A NOTE ON ABSOLUTE CESÀRO SUMMABILITY OF FOURIER SERIES

Kenji Yano

(Received December 2, 1959)

1. Let $f(x)$ be an integrable function in Lebesgue sense, and periodic of period 2π, and let

$$
\begin{aligned}
& f(x) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right), \\
& \sigma_{\mu}^{x}(x)=\frac{1}{2} a_{0}+\sum_{\nu=1}^{n} A_{n-\gamma}^{x}\left(a_{\nu} \cos \nu x+b_{\nu} \sin \nu x\right) / A_{n}^{x}
\end{aligned}
$$

where $\alpha>-1$, and $A_{n}^{\alpha}=\binom{\alpha+n}{n}$.
DEFINITION 1. If $\alpha>-1$, and

$$
\sum_{n=1}^{\infty}\left|\sigma_{n}^{x}(x)-\sigma_{n-1}^{x}(x)\right|<\infty
$$

then the Fourier series of $f(t)$ is said to be absolutely summable (C, α), or briefly summable $|C, \alpha|$ at the point x.

Various theorems concerning the absolute Cesàro summability of Fourier series have been obtained by many authors.

Supposing that $p \geqq 1$ and $f \in L^{p}$, we write

$$
\begin{equation*}
w_{p}(t)=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x+t)-f(x)|^{p} d x\right)^{1 / p} \quad(t>0) \tag{1.1}
\end{equation*}
$$

Recently, Chow [3] has proved that
(I) If $1 \leqq p \leqq 2, f \in L^{p}$, and

$$
\begin{equation*}
\int_{0}^{\pi} \frac{w_{p}(t)}{t} d t<\infty \tag{1.2}
\end{equation*}
$$

then the Fourier series of f is summable $|C, \alpha|$ almost everywhere for $\alpha>1 / p$.
(II) If $1 \leqq p \leqq 2, f \in L^{p}$, and

$$
w_{p}(t)=O\left(\log \frac{1}{t}\right)^{-(1+1 / p+\epsilon)} \quad(t \rightarrow 0)
$$

for some $\varepsilon>0$, then the conclusion in (I) is true for $\alpha=1 / p$.
We can show that the condition (1.2) itself implies the conclusion in (II) when $1<p \leqq 2$, under some additional condition, and to do it is the purpose of this note.

DEFINITION 2. We define $\lambda(x)$ such as
$1^{\circ} \quad \lambda(x)>0$ for all $x \geqq x_{0}>0$,
$2^{\circ} \quad \lambda(x) \uparrow \infty$ as $x \uparrow \infty$,
$3^{\circ} H<\lambda\left(x^{\delta}\right) / \lambda(x) \leqq 1$ for $0<\delta<1$ and $x \geqq x_{0}$, where H is a positive constant depending only on δ.

We may take as $\lambda(x)$, e. g.,

$$
(\log x)^{x},(\log x)^{x} / \log \log x,(\log \log x)^{2}, \ldots \ldots \quad(\alpha>0)
$$

After this definition, we see easily that $\lambda(x)=o\left(x^{\varepsilon}\right)$ as $x \uparrow \infty$, for every $\varepsilon>0$.
Now, the theorem to be proved is as follows:
THEOREM 1. If $1<p \leqq 2, f \in L^{p}$, and for a function $w_{p}^{*}(t) \geqq w_{p}(t)$,

$$
\begin{equation*}
\int_{0}^{\pi} \frac{w_{p}^{*}(t)}{t} d t<\infty, \tag{1.3}
\end{equation*}
$$

then the Fourier series of f is summable $|C, 1 / p|$ almost everywhere, provided that

$$
\left[w_{p}^{*}(1 / x) \log x\right]^{-1}
$$

is a function λ defined by Definition 2.

