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1. Introduction. In a recent paper [1] some properties of subalgebras g

of a general linear Lie algebra Qί(Rn) on an ^-dimensional linear space Rn over

the field of real numbers were studied. When a base S composed of a set of n

linearly independent vectors eκ (λ = 1, , n) is taken in Rn, g is represented

by a set R(g, S) of matrices of degree n. If there is no possibility of confusion,

it may be denoted by ® for short. K is a linear space, hence, if KΛ € ®,

K2 € ffc, λx € i?, λ2 € R, then λ ^ + X2K2 € β. Moreover we have [Kl9 K2~]

€ ft for bracket operation. If we take another base *S(eλ) such that S = ^45,

i^ = A\eΛ, then g is represented by E where ίS = A'1 $ A. In short we have

Jδ(β, AS) = A ' 1 $ (g, S) A. The set of matrices F which satisfy K)μ Vtκ = 0

for all matrices iζ% of Si is denoted by 95(g, S) or by 35 for short.υ S3 is a

linear space and is transformed as follows

If K € ffi and V € 25, then [K, V] € 25, which fact may be expressed by

If dim g = r, then dim 25 = n2 — r. If a base S of Rn and a base M of
35(9>S) composed of the matrices V(A = 1, , #2 — r) are taken suitably,

then the matrices V assume special forms and we get the notion of d series. This

is a sequence of natural numbers dl9 ,dP+1 satisfying d1 + -f dP+1 = n.

Unless otherwise specified indices are used as follows,

a, β, γ, λ, μ, v = 1, , n,

h, i} j, k = 1, , n — nu

t, u, v, x, y, z = n — nt + 1, , n,

S, T, U = 1, , P.OT P+ 1,

hτ> iτ, JT, h>τ = n — τtτ-1 + 1, } n ~~ nτ9

try UT, VT, XT> yr, ZT ~ 71 — tlτ ~H 1, , ft,

1) Matrices are denoted by letters such as My K, V or by the elements M) , Kλ ,
V*χ. Parentheses may be used but they are omitted especially when the elements are
complicated expressions.
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where nT-\ — nτ = dτ, n0 = w, rcP+1 = 0.

We adopt the summation convention with respect to indices in small letters, so

that for example

is a sum of dτ diagonal elements of M. By an #Γ-submatrix of a matrix

is meant the following matrix of degree nτ

Then the results obtained in [1] are as follows.

If a base S of Rn is chosen suitably, then 33 is decomposed as follows

([1] §6)

» = «!+ + »*+»*,

where the matrices V of 33^ satify F^μ = 0 for

λ = 1, , n μ = 1, , fl — fl1?

λ = Λ — ΛX + 1, , ^ ^ = Λ — /i! + 1, , n — n29

X = n — ΐiτ-i + 1, , w μ = n — nT-\ + 1, , w — Wr

Moreover they satisfy ([1] (48))

(l.l)r Vtτ

μ = 0

if J r > 2. SSr is spanned by dΆn — rfx — —dτ) or Jτ(w — ̂  — — dr)

+ 1 linearly independent matrices

TCip

(l 2)r V
*τ

or
Jfcr 1

(1.2')r F, y (F means V of [1] § 5)
T zτ 1 1

whose property will be shown at once. If we get (l. 2)τ, then this fact is

indicated by T € C 1, while if we get (1. 2')r this fact is indicated by T € C 2.
Since we have S S ^ ) = SSr + S3*, the matrices (1.2)^,(1.2% must belong
to 33(7-1). Now, there are five possible cases in each step, ([1] § 5)

( i )r : dr=l, T € C 1,
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(ϋ)τ : dτ^2) T € C 1,

(iii)r : dτ = 1, T € C 2,

(iv)τ : J Γ = 2, T € C 2,

( v )Γ : dτ > 3, Γ € C 2.

If we get (ϊ)τ or (ii)r> then we have

If we get (iii)r, then2)

(1. 4)P

*r

[f we get (iv)Γ, then

r T Λ T

(1-
V .Jτ = 0, T A

.yτ — 0,
JT 1 *7» ^T1 '

v «Γ zτ

 τ yτ

 τ yτ

If we get (v)Γ, then

T

(1. 6)r

Moreover we have for (i\

(1. 7)r F :

and

(1. 8)τ y !

T
- o,

= o,

z T I Z

Vτ
 A. T/ τ V r — Π

V .y^ -V V .Vfp V x7, — V

303

-yτ

2) Of course in this case indices such as ir can take only one value dx -+•
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for all matrices V of 33^.

We can construct a base M of 35 such that M contains a base (1. 2)τ or

(1. 2')Γ of 35Γ for each T (l ^ Γ <; P + 1) and a base of 33(P+υ Such a base

S of i?" and the base M of ΰ just obtained compose a base (S, M) of the

fourth order. Of course S5(PΪD is nothing else but >δΓ+i in [1],

Addendum. According to [1] § 5, if we get (i) in the first step, this is

not an intrinsic property of Q. In order to get rid of this inconveniency we

make a rule that the vector vx is chosen in such a way that we get (iii)

whenever this is possible. Hence, if Ml" in [1] page 173 is not empty, the

choice of vx must be changed so that we get (iii). This is easily seen from

the form of the matrix (i)' in [1] page 175. Thus we get (i) only when all

matrices V of JSϊ assume the form V\ = h) Vy.x δ£. Similarly in the T the

step (iii)r is preferred if possible. Hence (1. 1)Γ is satisfied by the matrices V

of 33y* not only when dr ί̂  2 but also when we get (i)τ.

