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1. Introduction. A definition of the homotopy groups of a semisimplicial

complex, using only the simplicial structure, was given by D. M. Kan [8] and

homotopy theory in the context of abstract semisimplicial theory was deve-

loped. On the other hand there exists an important group which was investigated

by E. Spanier [14] for a compact pair (X, A) and was called Borsuk's cohom-

otopy group.

In this paper we shall introduce an ^-dimensional cohomotopy group

7rn(K; L, M) of an s. s. triad (K; L, M) which is the set of homotopy classes

of maps from (K; L, M) into the triad of singular complexes for some special

spaces. It will be proved that 7rn(K; L, M) has a group structure and the co-

homotopy sequence of an s. s. triad is exact. In order to prove these properties

we define a one-to-one correspondence which is a generalization of Kan's one

[9] and recall some results which were already proved in [1]. Moreover we

shall introduce the other ^-dimensional cohomotopy group τr\K; L, M) of an

s. s. triad (K; L, M). It is not proved that the cohomotopy sequence for these

groups is exact, however, it seems to me that this cohomotopy sequence is

also exact. In the last section, we consider the other one-to-one correspondence

and, using this correspondence, define the different definitions of irn(K; L, M)

and πn(K; L, M). (Recently the author and others investigated the w-dimensional

homotopy group τrn(ϋΓ; L, M) of an s. s. triad (K; L, M) [2]). At last it will

be proved that these definitions are equivalent respectively.

2. Preliminaries. Let C denote the space of sequences of real numbers

y = \yt\ (i = i9 2 ) which are finitely non-zero. C is metrized by

dist (y,y.) = ί Σ Oi - yd3)'

DEFINITION 2. 1. The sets below are defined by the corresponding cond-

ition on the right.

Sn = \y € C\yt = 0 for i > n + 1 and £ y) = 11,
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n+1 = \ye C\yt = 0 for i>n+ 1 a n d ] Γ]Γ yϊ^

The following relations are obvious

. . .d El'1 U EL'1 = S71'1 = El Π El c= £+" (J £ - = Sn = JEJ+ι Π E ^ 1 c . . .

DEFINITION 2. 2. A topologίcal pair (X, A) is a topological space X and
a closed subset A. A map f of a topological pair (X, 4̂) into a topological
pair (Y, B) is a continuous function from X into Y which maps A into B
and base point to base point, and will be denoted by f: (X, A)-> (Y, B).

A topological triad (X; A, B) is a topological space X and closed subsets
A and 5 which have a non-vacuous intersection A Π 5 Φ 0. A wα/> / o f a
topological triad (X; A, i?) into a topological triad (Y; C, D) is a continuous
function from X into Y which maps A, B into C, Z) respectively and base point
into base point and will be denoted by / : (X; A, B)-* (Y; C, D).

DEFINITION 2.3. A CW-pair (X,A) is a CW-complex X [17] and a
subcomplex A and a CW-triad (X; A, B) is a CW-complex X and subcomp-
lexes A and B which have a non-vacuous intersection A Γ\ B =j=0.

DEFINITION 2. 4. An s. s. pair (K, L) is an s. s. complex K and a subcomp-
lex L [7], [11]. An s.s. m ^ / [8] of an s. s. pair (K, L) into an s. s. pair
(P* Q) i s a function from K into P which maps L into Q and base point to base
point and commutes with all face and degeneracy operators. It will be denoted
by / : (K, L) -> (P, Q). An s. s. triad (K; L, M) is an s. s. complex K and
subcomplexes L and M which have a non-vacuous intersection L Π M =f= 0.
An s. s. map f of an s. s. triad (K; L, M) into an s. s. triad (P; Q, R) is a
function from K into P which maps L, M into Q, R respectively and base
point ψ to base point x and commutes with all face and degeneracy operators
and will be denoted by / : (K; L, M) -» (P; Q, R).

DEFINITION 2. 5. Let (K; L, M) and (P; Q, R) be two s. s. triads. The
function complex (P; Q, Ryκ>L>M) [s the s. s. complex defined as follows [5], [11] '
An ^-simplex of (P; Q, R)(K^M) is any s.s. map f:(K X K',L X Δn, M X
Δ n )->(P; Q, i?) such that f(φηo- ηr,σ) = xη°...ηr for all r simplex σ € Δn,
where Δw is the standard w-sΐmplex. Its faces fSι and degeneracies fηι are the
composite maps

1 X X1

(K x Δ n . i ; L x Δn_1? Λf x Δ n - 1 ) ^ ( ^ x Δ n ;L x Δn, M x Δn)
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-^(P; Q,R),

1 X μι

(K x Δ n + 1 ; L X Δ n + 1 , M X Δ n + 1 ) (K x Δw; L x Δ n, M x Δ n)

— (P; <2,K),

where λ*: Δ^.j -> Δw and μ*: Δ n + 1 -* Δw are given by

Vϋ) = i 0" < 0

μXJ) =j-l(j> i) for i = 0,1, 2, ,n.