We have the "allied Fourier series"-analogue, cf. loc. cit. [3].
Corollary 1. The conclusion in Theorem 1 is true, if $1<p \leqq 2$, and for some $\varepsilon>0$,

$$
w_{p}(t)=O\left(\log \frac{1}{t}\right)^{-(1+\epsilon)} \quad(t \rightarrow 0)
$$

2. Proof of Theorem 1. We write for the sake of convenience,

$$
\alpha=1 / p
$$

Employing the identity

$$
\sigma_{n}^{\alpha}(x)-\sigma_{n-1}^{\alpha}(x)=\frac{\alpha}{n}\left[\sigma_{n}^{x-1}(x)-f(x)\right]-\frac{\alpha}{n}\left[\sigma_{n}^{\alpha}(x)-f(x)\right],
$$

in order to prove Theorem 1, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n}\left|\sigma_{n}^{x-1}(x)-f(x)\right|<\infty \tag{2.1}
\end{equation*}
$$

for almost every x, since (2.1) implies, as it may be easily verified, the convergence of $\Sigma n^{-1}\left|\sigma_{n}^{x}(x)-f(x)\right|$.

We have

$$
\begin{equation*}
\sigma_{n}^{\alpha-1}(x)-f(x)=\frac{2}{\pi} \int_{0}^{\pi} \boldsymbol{\varphi}_{x}(t) K_{n}^{\alpha-1}(t) d t, \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{\varphi}_{x}(t)=\frac{1}{2}[f(x+t)+f(x-t)-2 f(x)] \tag{2.3}
\end{equation*}
$$

and $K_{n}^{\alpha-1}(t)$ is the n-th Fejér kernel of order $\alpha-1$. And, as it is well known,

$$
K_{n}^{\alpha-1}(t)=\Lambda_{n}^{\alpha-1}(t)+R_{n}^{\alpha-1}(t),
$$

where

$$
\begin{equation*}
\Lambda_{n}^{\alpha-1}(t)=\frac{\cos (n t+\alpha(t-\pi) / 2)}{A_{n}^{\alpha-1}(2 \sin (t / 2))^{\alpha}} \tag{2.4}
\end{equation*}
$$

$$
\begin{array}{lr}
K_{n}^{\alpha-1}(t)=O(n) & (0 \leqq t \leqq \pi), \\
R_{n}^{\alpha-1}(t)=O\left(1 / n t^{2}\right) & \left(\frac{\pi}{n} \leqq t \leqq \pi\right),
\end{array}
$$

O being uniform in n and t.
(2.2) is written as

$$
\frac{\pi}{2}\left[\sigma_{n}^{x-1}(x)-f(x)\right]
$$

$$
\begin{align*}
= & \int_{0}^{\pi} \boldsymbol{\varphi}_{x}(t) \Lambda_{n}^{x-1}(t) d t+\int_{0}^{\pi / n} \boldsymbol{\varphi}_{x}(t) K_{n}^{\alpha-1}(t) d t \tag{2.7}\\
& \quad-\int_{0}^{\pi / n} \boldsymbol{\varphi}_{x}(t) \Lambda_{n}^{\alpha-1}(t) d t+\int_{\pi \mid n}^{\pi} \boldsymbol{\varphi}_{x}(t) R_{n}^{\alpha-1}(t) d t \\
= & I_{n}(x)+I_{n}^{12}(x)+I_{n}^{(2)}(x)+I_{n}^{(3)}(x) .
\end{align*}
$$

Here, for the proof, supposing that $\left[w_{p}(1 / x) \log x\right]^{-1}$ is a function λ defined by Definition 2, we may use the function $w_{p}(t)$ itself in place of $w_{p}^{*}(t)$, since the conclusion remains unchanged by the assumption $w_{p}^{*}(t) \geqq w_{p}(t)$. Besides, then,

$$
\left[w_{p}(1 / x)\right]^{-1}=\left[w_{p}(1 / x) \log x\right]^{-1} \log x
$$

is also a function λ, and the condition (1.3) replaced w_{p}^{*} by w_{p}, i. e.,

$$
\begin{equation*}
\int_{0}^{\pi} \frac{w_{p}(t)}{t} d t<\infty \tag{2.8}
\end{equation*}
$$

is equivalent to
(2. 8)'