Let M\μ be a matrix of degree n. Its dτ rows obtained by putting

λ = ^ +••••••+ dτ-i + 1, , dx + + dr

will be called rows of T. Similarly the dτ columns obtained by putting

μ= d1 + + dτ-i + 1, , dx + + dτ

will be called columns of T. A submatrix whose elements are the elements of

M belonging to rows of S and columns of T simultaneously will be called an

rp -submatrix of M. A m -submatrix is called a T-submatrix for short. A

1-submatrix is a T-submatrix where T — 1 and so on. Such a mode of expres-

sion is not misleading since an wΓ-submatrix will not be called an ra-submatrix

even if nτ = m. An expression λ € / (T) means that λ takes on the values

dx + + dτ-\ + 1, , dx 4- -f dτ or it belongs to some of the above

numbers. Since the notion of a base M of >θ will not be often used hereafter,

in a base (S, M) of higher order M may be omitted.

As a d series of a linear Lie algebra g is obtained by choosing a base S

of Rn suitably, it may happen that another d series is obtained by choosing

another base. But it is obvious that to a 9 correspond a set of d series and

conversely to a d series correspond a set of Q's whose possible forms will be

studied now.

2. d series containing dT - 2, T € C 2. If we get (iv)Γ, we have

in general and these must satisfy (1. 7)Γ, (1. 8)Γ, which are rather complicated
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relations. But such inconveniency is removed by changing the choice of the
base S suitably.

First we assume that we obtained (iv) in the first step. Let S be a base of
Rn of the third order for the moment. Since we have

v\ = si

if S is another base of the third order such that S = AS, Aλ

tj = δ), A\μ = δs

μ,
1 1 ^w

then the part of V in 93X is played by the matrices A\x A'1 V A in 25X = A"1

X t

S5χ A. This fact is easily understood from

t

and means that S -> S induces a transformation

Ί

"1 V AJ.V.
ΐΐ

If we put

vxυ = IA\X A'1 V AJV = V\ A\x Au

v,
t t

then we get vxy == — vyjc since

V'1 = — V2*
v 'U V f
t u

Moreover, if the submatrix A% is chosen suitably, vxy become such that

== ^ 2 m - l 2m — V2m 2m-1

other z ŷ = 0

where 2m — 2 is the rank of the matrix (vxy). This fact means that, once
we get (iv)1? a base S of the third order can be chosen in such a way that
the matrices (1. 2')i satisfy

(2. 1)
other V2

y — 0.

Then, since we have (1. 5\, we find immediately that the following 2(n
— 2 m) matrices belong to S5l5
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1 2

φ ' φ

Again, as we have (1. 5)x and (2. 1), we can find out 3 + 4(m — 1) linearly
independent matrices

O\ Oμ — δ^ Oμ, S\ Sμ, δi δ^,

Ol Oμ — O4 Oμ, Oi Oμ + O4 0^,

l O^ — t>2/n O μ , Oi Oμ. -jr 02m Oμ,

£ λ SviW i 5^\ S>2 £λ ^Z» S>λ 5>1
O i O ^ -Γ O ^ m - l O μ , O2 Oμ. — O^wι-1 O μ

from $. Then we get by bracket operation the following m(2 m 4- 1) linearly
independent matrices which naturally belong to fi*,

(2. 3) δ ^ δ « - ( - l Γ g δ $ > δ £ '

A ^ = 1, > 2 m,

p = p + 1 if /> is odd, p — p — 1 if /> is even,

q — q + 1 if # is odd, g' = ς — 1 if q is even.

As the matrices V of SSX satisfy V\φ = V*.9 = 0 by virtue of (1. 5\ and
(2. 1), ® also contains the matrices in the right hand sides of (2. 2). Applying
bracket operation to matrices of (2. 2) and (2. 3), we find 2 m(τι — 2 m) matrices

(2.4) δ£δ£

which naturally belong to B.
Since the matrices (2. 2) belong to 25 and [®, 35] d 25, (2. 4) belong also

to SB.
Hence we get

(2. 5) V% = 0

for all matrices F of 25 and

(2. 6) ^ = 0

for all matrices K of ®.

Consequently 25 is spanned by the matrices (2.4) and some matrices X7

such that

3) In § 2 the following indices are used.
ίΓ> p=l, , 2m,
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(2. 7) V% = 0, V% = 0,

which we shall study now.
First, since ffi contains the matrices (2. 3), these must satisfy

(2. 8) V% = ( - l) p + Q VT'β'

which is a system of w(2 m 4- 1) linearly independent equations and contains
among others

On the other hand 35 contains the matrices

O3 Oμ — Ol Oμ, O 4 Oμ + Ol Oμi

δ2m -1 δμ + 82 δ μ

m , δ̂ m δμ ~ δ} S^" 1 ,

δim-1 Oμ — δi δμ , δim δμ + δl δ l

by virtue of (1. 5)x and (2. 1). Applying bracket operation between these matrices
and the matrices of (2. 3) we find that the matrices

(2. 9) Si δμ 4- ( - 1)P+Q 8Ϊ 8*' (p,p + q, q)

belong to 35. It must be noticed that the pair of numbers p,p must be different
from q, q in (2. 9). It is also found that 35 contains the matrices

\Δ. lϋ; Ol Oμ 4- Ol Oμ — O 2 W _l Oμ — 02mOμ , ,

2W-3 Ojm-2

There are m(2 m — 1) — 1 linearly independent matrices in (2. 9) and (2.10)
altogether, which satisfy (2. 8) obviously.

Now consider a matrix V of 33 such that V% = 0, V% =• 0. Since it
satisfies (2. 8), we get a matrix F ' of 33 such that V'% — 0 with the exception
of V'mΓ1*M-i, V"λT'im by subtracting from V some linear combination of matrices
of (2. 9) and (2.10). We thus obtain a matrix V of 33 such that V*φ = V% = 0,
V% = v(S2»-i δp"1"1 + Siii δpw). It may happen that for any matrix V with such
properties v becomes zero.