DEFINITION 2. β. An s. s. triad (P; Q, R) is said to satisfy the extension

condition if P, Q, R and Q f] R satisfy the extension condition [7] and it will

be called a Kan triad.

PROPOSITION 2. 7. If X is a topological space, then the total singular

complex SX [4] satisfies the extension condition.

The proof of this proposition can be found in [12].

PROPOSITION 2. 8. If (P; Q, R) is a Kan triad, so is the function com-

plex (P; Q, Ryκ*>"\

This proposition is the generalization of Theorem 3 of [5] and its proof

is completely similar to Gugenheim's one therefore it will be omitted.

PROPOSITION 2. 9. Let (X; A, B) be a topological triad. Then the fun-

ction complex (SX; SA, SByκ;L'm is a Kan triad.

PROOF. Proposition 2.6 asserts that SX, SA and SB satisfy the extension

condition. On the other hand SA Π SB = S(A Π B) and S(A Π B) satisfies

extension condition. Hence (SX; SA, SB) is a Kan triad. It follows from

Proposition 2.8 that (SX; SA, SByK'L>M) is a Kan triad.

DEFINITION 2. 10. [9] Two s. s. maps / , g : (K; L, M) -* (SX; SA, SB)

are called homotopic if there exists an s. s. map fτ: (K X I; L X I, M X I)

-> (SX; SA, SB) such that

( i ) f{*> fiV- V*-1)=A*),

( i i ) f(σ, 6lη*...ηn-η = 9(σ),

(iii) fX<PV°> £i) = ZV°> where / = Δ 1 ? and φ and x are base

points of K and X respectively.
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We then write f1 :f^ g or / ^ g.

PROPOSITION 2. l l . The homotopy relation — is an equivalence on the
simplexes of (SX; SA, SB)(KL>M)

PROOF. It follows from Proposition 2.8 that function complex (SX; SA,

SBγκ;L>m s a t i s f ; e s tfoe extension condition. An s. s. map f: (K; K,M)-*(SX;
SA,SB) is a 0-simplex of the function complex (SX SA, SB)iK]L>M). It is easy
to see that for two s. s. maps /, g : (K, L, M) -» (SX; SA, SB) such that f \f
— g, the homotopy f is a 1 -simplex of the function complex such that fτ£° =

/, fS1 = g. Let / : (K; L, M) -> (SX; SA, SB) be an s. s. map, then fηQS° =
frfS1 =- f. Hence fηΌ: f — f i. e. the relation ^ is reflexive and it thus remains
to show that f - g and / ^ h imply jr - A. Let Fl9 F2 € (5X, SA, SB)(K>L M)

be such that FLε° = f, F.81 = g, F2S° = f and i^S1 = h. Then 1-simplices Fl9

F2 "match" and application of the extension condition yields a 2-simplex F
such that FS° = F1 and FS1 = F2. A straightforward computation now yields
F82S° = g, Fβ^1 = h and hence Fε2: g^ h.

DEFINITION 2. 12. Let (K; L, M) be an s. s. triad and (X; A, B) a topo-
logical triad. Then τr(K; L, M\SX; SA, SB) denotes the set of homotopy classes
of maps (K; L, M) -+ (SX; SA, SB).

Let K be an s. s. complex and \K\ be its geometrical realization (Milnor,
[10]). For an s. s. triad (K; L, M), let (\K\; \L\, \M\) be its geometrical
realization. Let (X; A, B) be a topological triad. Then (SX, SA, SB) is an s.s.
triad.
Let u:(\K\; \L\, | M | ) - > ( X ; A,B)he a continuous map. We then define an
s.s. map y(u) : (K; L, M) -> (SX; SA, SB) as follows [9]. For an n-simplex σ
€ K let φσ: Δn -> K be the s. s. map such that φσ8n = σ (where 8n is the
only non-degenerate rc-simplex of Δn). Then the singular simplex γ(u)<r € SX
is defined as the composition

where \φσ\ [10] is a continuous map induced by φσ.
If σ is an ^-simplex of L (or M), then Yκu)σ € SA (or SB).