$$
\sum_{n=1}^{\infty} \frac{1}{n} w_{p}\left(\frac{1}{n}\right)<\infty
$$

In these circumstances, by (2.3) and (2.5) we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n} & \int_{0}^{2 \pi}\left|I_{n}^{(1)}(x)\right| d x=O\left(\sum_{n=1}^{\infty} \int_{0}^{\pi / n} d t \int_{0}^{2 \pi}\left|\varphi_{x}(t)\right| d x\right) \\
& =O\left(\sum_{n=1}^{\infty} \int_{0}^{\pi / n} w_{p}(t) d t\right)=O\left(\int_{0}^{\pi} \frac{d u}{u^{2}} \int_{0}^{u} w_{p}(t) d t\right) \\
& =O\left(\int_{0}^{\pi} w_{p}(t) d t \int_{t}^{\pi} \frac{d u}{u^{2}}\right)=O\left(\int_{0}^{\pi} \frac{w_{p}(t)}{t} d t\right)
\end{aligned}
$$

which is finite by (2. 8). Similarly, by (2. 4),

$$
\sum_{n=1}^{\infty} \frac{1}{n} \int_{0}^{2 \pi}\left|I_{n}^{\left(I^{2}\right)}(x)\right| d x=O\left(\int_{0}^{\pi} \frac{w_{p}(t)}{t} d t\right)<\infty
$$

Next, by (2. 6),

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n} & \int_{0}^{2 \pi}\left|I_{n}^{33}(x)\right| d x=O\left(\sum_{n=1}^{\infty} \frac{1}{n^{2}} \int_{\pi, n}^{\pi} \frac{d t}{t^{2}} \int_{0}^{2 \pi}\left|\boldsymbol{\varphi}_{x}(t)\right| d x\right) \\
& =O\left(\sum_{n=1}^{\infty} \frac{1}{n^{2}} \int_{\pi \mid n}^{\pi} \frac{w_{p}(t)}{t^{2}} d t\right)=O\left(\int_{0}^{\pi} d u \int_{u}^{\pi} \frac{w_{p}(t)}{t^{2}} d t\right) \\
& =O\left(\int_{0}^{\pi} \frac{w_{p}(t)}{t^{2}} d t \int_{0}^{t} d u\right)=O\left(\int_{0}^{\pi} \frac{w_{p}(t)}{t} d t\right)<\infty
\end{aligned}
$$

Further, by (2. 4),

$$
\sum_{n=1}^{\infty} \frac{1}{n} \int_{0}^{2 \pi}\left|I_{n}(x)\right| d x \leqq \sum_{n=1}^{\infty} \frac{1}{\alpha n^{\alpha}} \int_{0}^{2 \pi}\left|\int_{0}^{\pi} \frac{\varphi_{x}(t) e^{t\left(n t+\alpha(t-\pi)^{2}\right)}}{(2 \sin (t / 2))^{\alpha}} d t\right| d x
$$

Hence, letting

$$
\rho_{n}(x)=\left|\frac{2}{\pi} \int_{0}^{\pi} G_{x}(t) e^{i n t} d t\right|
$$

where

$$
G_{x}(t)=\frac{\varphi_{x}(t)}{|2 \sin (t / 2)|^{a}} \quad(0<|t| \leqq \pi)
$$

the proof is, by 2.1) and (2.7), completed if it be shown that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \int_{0}^{2 \pi} \rho_{n}(x) d x<\infty, \tag{2.9}
\end{equation*}
$$

since the conclusion is unchanged using $\varphi_{x}(t)$ in place of $\boldsymbol{\varphi}_{x}(t) e^{i \alpha(t-\pi) / 2}$.
Supposing that $G_{x}(t)$ considered as a function of t is periodic of period 2π, we have, since $\alpha=1 / p$,

$$
\int_{0}^{2 \pi} d x \int_{0}^{2 \pi}\left|G_{x}(t)\right|^{p} d t=O\left(\int_{0}^{\pi} \frac{\left[w_{p}(t)\right]^{p}}{t} d t\right)<\infty
$$

which implies $G_{x}(t) \in L^{p}$ in $0 \leqq t \leqq 2 \pi$, for almost every x. So, in view of $1<p \leqq 2$, by a Paley's theorem, cf. Zygmund [5, p. 203], we see that, for almost every x,