Gathering the results obtained we can state that the space 35 is spanned by
the following three sets of matrices,
(a) the 2 m(n - 2 m) 4- m(2 m - 1) - J matrices (2. 4), (2. 9), (2.10), which
satisfy V)φ = 0,
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(b) a matrix satisfying

(2. 11) V% = 8L-, 8**-1 +

and V% = V?« = 0,

(c) matrices such that

(2. 12) Vϊμ - Bκ

φ V
φ.x S*.

It may happen that (b) disappears.
Because of this property which S3 possesses the number 2 appears succes-

sively at least m times in the d series. The matrix (b) is the matrix V which
m

is a V such that T = m. The matrices (c) span 33m. Moreover it is clear that
T

we have already completed the m th step by getting such a base S of Rn. It
is also clear that the 1-submatrices, , the w-submatrices of the matrices of
S3 are all scalar matrices.

Now we can begin the next step without being disturbed by such relations
as (l. 8)m. Suppose that we did not obtain (iv) in the next succeeding steps
until we encounter (iv)Γ+1 for some T. Then we apply the whole process con-
sidered above to the linear space 33(D spanned by the 72τ-submatrices of the
matrices of S3r, considering $cn instead of β, where $(T) is the linear space
spanned by the #Γ-submatrices of those matrices of $ in which the elements satisfy

Kλ

μ =. 0

for λ = n — nx + 1, , n μ = 1, , n — nu

λ = ?ι — riτ + 1, , n μ = n — nT-\ + 1, ....:., n — nτ

(see § 3 and [1] § 6). Such process is repeated and at last we get the

THEOREM 1. Among the bases of the fourth order a base S of Rn can
be chosen in such a way that §3(8, S) possesses the following property. The
numbers T such that dτ = 2, T € C 2 appear in clusters where a cluster is
a set of m successive natural numbers and is divided in general into I
smaller parts, so that the numbers T of a cluster can be written as

T= T19 Tx + 1, , Tι + m1- 1,

T2, T2 + 1, T2 + m2 - 1,

Tl9 Tt + 1, , Tt + tm-1

where 7\ + mx = T2, , Tt-X + mι^1 = Tt and mΛ + + mt = m. We
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also write for convenience Tι + mL = Tι+ι. The relation between 25(9, S) and a

cluster is as follows. If T = Tt — 1 and T' = T{+1 — 1 where i = 1, , /,

£/*e# 25r is spanned by SSί" tfftd 25T where 25f zs α linear space spanned by

2 w X ^ — 2 ^ ί ) + m{(2 mt — 1) — 1 or 2 TW/TZΓ — 2 mf) + 7^(2 m* — 1) linearly

independent matrices not belonging to 25r' The nτ-submatrices of these

matrices of 25f are matrices such as are obtained from the matrices (a)

((2. 4), (2. 9), (2.10)) and (b) by changing the range for the indices properly

and replacing n, m with nτ, mt. (1. 5), (1. 7), (1. 8) need not be taken into

account though all results stated in §1 are preserved.

Such a base S is called a base of order 5. d series takes the form

( , 2 X ml9 , 2 X ml9 ) where 2 X mt is a chain of 2's in which 2

is repeated mt times. We write T Γί S when T and S are members of one

and the same part of a cluster. Otherwise we write T Π S.

EXAMPLE. Let n be even, n = 2 m. The linear Lie algebra %p(m9 R) is

spanned by the matrices (2. 3). We get I = 1, Tx = 1. d series is 2 X m and

we have the matrix (b). For a linear Lie algebra spanned by %p(m9 R) and

scalar matrices we also obtain 1=1, Tx = 1, and the d series is 2 X m, but

we have no matrix (b).

3. jΓ-submatrices of 25.

3.1. It is already clear that the 1-submatrices of all matrices of 25 are scalar

matrices. We now prove that all Γ-submatrices where T runs from 1 to P + 1

are also scalar matrices if the base S is chosen suitably among the bases of

order 5. Let us begin this with 2-submatrices. Since it is clear that the 2-

submatrices of the matrices of 25 ί are scalar matrices, proof is needed only

for the matrices of 25x. We assume d2 ί ϊ 2, for, if d2 = 1, 2-submatrices are

of course scalar matrices.

We considered in [1] § β a subspace ίϊα of β. $x can be defined as a

subspace spanned by those matrices K of ffi which satisfy Kv.3 = 0. A matrix

K of B1 is obtained by taking a matrix Kv.x of degree nx such that

(3. 1) Ky.xV% = 0 (V € 250

for all matrices V of 25 ί, by taking elements K\h K% in such a way that

[1] (29) or (30) is satisfied, and by putting Kv.3 = 0. Then, as the elements

Kk.3 are arbitrary or at most only Kit is determined by the second equation of

[1] (30), a linear space ®(D spanned by the matrices Kv.x just mentioned is in

general homomorphic with ®χ as a linear Lie algebra,

(3. 2) β 1 ~ β ( 1 ) .
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The kernel of homomorphism (3. 2) is given by the matrices K satisfying

(3. 3) Kk

x = 0, Kyj = 0, Ky

x = 0

or

(3. 3') K\i --= 0, K% = 0, K!j = 0, Kv

x = 0

according as 1 € C 1 or 1 € C 2. Now we obtain the

LEMMA 1. A sub space S)f of ffi spanned by matrices K\ such that

(3. 4) K% = 0, K% = 0, Kyj = 0

or

(3. 4')
= - Ky

xV*y, Kyj^

(when 1 € C l)

(when 1 € C 2)

is isomorphic with $ω as a linear Lie algebra.

PROOF. If 1 € C 1 or dx = 1 this lemma is evidently correct. Suppose
1 6 C 2 and dx > 2. Then the space ^ x spanned by those matrices K which
satisfy (3. 3') is not 0-dimensional and is an ideal of ®lβ Let a matrix of <$1

be denoted by K' and a matrix of $ x by K. Then we get K'\ Kk

x = 0 where
iζ̂ fc are restricted by K'.\ = 0 only. This proves iC^ — 0.4) Hence ®x is a direct
sum of ffif and ŷx where ffef is a linear Lie algebra. We thus obtain

(3. 5) «f ^ ft1/^1 s ίt0).