PROPOSITION 2. 13. The function y establishes a one-to-one correspond-
ence between continuous maps (\K\; \L\, \AI\)-> (X; A, B) and s.s. maps
(K; L, M) -> (SX; SA, SB).

PROOF. It is clear that y is a single valued function.
If / : (K; L, M) -» (SX; SA, SB) is an s. s. map, we then define a continuous
map y(f): (\K\; \L\, \M\) -+ (X; A, B) as follows. For an w-simplex σ € K,
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f(σ) is a continuous map: | Δ n | -+X. We denote by \σ,Sn\ € \K\ [10] the

corresponding element to σ € K. Let ~y(f) : (|Z£|; | L | , | M | ) - > ( X ; A, £ ) be

the continuous map such that γ ( / ) | |σ, £ n | = f(σ) \ψσ\ where ψσ : σ -> Δn is

the s. s. map such that ψoσ = Sn. Therefore γ(f):(\K\; \L\, \M\)-> (X; A,

B) is a continuous map. It is easy to see that 7 is a single valued function.

Now we prove that 7 is an onto correspondence. Let f:(\K\; \L\, \M\)

-> (SX; SA, SB) be an s. s. map. For an π-simplex σ of K,f(<r) is a continuous

m a p : | Δ n | - ^ X a n d ^ ( / ) ( ] σ , f i n | ) = / ( σ ) ( | Δ J ) c X . If σ € L (or M), γ ( / )

( | σ , 6 B | ) c Λ (or B). Hence γ ( / ) : ( | £ | ; | L | , | M | ) ^ ( X ; A,B) is a contin-

uous map. Moreover for y(f) we define y (y(f)) :(K; L, M)-> (SX SA, SB).

The singular simplex γ(γ(/)) o" 3 5X is defined as the composition | Δ n |

l ^ i |tf| ?I) X and if σ € L (or Λf), TCTC/)) σ ^ SA (or 55). By the

definition of γ ( / ) ? γ(γ(/)>: | Δ n | -* X (or Λ, or 5) is equal to f (σ). Then

γγ = identity and 7 is onto. Therefore 7 and 7 are inverse to each other.

THEOREM 2. 14. Lέtf CK; L, M)be an s. s. triad and (X; A, B) be a topo-

logical triad. Then the function 7 induces a one-to-one correspondence 7*

between the homotopy classes of continuous maps (|-SΓ|; | L | , \M\)-+(X; A,

B) and the homotopy classes of s. s. maps (K; L, M) -> (SX, SA, SB).

PROOF. Let u,v : (\K\; \L\, \M\)-*(X; A,B) be continuous maps and

Fiu^v. Now we consider non-degenerate (n + l)-simplex

ft = (0, . . . , i - l , i , i, i + l, ..,n) X (01? 02..., 0 ί? l i + 1,...,lw + 1)

of Δw x / for z' = 0,1,2, ..., w. Then a non-degenerate (w + l)-simplex of

K X I may be given by (φσ X 1) (r t) for σ € jfiΓ. Now we denote by [σ, r j

this simplex and by [σ, τt6
}] its face [σ, T J ^ ' for J = 0, 1, 2,..., n + 1. On the

other hand the w-simplex of |jfiΓ| is |σ, 6 n | where σ € ^ n and 6n € Δn. Then

non-degenerate (ra + l)-simplex of \K\ X | / | may be denoted by [|σ , fw|, r j .

For an ^-simplex σ ζ K let Φ[σ>τti: Δ n + 1 -> £" x /be the unique s. s. map

such that Φίσ,Ti] €n+ι = [ σ? τ ί] Then the singular simplex γ(F) [σ9 τ t] € 5X is
defined as the composition

| Δ B + 1 | ! ^ ' \KXI\ = \K\ X | 7 | — X,

where \K X / | is canonically homeomorphic to |/C X I\ [10] and these may

be identified each other. If σ is an ^-simplex of L (or M), then 7(F) (σ, τ4)