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|\rho_{n}(x) \sin \frac{1}{2} n h\right|^{p} n^{p-2} \leqq A_{p} \int_{0}^{2 \pi}\left|G_{x}(t)-G_{x}(t+h)\right|^{p} d t \tag{2.10}
\end{equation*}
$$

where A_{p} is a constant depending only on p. And, it is seen with no difficulty that, for $0<t \leqq \pi$,

$$
G_{x}(t)-G_{x}(t+h)=\frac{\varphi_{x}(t)-\varphi_{x}(t+h)}{\left(2 \sin 2^{-1}(t+h)\right)^{\alpha}}+\varphi_{x}(t) \cdot O\left(\frac{h}{t^{\alpha}(t+h)}\right),
$$

where O is independent of x, t and h. Hence, neglecting the constant factors, and since $\alpha=1 / p$,

$$
\begin{aligned}
& \int_{0}^{2 \pi} d x \int_{0}^{\pi}\left|G_{x}(t)-G_{x}(t+h)\right|^{p} d t \\
& \quad<\int_{0}^{\pi} \frac{d t}{t+h} \int_{0}^{2 \pi}\left|\boldsymbol{\varphi}_{x}(t)-\boldsymbol{\varphi}_{x}(t+h)\right|^{p} d x+h^{p} \int_{0}^{\pi} \frac{d t}{t(t+h)^{p}} \int_{0}^{2 \pi}\left|\boldsymbol{\varphi}_{x}(t)\right|^{p} d x \\
& \quad<\int_{0}^{\pi} \frac{\left[w_{p}(h)\right]^{p} d t}{t+h}+h^{p} \int_{0}^{\pi} \frac{\left[w_{p}(t)\right]^{p} d t}{t(t+h)^{p}} .
\end{aligned}
$$

It is analogous to $\int_{0}^{2 \pi} d x \int_{\pi}^{2 \pi}\left|G_{x}(t)-G_{x}(t+h)\right|^{p} d t$.
Integrating both sides of (2.10) with respect to x over ($0,2 \pi$), and again neglecting the constant factor and the term $O\left(h^{p}\right)$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|\sin \frac{1}{2} n h\right|^{p} \int_{0}^{2 \pi} \frac{\left[\rho_{n}(x)\right]^{p} d x}{n^{2-p}}<\left[w_{p}(h)\right]^{p} \log \frac{\pi}{h}+h^{p} \int_{0}^{1} \frac{\left[w_{p}(t)\right]^{p} d t}{t(t+h)^{\nu}} . \tag{2.11}
\end{equation*}
$$

By the assumption,

$$
\begin{equation*}
\lambda\left(\frac{1}{h}\right)=\left[w_{p}(h) \log \frac{\pi}{h}\right]^{-(p-1)} \tag{2.12}
\end{equation*}
$$

is a function λ defined by Definition 2. Multiplying both sides of (2.11) by

$$
\frac{\lambda(1 / h)}{h[\log (\pi / h)]^{2-\nu}}=\frac{1}{h\left[w_{p}(h)\right]^{\nu-1} \log (\pi / h)},
$$

and then integrating them with respect to h over $(0,1)$, we obtain

$$
\begin{align*}
& \sum_{n=1}^{\infty} \int_{0}^{1} \frac{\lambda(1 / h)|\sin (n h / 2)|^{p} d h}{h[\log (\pi / h)]^{2-p}} \int_{0}^{2 \pi} \frac{\left[\rho_{n}(x)\right]^{p} d x}{n^{2-p}} \tag{2.13}\\
& \quad<\int_{0}^{1} \frac{w_{p}(h)}{h} d h+\int_{0}^{1} \frac{h^{p-1} \lambda(1 / h) d h}{[\log (\pi / h)]^{2-p}} \int_{0}^{1} \frac{\left[w_{p}(t)\right]^{p} d t}{t(t+h)^{\nu}}=J_{1}+J_{2}
\end{align*}
$$