An isomorphic mapping /£ of fif onto ^ ( 1 ) is obtained by taking for each
matrix of ffif its zj-submatrix. This mapping will be denoted more precisely
by ft(nx). Tts inverse (fii^i))"1 1S obtained from (3.4) or (3.4').

If we consider the second step in the sense of [1] § 6, we can take as
a matrix Ky

x satisfying (3. 1) any matrix Ky

x such that

(3. 6) K% = 0, K%2 - 0, K% - 0, Ky?X2 = 0.

As we have assumed d2 j> 2, the elements Kλo:h are arbitrary within Kι\
= 0. A linear space spanned by matrices K)μ obtained in accordance with
(3. 4) or (3. 4 ) from those matrices Ky

x which satisfy (3. 6) will be denoted by
Then ίfμq <z Λf and ftκ ^ Zl(d2). Since \U, δl] = δϊ we get

[2]. m, βL2]] =
which proves that any 1-submatrix of fi)t2] is a zero matrix.

In the case of 1 € C 2 we find from (3. 4 ) that

4) This is also obtained from [1] (30) directly.
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K\Vh.H = 0 whenever K\ = 0.

Hence the 2-submatrix of the matrix V is a scalar matrix.
1

3.2. Next we prove that when the base S of Rn is chosen suitably the
k

2-submatrices of matrices V become scalar matrices. Since these are a zero
z

matrix except the case of dx = 1,1 € C 2, we consider this case only. We first
prove the next lemma where indices are used as follows

K, λ, μ, v = 1, , n,

h,i,j,k=l9 , dl9

x,y,z~~ dx + 1, , n,

%,%>V,Tr,p9a,T™ dx + 1, , dx + d29

<P,XΛ^ dx + d2 + 1, , n.

LEMMA 2. Assume that a (d2)
2 — 1 dimensional linear space S spanned

p

by a set of (d2)
2 matrices K such that

(3. 7)

K"j = 0,
it

P
js"\i 5>y £p /%y j σ / r \ ί-p

Λ ,x — On Oχ — \Oσ Oχ/a2) O-ny
It

σ

/s α faithful representation of a linear Lie algebra. Then there are numbers
ak.x such that

(3.8) Xϊτ=δSα?τ-<i1δ?A.

Moreover we have

(3. 9) k*.φ = 0.
Ίt

This lemma and the corollary can be obtained as a special case of WeyΓs
theorem. But the following proof will not be superfluous for our purpose.

PROOF. We immediately get S ~ §ί(J2) by virtue of (3. 7) and dim S = (d2)
2

- 1. Then we get [S, S] = S, which proves (3. 9). Now we obtain from (3. 7)
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£ P £ p p £

•η it η it it η

ΎfΊc jvp E^ jfc £•£ _____/Si P T^^'
AV. 7f όχ xSk . 7j O j ~*~ lOjΛ. .7-
η -Λ U2 V

η it η it it η

= &k<T - δik' r.
η it

The latter formulas show that

[k, k] = slk
η it η

from which we get

η it

Putting p = 7r and summing we get

hence

Kfc

τ - 0.
σ

Putting £ = 7r and summing and making use of the formula just obtained we
get

P σ P

d2K.r=K.σSτ — K .η,
η η T

which we write as follows

p p σ

It T It

Then putting

we get (3. 8) immediately.
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COROLLARY. Under the assumption made in Lemma 2 consider a

transformation S = AS such that

(3. 10) Aλ

μ = Sκ

μ + δϊblaδ*

where

(3. 11) # σ = -d2a
ί.σ.

Then S = A'1 2 A is spanned by (d2)
2 matrices such that

{A-*%K*¥ A
v.μ = Si Sμ - (Si Sl/d2)K.

PROOF. The first member of this equality becomes

P

If we put μ = j, this becomes zero. If we put λ = y, μ = x, we get Kv.x.
It

For λ = k, μ = φ and also for λ = k, μ = T this becomes zero since we have

(3.11).

3.3. Now βί2] satisfies the same condition as assumed to be satisfied by 8

in Lemma 2. Hence according to the Corollary we can choose another base

S = AS of Rn in such a way that we get

Kk

e = 0 whenever Ke A" 1 β^ A.

When we prove that such a base 5 is obtained among the bases of order 55),

and when we use this base as the base' S from the beginning, we get by

virtue of (3.4')

K \ V \ =• 0 whenever K\ = 0.
z

Then we get the

LEMMA 3. A base S of order 5 can be chosen in such a way that the

2-submatrices of all matrices of S3 are scalar matrices.

PROOF. Suppose that S is an arbitrary base of order 5. In order to obtain

5) Since d series is not uniquely determined by 9, a base of order 5 may have no con-
nection with another base of order 5. But we do not consider for the present a trans-
formation between such bases. See the following proof of Lemma 3.
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a base S! = AS such that JK?* Ξ= [A^KA]*, = 0 for all matrices K of ffi[2], we
need only to put

As we are considering only the case of dx = 1, 1 € C 2, this can be written
as follows

Now what we must show is that S is a base of order 5.6) We have 23 = 23

(g? S) - A"1 23 A and its subspaces A"1 33τΆ, A" 1 33r A which we shall write

as 23r, 33y. But it is easy to see that 33r, 23r can play the same role in 35 as

23r, 33r respectively do in S3. This is clear indeed with respect to S3ί and 33T,

33Γ such that 2 ^ T ^ P + 1, for their second, , nth rows as well as the
first columns remain intact. Consider A" 1 23x A. The matrix A" 1 V A has quite

1

similar form with V and plays the same part in 33 x as V does in 331 The
1 1

matrix

A'τVA + Si"bhA-1VA
Z 1

1 1

has quite similar form with V and plays the same part in 33x as V does in
2 Z

331? though of course their 2-submatrices are not the same. Hence S is a base
of order 5. This proves Lemma 3.