6 5A (or 55). Therefore 7CO: (K X I; L X I, M X I)-> (SX; SA, SB) is an
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s. s. map. Since y(F) (σ, £ty>... V"') = y(F)[<r, τo£°] = y(u)(σ\ γ(F) (σ, ε\η"
Vn-X) = y(F)[<τ, rnε^] = y(v)(σ) and y(F) (φη°, £,) = xη\ y(F) : y(u) ^ y(v).
Hence y induces a single valued correspondence γ* between the homotopy

classes of continuous maps (\K\; \L\, | M | ) - > ( X ; A, B) and the homotopy

classes of s. s. maps (K; L, M) -* (SX; SA, SB). Let f, g : (K; L, M) -> (SX;

SAySB) be s. s. maps and G:f^g. Now we define a continuous map γ(G):

(\K\ X | / | ; \L\ X | / | , \M\ X \I\)-*(X;A,B) as follows. For an ^-simplex

<r € K, G[or, T,] is a continuous map : Δn + 1 -> X. It is easy to see that if σ 6

L(or M), G[>, T J is a continuous map: Δw+1 -^ A(or β). Let γ(G): ( |ίΓ| X

| / | ; | L | X | / | , | M | X \I\)-> (X;A,B) be the continuous map such that

7(G) I L k ^ J , ^ ] = G t σ , ^ ] . Iψ tσ.rJ. It is easy to verify 7(G) [ | σ, 5n |, τofi°]

\*,en I and γ(G) | [|σ, an |, τ n f + 1 ] = γ ^ ) | |σ, 6 J . Therefore γ(G) : 7 ( / )

Hence γ induces a single valued correspondence γ t t between the homo-
topy classes of s. s. maps (K; L, M) -> (SX; SA, SB) and the homotopy
classes of continuous maps (\K\; \L\, \M\)~->(X;A,B).. It is easy to see

that 7* and γ # are inverse to each other.

3. Group structure. Let (X; A, B) be a CW-triad and (Y; C, D) a topo-
logical triad. In [1] we denoted by τr(X; A, BY; C,D) the set of homotopy
classes of maps of (X; A, B) -> (Y; C, D) such that base point is mapped to
base point. Let / * : τr(X'; A\ B' | Y; C, D) -* τr(X; A, B \ Y; C, D) be induced
map by a map / : (X; A, B) -> (X'; A', £') and φ* : τr(X; A, B \ Y; C, D) -> TΓ

(X; A , β | r ; C;/)') the one by a map φ : (Γ; C,Z))-^(r ; C',D') as usual.
Let s$#: τr(X; A,B\Y; C,D) -+ τr(SX; &A,άB\£Y; AC, AD) be the function
induced by suspension as in [15], [16],

Let (Y; C,DyX;A'B) denote a function space of maps of (X; A, B) into (Y;
C, D) with the compact-open topology. There is a function λ : πr((Y; C, D)
(X>A>B))-+7r(AτX; ArA, ArB\Y; C,D) [13] which is one-to-one and natural with
respect to maps / and φ where ώr = A(Ar~τ).

The following theorem was proved in [1] using X-1° A%.

THEOREM 3. 1. Let (X; A,B) be a CW-trίad and let Y,C and D be
(n — 1), (/ — 1) and (m — 1)- connected topological spaces respectively, and
assume that dim X <Ξ 2n — 2, dim A ^ 21 — 2 and dim B ^ 2m — 2. Then
we can introduce a group structure into π (X; A, B \ Y; C, D), which is
Abelian and natural with respect to maps f and φ.

PROPOSITION 3.2. Let \K\ be a geometric realization of K, then \K\
is a CW-complex having one n-cell corresponding to each non-degenerate
n-simplex of K.
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This Proposition was proved by J.Milnor in [10].

PROPOSITION 3. 3 Let (K; L, M) be an s. s. triad and (X; A, B) be a
topological triad where Xτ A and B be (n — 1), (/ — 1) and (m — l)-connected
respectively, and assume that dim K ^ 2n — 2, dim L <Ξ 21 — 2 and dim
M<L 2m - 2. Then τr(K; L,M\SX, SA, SB) is an Abelian group.

PROOF. In Theorem 2.5 the function γ induced a one-to-one correspond-
ence γ t t between the homotopy classes of continuous maps (|-K"|; | L | , | M | )
-> (X; A, B) and the homotopy classes of s.s. maps (K; L, M) -> (SX; SA, SB).

In its proof we defined γ which induces the inverse correspondence γ t t of γ t t.
On the other hand \K\, \L\ and \M\ are CW-complexes and dim \K\ ^
2/7 - 2, dim \L\ <Ξ 21 - 2 and dim \M\ < 2m - 2 by Proposition 3.2. Then
it follows from Theorem 3.1 that τr(| K\ \L \, \M\ \X; A, B) has a group

structure. Therefore, using γ#, we may define the multiplication in 7r(K; L, M
\SX; SA,SB). It is easy to see that τr(K; L, M\SX; SA, SB) is an Abelian
group.

