6.7 &+ (- 188 €
(6,0 € IS); 9.9 € T); p=+¢, ¢4,
and besides,
(6. 8) Vi = (= 1"V,
for every V € D.

Proof is needed only for the last enunciation.
According to Lemma 57, the matrix™®

VA = (VA — 8 V) &L + 83V, — V7 &)
belongs to B if VA € V. Then applying Lemma 55 to this matrix V' we find
that the matrix
(V' =& V)8 + 8V, — V7, 8)
also belongs to B. Hence we get
Sy Vi & + 8 V58 € B
and then
(Vi = (=1 V)& 8 € 8
by virtue of (6.7). If (6.8) does not hold good for some V in B, then we

get 8) 8% € B and consequently §, 8%, € B which contradicts S N T.
We also obtain the following

10) The summation convension is not used with respect to p, #/, ¢, ¢’
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COROLLARY. Let S and T be fixed. Then the linear space B is spanned

by the. Jollowing two subspaces. The matrices of one subspace are such that
their [‘;J-submatrz’ces and [g]-submatrices are zero matrices. The matrices
of the other subspace are such that their elements are zeroes except those of

S . . .
[TJ-submatrzces and those of [gJ-Submatrzces. These matrices are linear

combinations of (6.7) if SN T or of (6.2) if SO T and S > T.

The space spanned by matrices

Vi, =8, 87 (SNT)

for given S and T will be denoted by %{g] while the space spanned by the
matrices (6.7) will be denoted by Bs ).

7. Linear spaces %,, 2", M,. Let T be a fixed number and let V be a
matrix (5.4) or (5.5) if dr = 3, or a matrix (5.6) or (5.7) if dr = 2. Applying
all operators 1 — [S] such that S==7T upon V we get

(7. 1) {S]}T(l - [S])} Ve .

This calls forth the following notion.
When d; = 3 we take an arbitrary column vector of [,Ilzw}-submatrix in any

matrix V of B. The set of all such vectors is a licear space, which will be
denoted by £,. Similarly we can define &,. When dr = 2 we take the first

column vector of {?}-submatrix and the second row vector of [gJ-submatrix

in any matrix V of & and arrange them in this order. The set of all compound
vectors obtained in such a way is a linear space, which will be denoted by M.

Then, if dr = 3, a matrix such that the column vectors of its [};J-submatrix
are vectors of &, while all other elements are zeroes is a matrix of LB. A
matrix such that the row vectors of its [g]-submatrix are vectors of &” while
all other elements are zeroes is also a matrix of LB. On the other hand, if
dr = 2, then
Sur"8+ (-1 6 u", 8 €

as long as (vr|“, #"|,) € My
Let us denote the spaces spanned by such matrices by

s[R]. o[f] Baw
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respectively.

The linear space spanned by those matrices of L in which non zero
elements are found only in R-submatrix and T-submatrices will be denoted by
Bz p. Then we get the

THEOREM 5. The linear space B is decomposed into the direct sum as
follows

(7. 2) B = Bym+ 3 (%[Iﬂ + %[gb

4( ,.gs

+ zﬂ%mm + Z%%[’?‘} + Zf Bis, s

(’T' 2

where 2% is the sum with respect to S, T such that SN T and S>T.
and where 2! is the sum with respect to S, T such that SN T and S > T.

To be continued.
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