3.4. Consider a subspace of ίffi spanned by matrices K such that

Kκ

μ = 0

for λ — n — nx + 1, , n μ = 1, , n — nl9

(3. 12)

λ = n — nτ f 1, , w μ ~ n — nT-\ 4- 1,

and call it Kir. A matrix K of Sί̂  is obtained by taking a matrix K ΊXl£ of degree

«τ- such that

(3. 13) K\τ Vx%τ = 0 (V € 33*)

6) The set of matrices /C^A^iCA where X ς ^ z j can play the same role as Φ12] only when
this is shown.
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for all matrices V of 33£ and by determining successively other elements with
the use of formulas (39)Γ or (40)Γ, (39)r-i or (40)Γ-i, , (39)x or (40)χ of

[1]. The linear space spanned by the matrices KvTXj, satisfying (3. 13) was de-

noted by &{Tj. This is a linear Lie algebra homomorphic with ffir,

(3. 14) ®r~$(7»).

A homomorphic mapping fh is obtained by taking from each matrix of ίftΓ its
tt7.-submatrix and is denoted by f,t(nr). Its inverse is obtained from formulas
(39)* (40)* , (39),, (40X of [1].

Let us assume that the 1-submatrix, , the T-submatrix are scalar ma-
trices in each matrix V of S3. Then it is clear that the kernel ^τ of (3.14)
contains $,S] for each S such that 1 <̂  S <Ξ T, where BίS\ is the linear space
spanned by the matrices K satisfying

{ύ. ΪOJs Λ . ι s —- U, JS..μ — O/cs A . j s Oμ. .

This is correct because, if (3. 15)^ is satisfied, we have

Kks

Js V \ = 0 whenever V € 33.

Moreover we can write

where ^'τ is a space such that the 1-subrπatrix, , the T-submatrix of each
matrix of ^'T are all scalar matrices and that at least one of the T submatrices
mentioned above is not a zero matrix for each non zero matrix of $>r

The latter property of tyΓ is obtained since ξjr is the inverse image of the
zero matrix of ®{T) (See [1] (39) and (40).)

Consider a matrix ίΓ μ̂ where the TZr-submatrix K fx, is a matrix of 5$(r)

and other elements are determined successively from

(3. 17), K*ΐ)r = 0, K\ = 0, KVr, = 0 (when T € C 1)

or

dτ

.y

(3. I7')r y

KΊ
Vγ

(when T € C 2)

jr

7) This is equal tυ zero unless dτ — \.
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and (3. 17)Γ-i or (3.17')r-i, , (3.17)t or (3. 17'X The set of all such matrices
will be denoted by $?. This is a linear space and Sΐτ is spanned by $? and
$ Γ . Any matrix of [$?, S?] is a matrix of ffiΓ and its ,5-submatrix is a zero
matrix for every S, 1 <^ S S. T. Hence [ίSf, β?] cf i f- f ftr. We show that

Suppose that a matrix X has S- sub matrices which are zero matrices for
1 ^ S ^ T and that K = K' -V K" where X' € 3* and X" € flf. Let S' be a
number such that the /S'-submatrix of K is a zero matrix when S < 5 5S T
and the 5-submatrix of K is not a zero matrix. Then the same is true for
the matrix K". From the property of ^τ such a number S' must belong to
C 1. But then (3.17)5' must be used and we find that the *S'-submatrix of K'
is a zero matrix. Hence such a number S' can not exist and we get K' = 0.
This proves [ί£f, ®f] <z JBf.

Thus, Sΐf is a linear Lie algebra. Moreover, since [®f, ^ r ] Cl £yr and the
5-submatrices of the left hand member are zero matrices for 1 ̂  S ^ T, we
get

We also find that the decomposition $τ = ft# + ^τ has the following property

where ~ means isomorphism of Lie algebras.
An isomorphic mapping of KJί onto K?(2.) is obtained by restricting fh{nt)

and iŝ  denoted by fi{nτ) Its inverse is obtained from (3. 17), (3. 17').

Considering the decompositioiϊ33y = S5r+i. + S5(r+υ w e c a n t a k e as a matrix

K τ.Xτ of S)(7τ) an arbitrary matrix such that

^Γr1,Γ+1 =? o, κ*τ+\ = o,
(3. 19)

A subspace of Kϊy spanned by those matrices which are obtained from K'τ.Xτ

satisfying (3. 19) with the use of (3. 17), (3. 17') will be denoted by β Γ+i].
Then we get

because of (3. 18), hence

This shows that all iS-submatrices of β [ r + 1 ] are zero matrices for 1 <J S <̂  T.
We can apply Lemma 2 and the Corollary to the /zr_rsubmatrices of RLπ if
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and find that, if the base S of Rn is changed to S = AS where

Λ.μ — bμ. + 0/Γ £ .J;p + 1 Oμ

and where the coefficients are taken suitably, then the only non zero elements

of the 72r-i-submatrices of A~1$[T+i]A are the elements K τ*1jτ+1 which satisfy

Kτ+.liτ+ι = 0. Then we can apply Lemma 2 and the Corollary again to the

zr-2-submatrices of such A'1 &[T+\]A and so on. We thus find at last that there

is a matrix

(3. 20)

such that the only non zero elements of A~1$[T+i]A are the elements

Kkτ+.\iτ+ι which satisfy Kτ+\+1 = 0.