PROPOSITION 3.4. Let f: (K; L,M)-+(K';L',M') be an s.s. map and
φ : (X; A, B) -> (X', A'; B') continuous map. Then induced maps / * and
are homomorphisms.

PROOF. NOW we consider the following diagrams :

7
τr(\K\; \L\, \M\ \X;A,B)J-^ir{K; L,M\SX; SA,SB)

v{\K'\;\L'\9 \M'\\X;A,B) 2—τr(K';L',M'\SX,SA,SB),

and

7*
τr(\K\; \L\, \M\ \X; A, B) J— τr(K;L,M\SX; SA,SB)

τr(\K\;\L\,\M\ \X';A',B')^ir{K',L,M\SX'',SA',SB').

Clearly the commutative relations hold in these diagrams, and ( | / | ) * and φ#
are homomorphisms [1]. Therefore / * and (Sφ)# are homomorphisms.

PROROSITION 3.5. Iff: (K; L,M)-*(K; L, M) is the identity, then f*
is the identity.

PROOF. Let a be an element of τr(K; L, M\SX;SA, SB) and h be its
representative. Then f#a has a representative h°f. Since / is the identity,



270 κ AOKI

f*ct equals to a. Therefore jΓ* is the identity.

PROPOSITION 3.6. (g°f)*=f*°g* where f: (K; L, M) -* (K'; L'M') and
g : (K'; L'M') ->(K"; L"', K") are s. s. maps.

PROOF. Let a be an element of π(K"; L", M"\SX; SA, SB) and h be
its representative. Then (g°f)#ct has a representative h°g°f On the other
hand g® a has a representative h°g and /*°<7* has a representative h°g°f
Therefore (firo/)* = / * o f l r *

PROPOSITION 3. 7. Iff,g: (K; L, M) -> (/£';7/, M ) an? homotopic, then

PROOF. Let α be an element of TΓCK'; L', M' |5X; 5^,55) and A be its
representative. Then f*a and #*<# have representatives h°f and Λ°̂ . Since /*
— g, h°f and A°^ are homotopic. Therefore / * = g*.

PROPOSITION 3. 8. If φ : (X; A, B) -+ (X; A, B) is the identity, then
(Sφ)# is the identity.

PROOF. Let β be any element of τr(K; L,M\SX; SA, SB) and u be its
representative. Then (Sφ)φ has a representative (Sφ)°u. Since Sφ =
identity, (Sφ)#β is the homotopy class of u and hence (Sφ)# is the identity.

PROPOSITION 3. 9. (SψoSφ)^ = (Sψ)*o (Sφ)*, where φ : (X; A, B) ->
(X';A\ B') and ψ: (X;A',B')-+(X"; A",B") are continuous maps.

PROOF. Let β be any element of τr(K;L, M\SX; SA, SB) and u be its
representative. Then (S ψ° S φ\ β has a representative S ψ° S φ°u. On the
other hand (Sφ)*β has a representative Sφ°u and (Sψ)#°(S<p)&β has a
representative Sψ°Sφ°u. Therefore (Sψ°Sφ)# = (Sψ)#°(Sφ)#.

PROPOSITION 3.10. If φ, ψ : (X; A, B) -> (Xf; A', B') are homotopic,
then Sφ and Sψ are homotophic.

PROOF. Let Φ : (XX | / | ; A x \I\,Bx \I\)-*(X'; A', B) be a homotopy
between φ and ψ F°r [̂ , τ4] 6 5X X I (for σ € SX and τέ 6 Δw x /, non-
degenrate (n + l)-simplex of 5X x 7 may be denoted by [<r, τt]) we define Θ:
5 I X / ^ 5X7 by Θ [σ, r j = (SΦ)[σ, r j . Then θ[σ, τo6°] = (SΦ)[σ, ro6°] =
φcσ and ®[σ, τnS

n+1] = (5Φ)[σ, τ,ft^
+1] = ψo σ . If [σ, τ t] € 5Λ X 7 (or 5J5

X 7), then θ[σ, T J € SA' (or SJB'). Therefore Θ : (SX X I SA X I, SB X
I) -> (5X'; SA', SB') is a homotopy between Sφ and S ψ\

PROPOSITION 3. 11. If φ,ψ: (X; A, B) -> (X'; A ',B') are homotopic,
then (Sφ\ = (Sψ)#.