J_{1} is clearly finite by (2.8). And

$$
J_{2}=\int_{0}^{1} \frac{\left[w_{p}(t)\right]^{p}}{t} d t\left(\int_{0}^{t^{2}}+\int_{t^{2}}^{1}\right) \frac{h^{p-1} \lambda(1 / h) d h}{(t+h)^{p}[\log (\pi / 2)]^{2-p}}=J_{2}^{(1)}+J_{2}^{(2)}
$$

As it is noticed before, $\lambda(x)=o\left(x^{c}\right)$ as $x \rightarrow \infty$ for every $\varepsilon>0$. So, taking ε $=1 / 2$, and observing that $1<p \leqq 2$.

$$
\begin{aligned}
J_{2}^{(1)} & <\int_{0}^{1} \frac{\left[w_{p}(t)\right]^{p}}{t} d t \int_{0}^{t^{2}} \frac{h^{p-1-1 / 2}}{(t+h)^{p}} d h \\
& <\int_{0}^{1} \frac{\left[w_{p}(t)\right]^{p}}{t^{p+1}}\left(t^{2}\right)^{p-1 / 2} d t \\
& =\int_{0}^{1} \frac{\left[w_{p}(t)\right]^{p}}{t^{2-p}} d t=O\left(\int_{0}^{1} \frac{w_{p}(t)}{t} d t\right)<\infty .
\end{aligned}
$$

Further, taking into account the property of the function λ, and $p>1$,

$$
\begin{align*}
J_{z^{(2)}} & <\int_{0}^{1} \frac{\left[w_{n}(t)\right]^{p}}{t} d t \int_{t^{2}}^{1} \frac{\lambda(1 / h) d h}{h[\log (\pi / h)]^{2-p}} \\
& <\int_{0}^{1} \frac{\left[w_{p}(t)\right]^{p}}{t} \lambda\left(\frac{1}{t^{2}}\right) d t \int_{t^{2}}^{1} \frac{d h}{h[\log (\pi / h)]^{2-p}} \\
& =O\left(\int_{0}^{1} \frac{\left[w_{p}(t)\right]^{p}}{t} \lambda\left(\frac{1}{t}\right)\left(\log \frac{\pi}{t}\right)^{p-1} d t\right) \\
& =O\left(\int_{0}^{1} \frac{w_{p}(t)}{t} d t\right) \tag{2.12}
\end{align*}
$$

which is finite by (2.8). On the other hand, the coefficient of $\int_{0}^{2 \pi}\left[\rho_{n}(x)\right]^{p} n^{p-2} d x$ in the first member of (2.13) is, since $p \leqq 2$ and $|\sin (n h / 2)|^{p} \geqq|\sin (n h / 2)|^{2}$,

$$
\begin{align*}
\int_{0}^{1} & \frac{\lambda(1 / h)|\sin (n h / 2)|^{p} d h}{h[\log (\pi / h)]^{2-p}}>\int_{1 / n}^{1 / \sqrt{n}} \\
& >\frac{\lambda(\sqrt{n})}{[\log (n \pi)]^{2-p}} \int_{1 / n}^{1 / \sqrt{n}} \frac{1-\cos n h}{2 h} d h \\
& >\frac{\lambda(\sqrt{n})}{[\log (n \pi)]^{2-p}}\left(\frac{1}{4} \log n-1\right) \\
& >K \lambda(n)[\log (n \pi)]^{p-1}=\frac{K}{\left[w_{p}(1 / n)\right]^{p-1}} \tag{2.12}
\end{align*}
$$

for $n \geqq n_{0}$, where K is a positive constant independent of n. Thus, observing that J_{1} and J_{2} are finite we see, from (2.13),

$$
\begin{equation*}
\sum_{n=1}^{\infty} \int_{0}^{2 \pi} \frac{\left[\rho_{n}(x)\right]^{p} n^{p-2}}{\left[w_{p}(1 / n)\right]^{p-1}} d x<\infty \tag{2.14}
\end{equation*}
$$