The coefficients in (3. 20) must be chosen suitably, but, as the elements

K fgs of ffiLr+1] are zero unless ds — 1 and S € C 2,8) (3. 20) have the form

Aλ = δλ 4- Σ* δ* Λ5 δ f r + 1

where Σ* means summation over *S such that 1 ^ 5 ^ T, ds — 1> S € C2
simultaneously. Hence (3. 20) is obtained by making a product of the matrices

(3. 21) Aλ

μ ~ S^ -h δϊsb'fjτ+1 S,1Γ+1

(l ^ s <; 7\ ^ = l, 5 € c 2).

We must only show that, if S is a base of order 5, then S = AS is also
s

a base of order 5. This is easily done by examining the properties of 3§r—.A"1

33X A, ,S3Γ = A"x33r A, straightforwardly. Again, all matrices V=A'1

s s s s
VA of 3} have 1-submatrices, , T-submatrices which are all scalar matrices.

s

All these are true when A is replaced by A.
s

The result obtained can be summed up as follows.

If we assume that S is a base of order 5 such that all matrices of 33 —

33(9,5) have 1-submatrices, , T-submatrices which are all scalar matrices,

then we can change the choice of S in such a way that the matrices K of

have the form

8) See (3.17), (3.170-
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A . iτ+ι = U,

leaving other properties intact.
Then consider again (3.17)^ and (3.17% where 1 ^ S <Ξ T. Since these

must be satisfied by the matrices of B[T+rj9 we get, if S € C 2,

s

A r i

We thus find that the (T + l)-submatrices of S51? , SSr are scalar matrices.
As the (T -f l)-submatrices of S5y are of course scalar matrices, this shows
that the (T + l)-submatrices of ^ are scalar matrices. This proves the follow-
ing

THEOREM 2. The base S of Rn of order 5 can be chosen in such a
way that the 1-sub matrices, , (P + 1)-sub matrices of all matrices V of
25 are scalar matrices.

Such a base S is called a base of order 6 and will be used constantly
hereafter. Thus we obtain the next

THEOREM 3. ffi satisfies £ ^ C ft, where fil^ is determined by (3.15)*
/o r e^ry 5, 1 <; 5 ^ P + 1.

Of course Sl\5J is significant only when ds •> 2. We get again the

COROLLARY. .AS Λ linear space B is decomposed into the direct sum

where the S-submatrices of all matrices of (β — are scalar matrices.

4. The operator [T]. Hereafter we shall consider only T"s such that
dr ^ 2. When T is fixed dτ will be denoted by d for simplicity.

Now we can take a matrix K of fi\7.. such that its T-submatrix has the
form

(4. 1) (a)

0 1 0

0 0 0

0 0 0

I 0 0 0

0

0

0

0)

or (b)

0 0 0

1 0 0

0 0 0

o o o oΛ
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Let V be a matrix of 25 and Kl9 K2 be matrices of St[τ] with T-submatrices

(4.1 a), (4. 1 b) respectively. Then V = [K2, [Kl9 V]] is a matrix of S3 such

that the second row in the rows of T and the first column in the columns

of T respectively are the same in V and V'9 with the exception of the elements

in the T-submatrix, which is a zero matrix in V' since the T-submatrix of V

is a scalar matrix. Moreover, all other elements of V' are zero. This matrix

will be denoted by [T]]2 V.

More generally, when M is a matrix of degree n, [T]!2 M means a matrix

such that the second row of T and the first column of T respectively are the

same in M and [Tf. i M with the exception of the elements of the T-submatrix

which is a zero matrix in [Tj^M, and moreover such that all other elements

of [T]1* M are zero. Operators such as [Tf. i are defined similarly. Then, if we

put

(4. 2) [T] = m, + [T]:3 + + [T]":\, + [Tft,

we get

(4. 3) [TJF6.S5, ( 1 - [ T ] ) V € »

for the matrices V of S3. [T] V is a matrix obtained from V by replacing all
elements by zeroes except those elements which are in rows of T or in columns
of T but not in the T-submatrix and consequently are left intact. (1 — [T]) V

is a matrix obtained from V by replacing the elements in rows of T and
columns of T but not in the T-submatrix by zeroes and leaving other elements
intact.

5. Linear spaces 2'τ, 2"7', 9Jίr. Let us study the matrices [T] V more in

detail.

We use indices in this section as follows

A, i9 j, k, I, m € /(T).

Then the matrix defined by

(5.1) ψ, = 8)B'A (i + i)

belongs to $ιτι. Let V be a matrix of SS and consider the matrix

(5. 2) [K, [K, VJ] € 25 (ί * j, k =f= Λ),

where the elements are

(5.3) K (8) v.μ - n δ;) - (δ) F!ft - n si) si.

As Fίft re δl, the elements (5. 3) are equal to zero when either λ, μ € I(T) or
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\ P ^ I(T). On the other hand we have

where λ', μ are indices not belonging to /(T). If i = h and j =f= k9 the matrix
(5,2) has elements all of which are equal to zero except those in the k th
column, which are V)j — v h) where V\5 = v δj. If i 4= h and ^ = A, the matrix
(5. 2) has elements all of which are equal to zero except those in the h th row,
which are Vtμ — v δμ. But, as we have assumed i 4=.; and k 4= /*, such mat-
rices can not exist unless dτ > 3. When dτ ~ 2, i ~ h induces j = £. Then
the elements of the matrix (5. 2) are equal to zero except those in the i th row
and those in the ^'th column, the jth. column being Vx.j — v δ) and the i th
row being Vι.μ — v Sμ.

Thus, if dτ ^ 3, we obtain a set of matrices of S3 such that in each matrix
V of the set either all rows are composed of O's except one or all columns
are so except one. But, if dr = 2, we obtain a set of matrices of S3 such that
in each matrix V' the elements are zeroes except those which are in one row
and those which are in one column. In both cases such exceptional rows and
columns are only rows and columns of T, and besides, the T-submatrix is a
zero matrix in each matrix V. Moreover it is important to notice that, if V
is a matrix of S3 and dτ 2ϊ 3, we obtain a matrix V by replacing all rows
by zero rows except some one among the rows of T and leaving intact those
elements of this row which are not in the T-submatrix. This holds good if we
replace "row" by "column". If dτ — 2, such proposition must be naturally
changed as it is clear from the above explanation. We get only [T^.2 V and
[Ί'7, V.