PROOF. Since φ ^ ψ, by Proposition 3. 10, Ŝ > and Sψ are homotopic.
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Let β € π(K;L, M\SX; SA,SB) be any element and u be its representative,

then (Sφ)#β and (Sψ)#/3 have representatives Sφ°u and Sψou respectively

and Sφ°u ^ Sψ°u. Therefore (S) (Sψ)

4. Exact sequences. Let (K; L, M) be an s. s. triad and (X; A, x) be a

topological pair with base point x and i : (M, L Π M) -> (K, L) and j : (K,L, k0)

-> (Z£; L, Λf) be inclusions where k0 CI L Π M is the minimal subcόmplex of

L Π M which contains base point k of L Π M. Then /, i induces the inclusion

\i\, \j\ respectively [10] and these maps induce the homomorphisms | z | * : 7 r

( | K j ; | L | | X A ) - > τ r ( | M U L | Π \M\\X,A) and | i | » : τr{\K\ \L\,\M\ \X;

A,x) -> 7r[\K\ | L | , 1̂ 1 |X; A, x). On the other hand the homomorphism A ;

τ r ( | M | , | L | Π \M\ I X , ^ ) - ^ 7 r ( | K | ; | L | , \M\ \AX\AA9x) was defined in [1].

THEOREM 4. 1. Le^ (K; L, M) be an s. s. triad with base point k and (X;

A, x) be a topological pair with base point x and assume that X and A

are (n — 1) and (m — l)-connected respectively and that dim K fg 2n — 2, dim

L ^ 2m — 2. Then the following sequence is exact and natural with respect

to maps I/I :(\K\; \L\,\ M\) -* (\K'\ | L ' | , |Λί ' | ) α«rf φ:(X,A)-*(X',A'):
U Ί *

XA)

τr(|M|; |L | Π

SX; SA,x)

PROOF. It follows from Proposition 3.2 that dim \K\ <; 2n — 2 and dim

IL I ^ 2m — 2. Therefore this theorem is an immediate consequence of The-

orem 2. 5 in [1].

THEOREM 4. 2. Let (K; L, M) be an s.s.triad with base point k and

(X, A, x) be a topological pair with base point x and assume that X and

A are (n — 1) and (m ~ 1)-connected respectively and that dim L ^ 2m — 2.

Then then following sequence is exact and natural with respect to maps

f: (K; L, M) -+ (/£'; L\M) and ψ : (X, A) -> (X\ A) :
tt

τr(K;L,M\SX;SA,Sx) ~-i— τr(K; L,k()\SX; SA,Sx)

— τr(M; L Π M,ko\SX; SA,Sx)

— + τr(K; L, M\ S£X; Sέ>A} Sx) ->

where iγ* and Λ* are induced by inclusion iι : (M; L Π M,k0) -> (.SΓ; L, ^0)

and j Λ : (K; L, k0) -+ (K; L, M) respectively and Δ2 is defined so that Δ, =

PROOF. NOW we consider the following diagram:
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ττ(\K\;\L\,\M\\X; A,x)~π{K; L,M\SX; SA,Sx)

\LI, \k01 \X; A ,x) ί = ^ τ τ ( £ ; L, ko\SX; SA,Sx)
7*

I.Ί J
7*

τr(|M|; |L | Π M, \ko\\X;A,x) t=ZZτr{M; LΠM,k0 \SX; SA,Sx)

7*

Δ I Δ,

τr(|K|; |L|, |Λf| |^Y; sSA,x)^τr(K; L,M\ SAX;

Since commutative relations hold in this diagram, this theorem is a direct
consequence of Theorem 4. 1.

5. TΓXK; L, M) and ^"(K; L, M).

DEFINITION 5.1. Let (X;A,B) be a CW-triad and (K; L, M) be an s. s.
triad. Then we define τrn(X; A, B) and τr\K\ L, M) by

τr\X; A, B) = τr(X; A,B\El; Sn~\p\
τrn(K; L, M) = τr(K; L, M\ SEn

+; SSn~\ Sp).

PROPOSITION 5. 2. Let (X; A, B) be a C W-triad such that dim A ^ 2n
- 4 . Then τrn(X;A,B) is an Abelian group.

PROOF. Since El is contractible and Sn~ι is (n — 2)-connected and dim
A^2n — 4, this proposition is a direct consequence of Theorem 3. 1.