Letting $q=p /(p-1)$, we now obtain by Hölder's inequality,

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{1}{n^{1 / p}} \int^{2 \pi} \rho_{n}(x) d x=\sum_{n=1}^{\infty}\left(\frac{w_{p}(1 / n)}{n}\right)^{1 / q} \int_{0}^{2 \pi}\left(\frac{\left[\rho_{n}(x)\right]^{p} n^{p-2}}{\left[w_{p}(1 / n)\right]^{p-1}}\right)^{1 / p} d x \\
\leqq\left(2 \pi \sum_{n=1}^{\infty} \frac{w_{p}(1 / n)}{n}\right)^{1 / Q}\left(\sum_{n=1}^{\infty} \int_{0}^{2 \pi} \frac{\left[\rho_{n}(x)\right]^{p} n^{p-2}}{\left[w_{p}(1 / n)\right]^{p-1}} d x\right)^{1 / p}
\end{gathered}
$$

which is finite by (2.8) and (2. 14), and we get (2.9). This completes the proof.
3. REMARK 1. Using the notations in $\S 1$, and applying the argument employed in the preceding proof to the Parseval's equation

$$
\left[w_{2}(t)\right]^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}[f(x+t)-f(x)]^{2} d x=2 \sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)\left(\sin \frac{1}{2} n t\right)^{2}
$$

where $f \in L^{2}$, we see that one of the two expressions

$$
\int_{0}^{1} \frac{1}{t} \lambda\left(\frac{1}{t}\right)\left[w_{2}(t)\right]^{2} d t
$$

and

$$
\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right) \lambda(n) \log n
$$

converges, then the other does.
Hence, if $f(x)$ satisfies the condition

$$
\begin{equation*}
w_{2}(t)=O\left(\log \frac{1}{t}\right)^{-(a+\epsilon)}\left(a \geqq \frac{1}{2}, \varepsilon>0\right), \tag{3.1}
\end{equation*}
$$

then, taking $\lambda(1 / t)=(\log (1 / t))^{2 \alpha-1+e}$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)(\log n)^{2 a+e}<\infty \tag{3.2}
\end{equation*}
$$

In particular, we see that by a theorem of Wang [1], also cf. Tsuchikura [2], the condition (3.2) and so (3.1) implies the summability $|C, \alpha|$, a. e., of the Fourier series of f for $\alpha>1 / 2$, or $\alpha=1 / 2$, according as $a=1 / 2$ or $a=1$. Thus, Corollary 1 stated in $\S 1$ is a result from the Wang's theorem with a $=1$, when $p=2$.

REMARK 2. Using the Parseval's equation in place of the Paley's inequality we can prove the following theorem quite analogously as Theorem 1.

THEOREM 2. Let by $w(t)$ denote the modulus of continuity of the function f in $(0,2 \pi)$. If for a function $w^{*}(t) \geqq w(t)$,

$$
\int_{0}^{\pi} \frac{w^{*}(t)}{t} d t<\infty,
$$

then the Fourier series of f is summable $|C, 1 / 2|$ everywhere, provided that

$$
\left[w^{*}(1 / x) \log x\right]^{-1}
$$

is a function λ defined by Definition 2.
Corollary 2. The conclusion in Theorem 2 is true, if for some $\varepsilon>0$,

$$
w(t)=O\left(\log \frac{1}{t}\right)^{-(1+\epsilon)} \quad(t \rightarrow 0)
$$

This corollary improves a result of Chow [4, Theorem 3].

REFERENCES

[1] F.T. WANG, The absolute Cesàro summability of trigonometrical series, Duke Math. J., 9(1942), 567-572.
[2] T. Tsuchikura, Absolute Cesàro summability of orthogonal series. Tôhoku Math. J., (2), 5(1953), 52-66.
[3] H.C.CHOW, Some new criterıa for the absolute summability of a Fourier series and its conjugate series, J. London Math. Soc., 30(1955), 439-448.
[4] A.ZYGMUND, Trigonometrical series, Warszawa-Lwow, 1935.