The matrix [K, V ] where w ψ / is a matrix such that its /th row is the
I

same with the m th row of V' and such that its m th column is the same
with the /th column of V but bears opposite sign.

Hence, if ^ > 3, a matrix obtained by shifting the non zero row or
column of V' within the rows or columns of T is also a matrix of S3. If
dτ = 2, a matrix obtained from V' by permuting the rows of T and per-
muting the columns of T with change of sign simultaneously is also a
matrix of S3.

Thus we obtain following lemmas.

LEMMA 4 Γ . Suppose dτ ^ 3 for the value of T under consideration, and
take the first column of T in every V € S3, replacing all elements in the
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T-submatrix by zeroes. The linear space spanned by the column vectors thus

obtained is denoted by 2'τ. Then, if vτ | λ is an arbitrary vector of S>'τ, the

matrix V where

is a matrix of 95. Similarly we obtain a linear space 2T such that, if uτ\μ

is an arbitrary vector of 2T, then the matrix V where

is a matrix of 95. Moreover, for any matrix V of 95, [T]V is a linear

combination of matrices such as are given by (5. 4), (5. 5).

LEMMA 5T> Suppose dτ — 2 for the value of T under consideration,

and take the first column of T and the second row of T in every V € 95,
replacing all elements in the T-submatrix by zeroes. The column vector and
the row vector thus obtained are arranged to form a vector (vτ\

κ, uτ\μ)

with formally 2 n components The linear space spanned by such vectors is

denoted by 9J?τ. Then, if (vτ\
κ, uτ\μ) € 9J?r, the matrices

(5. 6) vτ\
k8ΐ + Shuτ\μ

(5. 7) -vτ\
λ% + Sk>uτ\μ

(ϊ = dx + + dτ-i + 1, 2' = dx + + dτ-i +2)

belong to 35. Moreover, for any matrix V of 95, [T]V is a linear combina-

tion of matrices such as (5. 6), (5. 7).

REMARK TO LEMMA 4. We can take any one column (row) of T instead

of the first column (row).

REMARK TO LEMMA 5. We can take the second column and the first

row instead of the first column and the second row. Only the sign of either the

column vector or the row vector must be changed then to obtain a vector of Wτ.

Γ S 1
6. \j, -submatrices of 95. Hereafter indices such as a, b, take only

numbers belonging to no one of 7(T)'s such that dτ ^ 2. This fact will be

denoted by a, b, € I(R). On the other hand indices such as S, T, U will

take only numbers such that ds,dτ, du^.2 unless otherwise specified. (S[}T)

submatrix is the matrix of degree ds + dτ that is the crossing of the rows of
Γ51

S and T with the columns of S and T, while ™ -submatrix is the crossing

of the rows of S with the columns of T. Hence for example the non zero

[ S~]
rp -submatrix and elements of
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the ς, -submatrix. A row (column) of R is a row (column) which is not a

rp -submatrix

will be understood similarly. When al] numbers T(dτ^2) are arranged as

follows Tx < < TQy the set of all rows of R will be divided into Q -f 1

components Rl9 , RQ+ι some of which may be vacuous/0 Submatrices such

as jj -submatrix will also be understood.

L^J
Now suppose dr ^ 3 for fixed T, and consider a matrix of 35 as given by

(5.4), that is,

(6. 1) Vϊμ = vτ\
λδί (VT Iλ € Si, z € /(T)).

Let Λ € 7(5). Then, as the h th row vector is ^ y | Λ ' δ ^ where μ indicates in-

dividual components, we get δ^ € S s as long as vτ \lι =t= 0. This shows the

following fact. If Z'τ contains a vector vτ \λ such that for some value of h

belonging to I(S) the component vτ\
h is not equal to zero, then δμ € SλS. We

thus obtain

(6. 2) K hι, € S5 (A € 7(5), i € 7(T)).

Furthermore, once we get (6.2) for some value of h in I{S) and for some
value of i in 7(T), this holds good for all A € 7(5) and all ί € 7(T). This is
obtained from the italicized sentense just before Lemma 4. Moreover this is
true even if ds — 2 as the columns of the matrix (6. 1) are composed of 0's
except the i th column.

We cannot obtain (β. 2) only when vτ \"' = 0 for all vτ\
λ € 2',. and for

all h € 7(5). Hence from the definition of £'τ we find that

If dτ ^ 3 and ds £^ 2, then (6. 2) holds good, or else we have

(6. 3) Vhi = 0 for all V e 25, ί € 7(T), A G 7(5).

Γ51This fact will be also expressed as follows, the rp region of 95 is all or

none.

Similarly we find from (5. 5) that the c region of 25 is also all or none
L& J

if dτ ^ 3 and ds ^ 2.

On the other hand, when S < T, the matrix V where the elements are

shown by (6.2) is, if it exists, a matrix of S5(p|i), so that it must satisfy

(l. l)s, which contradicts (6. 2). Thus we find that, if S <C T, we must get

9) For example, if T,[)Tj, then Rt+ι, , Rj are vacuous.
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(6.3). But, if S > Ί\ (6. 3) fails to hold on account of some matrices of 3Sr.
Hence we must get (6. 2) then. Thus we find that, if ds ̂  2 and dτ ^ 3, the

rp region of S3 is none or all according as S < T or S > T respectively.

We get a similar result when we start from (5. 5).
Gathering the results we can say as follows.