Similarly to Proposition 5.2, by Proposition 3. 3. we have

PROPOSITION 5.3. If (K;L,M) is an s.s. triad such that dim L <; 2n
— 4, then τr\K; L, M) is an Abelian group.

DEFINITION 5.4. Let (X;A,B) be a CW-triad and (K; L,M) be an s.s.

triad. Then we define π\X; A, B) and πn{K'} L, M) by

~τrn(X;A,B) = τr(X; A,B\En

+; En

+'\ Enrλ\

~τr\K; L, M) = τr(K; L, M\ SEl; SET\ ΛΈ^"1).

PROPOSITION 5. 5. Let (X; A, B) be a CW-triad. Then π\X; A,B) is an
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Abelian group.

PROOF. Since E%, El"1, El~ι are all contractible, this proposition is a
direct consequence of Theorem 3. 1.

Similarly to Proposition 5. 5, by Proposition 3. 3, we have

PROPOSITION 5. 6. Let (K; L, M) be an s. s. triad. Then ~τr\K; L, M) is
an Abelian group.

DEFINITION 5.7. (F.P.Peterson)[13] [14] Let (X ,A) be a CW-pair. Then
we define τrn(X,A) by

DEFINITION 5. 8. Let (K, L) be an s. s. pair. Then we define πXK, L) by

PROPOSITION δ. 9. Let (X, A) be a CW-paίr such that dim X S 2n - 2.
Then 7rn(X, A) is an Abelian group.

This Proposition is a direct consequence of Theorem 3. 1.

Similarly, Proposition 3. 3 implies

PROPOSITION 5.10. Let (K, L) be an s. s. pair such that dim K<=2n
- 2. Then πn(K, L) is an Abelian group.

DEFINITION 5.11. Let (X9A) be a CW-pair and (K,L) be an s. s. pair.
Then we define τrM(X, A) and τrn(K, L) by

TTXK, L) = τr(K, LI SEl, SSn'1).

It is easy to verify that following Propositions hold.

PROPOSITION 5.12. Let (X,A) be a CW-pair such that dim A < 2n - 4.

Then ir\X9 A) is an Abelian group.

PROPOSITION 5.13. Let (K, L) be an s. s.-pair such that dim L <; 2n
— 4. Then πn(K, L) is an Abelian group.

Let Φ:(El X I9S
n'1 X 7) -* (Sn, El) be defined so that if Φ, = Φ\(El

X t\ then

Φo = identity map of (jEί, Sn~ι) into (S\ El),

Φ, : (El,Sn~]) -> (Sn,p) is a homeomorphism of El - S^onto Sn - p.

Let (X, A) be a CW-pair and /, (j: (X, A) -* (El, Sn'Ί) be continuous maps.
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PROPOSITION 5.14. Iff and g are homotopic, then φxof~φxog.

It is easily seen that this proposition holds.

DEFINITION 5.15. The function φx induces a set transformation from 7rα

(X, A) to 7rn(X, A). Hereafter this transformation will also be denoted by φv

PROPOSITION 5.16. φx: τrw(X, A) -* τr\X, A) is a homomorphίsm.

PROOF. We considered the following diagram in [l] :

τr(K; L, MIX; Y, Z) —

Now we consider the special cases as follows:

_ SI 2 ,_ λ

τrn(X,A) —^

In virtue of Theorem 1.1 and Theorem 1.2 in [l], £# and λ are natural with
respect to map φ, and the map (^ 2 φ x )* : τr2((&2El, ^S^1) ^A))->ir2{(&2S\p){X>A))

is a homomorphism.

We defined group structures in 7rn(X, A) and π\X, A) using λ"1^^^: in [l].

Therefore φ ι : τrn(X,A) —> τrn(X, A) is a natural homomorphism induced by

Let Ψ : ( £ ϊ x /; Eΐ"1 X /, S-"1 x /)->• (Sί, S ^ ' . E r 1 ) be defined so that if

ψ ί = Ψ|(JEί X t), then

ψ-0 - identity map of (En

+; ET\ E"-'1) mto(En

+; 5""1, ^ ί ' 1 )

ψ x: (El;El"1, Ef1)^ (El;S"-\ p) is a homeomorphism of £J - E".-1

onto El — p.

Let (X il.B) be a CTF-triad and f,g:(X; A,B)-+(EΪ; Ei~\ JSϋ"1) be conti-
nuous maps.

PROPOSITION 5.17. If f and g are homotopic, then Ψι°f^ψι°g.