In case ds ^ 2 and dr 2^ 3 and also in case ds 2^ 3 and dτ 2> 2, the LjJ

region of S3 is all if S > T and none if S < T.
Next let us assume <£$ — dτ~ 2 for the given 5 and T and study the

[ c i r >TPΊ

^ -submatrix and the c -submatrix then. For the present we
use indices as follows.

p,p €

q, q € 7(T), q =f= #',

^ = P — dx — — ds-u q' = q~ dx — — dτ-u

Then, if (vτ\
λ, uτ\μ) is a vector of M'τ, the matrix

(β 4) V^ = vτ\
κSl + ( - 1)Q// δj, « Γ | μ

belongs to S3 by virtue of Lemma 5. Hence, considering the p th column and
the p th row of this matrix, we get

(β. 5) ((- iγ"si- uτ\PA- ιT vτ\p'K) € mi

When p is given, we can take a vector (vτ\
κ, uτ\μ) of WT in such a way that

Γ S1at least one of vτ\
v> and uΓ\» is not zero, unless the rp -submatrix and the

ς -submatrix are both zero matrices for every matrix of 33. Assume for

example S > T. Then some matrices of S3Γ have rp -submatrices that are not

zero matrices. Hence it is immediately ascertained that for any given p € I(S)
there is a vector (vτ\

κ, uτ\μ) of Sΰΐτ such that vτ\
p' = 1. On the other hand

we can apply Lemma 5# with respect to the vector (β. 5) and obain

((- ιTK'Uτ\^K + (- iΓ'SM(- ιTvτ\p'hi) e 23.

Hence, if we put vτ \
v' = 1 and uτ \ p = tp, we get

( - IT K> tv K 4- K' K € S3.

Again, if we interchange p and p we get
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Then, by virtue of the italicized sentense just before Lemma 4, we find that

we can put tp> — (— 1)*" £ and obtain

(β. 6) Si δj + ( - i)*"+"«" ί 8J, δ£' € 25.

But the matrix (β. 6) belongs to 35r because of the assumption S > T.
Since the base 5 of i?w in use is a base of order 5, the flr-rsubmatrix of any
matrix of 35 T must have special form as stated in § 2. Accordingly we must
have ί = 0 o r ί = l. * = 0 shows that S ΓΪ T, while t = 1 that S Π T. We
immediately find that, if S Γ) T, then ( - !)»"+«" - ( - i)*+ β.

We then obtain the

THEOREM 4. If d8> 2, J Γ ^ 2, S > T, tfrcd moreover 5 (T T,

j . region of S5 Z5 α//, while the ς, region of % is none. If ds—dτ — 2,

S > T tfftό? moreover S Π T,

(6. 7) ^ δ J

(/>,/ € 7(5);

and besides,

(6. 8) Vrα

/or τ̂;βry F € 95.

Proof is needed only for the last enunciation.
According to Lemma 5^, the matrix10)

v\ -
belongs to S5 if V.λ

μ € 35. Then applying Lemma 5S to this matrix V' we find
that the matrix

also belongs to 35. Hence we get

δĵ  yβ:\p. $*; + si vp

Q si e 35

and then

( V ^ ' - C - l)1J+ίZ F!',7) δ^ δ^ € 35

by virtue of (6. 7). If (6. 8) does not hold good for some V in 35, then we
get δj/ SJΓ € 35 and consequently δ; δ^ € 35 which contradicts S Π T.

We also obtain the following

10) The summation convension is not used with respect to p, β', g, ^'.
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COROLLARY. Let S and T be fixed. Then the linear space 23 is spanned
by the following two subspaces. The matrices of one subspace are such that

\ SΛ ΓTΊ

their p Vsubmatrices and ^ Vsubmatrices are zero matrices. The matrices

of the other subspace are such that their elements are zeroes except those of

ΓTΛ Vsubmatrices and those of ^ Vsubmatrices. These matrices are linear

combinations of (6. 7) if S Π T or of (6. 2) ifSΓΪT and S > T.

The space spanned by matrices

\ SΛfor given S and T will be denoted by 23\ ψ\ while the space spanned by the

matrices (6. 7) will be denoted by 93[s,r>

7. Linear spaces %>τ, %τ

9 ffllτ. Let T be a fixed number and let V be a
matrix (5. 4) or (5. 5) if dτ ^ 3, or a matrix (5. 6) or (5. 7) if dτ ~ 2. Applying
all operators 1 — [£*] such that S =f= T upon V we get

(7. 1) jΠ (1 - [5])| V € ».

This calls forth the following notion.

[ RΛrp i-submatrix in any

matrix V of 23. The set of all such vectors is a linear space, which will be
denoted by 2T. Similarly we can define 2T. When dr — 2 we take the first

r τ> I Γ'J1 Ί

column vector of ^ -submatrix and the second row vector of D -submatrix

in any matrix V of S3 and arrange them in this order. The set of all compound
vectors obtained in such a way is a linear space, which will be denoted by SKr.

[ R I
rp -submatrix

are vectors of ZT while all other elements are zeroes is a matrix of 23. A

[ rp "I

β -submatrix are vectors of 3 Γ while

all other elements are zeroes is also a matrix of 23. On the other hand, if

dr = 2, then

as long as (vτ \a, uτ\b) € 90?τ.
Let us denote the spaces spanned by such matrices by

»[
R1 &\τl

τ\' ^ L RJ
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respectively.
The linear space spanned by those matrices of 35 in which non zero

elements are found only in Λ-submatrix and T-submatrices will be denoted by
93<R,2)> Then we get the

THEOREM 5. The linear space S3 is decomposed into the direct sum as
follows

(7. 2) 33 - 2 3 ^ + Σ (» [*] + 33

where X* /s Âe 5MW w/ίA respect to S, T such that S Π T αwJ S > T.
and where Σ+ ί$ ίΛ^ 5«m w/ίA respect to S, T such that S Π T αni 5 > T.

To be continued.
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