It is easily seen that this proposition holds.
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DEFINITION 5.18. The function ψx induces a set transformation from πn

(X;A,B) to ir\X;A,B) by Proposition 5.17. Hereafter this transformation
will also be denoted by ψx.

Similarly to Proposition 5.16, we have

PROPOSITION 5.19. ψλ : ~π\X; A, B) -> τrn(X; A, B) is a homomorphism.

DEFINITION 5.20. Let (K, L) be an s. s. pair such that dim K S 2n — 2

dim L ^ 2n — 4.

Now we consider the following diagram :

Ψ -

— τrXK,L)

We define (φ,)# ΓTΓXK.L) ~> τrn(K, L) such that (ΦX - y*Φ~ΰ* Then ( φ j * is
a homomorphism.

Similarly we define a homomorphism (^i) t t : 7rw(K; L, M)-> 7rn(K; L, M),
where (K; L, M) is an s. s. triad.

THEOREM 5.21. Let (K; L,M) be an s. s. triad and assume that dim
L <Ξ 2n — 4. TΛe# Me following sequence is exact and natural with respect
to a map f:(K; L, M) -> (K'; L\ M >

Π
PROOF. In virtue of Proposition 5.3, and Proposition 5.10, 7Γ2(K;L, M)

and τr\K, L) are abelian groups for q ^ n and since dim (L Γ) Λf) ^
dim L ^ 2w — 4, τr2(M, L Π M) is an abelian group for q ^ n. Th^n this the-
orem is a direct consequence of Theorem 4.2.

DEFINITION 5.22. An s. s. triple (K, L, M) is an s. s. complex K and a
subcomplex L and a subcomplelx M( c: L).

THEOREM 5.23. Let (K, L, M) έe αw s. s. triple and assume that dim
K ^ 2ft ~ 2. TVitfft *Λtf following sequence is exact:

, L) — τrw(K, M) - ^ - TΓXL, M ) ^

where it and jf are inclusion maps and Δx ^ defined similarly to Δx of

Theorem 4.2.

PROOF. By virtue of Theorem 14.3 in [14], the following sequence is

exact:
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v\\K\,\M\) -£~*-X\K\,\M\)-!-~7r"(|LMM|)— τrnΛ\K\, \L\)-*....

In virtue of the isomorphism 7*, it is easy to see that this theorem holds.

6. τrn(K; L,M).

DEFINITION 6.1. A CW-tetrad (X;A,B,C) is a CW-complex X and
subcomplexes A, B and C which have a non-vacuous intersection A Π B Π C
+ 0. A map f of a CW-tetrad (X;A,B,C) into a CW-tetrad (Y;D,E,F) is
a continuous function from X to y which maps A, B, C into D, F, E respec-
tively and base point to base point and will be denoted by / : (X; A,B,C)
->(Y;D,E,F).

DEFINITION 6.2. An s. s. tetrad (K; L, M, N) is an s. s. complex K and
subcomplexes L, M and N which have a non-vacuous intersection L f l M f l
N 4= 0. An s. s. map f of an s. s. tetrad (K; L> M, N) into an s. s. tetrad
(S\P\;S\Q\, S\R\, S\T\) is a function from K to S\P\ which maps Ly

M,N into 5 | Q | , Sj<R|, S\T\ respectively and base point to base point and
commutes with all face and degeneracy operators and will be denoted by f:
(K;L,M,N)-+(S\P\; S\Q\, S\R\, S\T\).

Similarly to a case of triads, the following theorem holds.

THEOREM 6.3. Let (K; L, M, N) and ( F ; Q, R, T ) be s. s. tetrads. Then
the function 7 induces a one-to-one correspondence 7 * between the homotopy
classes of continuous maps (\K\; \ L \ , \M\, | i V | ) - * ( | P | ; \Q\, \R\, \T\) and
the homotopy classes of s.s. maps (K L, M, N) -+ (S\P\; S\Q\,S\R\,S\T\).

DEFINITION 6.4. Let (P; Q,R,p) be an s. s. triad with base point p. Then
we define for n > 2, τ r n ( | P | ; | Q | , \R\) and τrn(P;Q,R) by

7 r w ( | P | : | Q | , | i ? | ) - 7 r ( | Δ J ; | 9 o Δ J ? | 3 l Δ J , l Σ

; Q, R) =

\P\;\Q\,\R\,\Po\),

S\P\;S\Q\,S\R\,S\po\).

This set τ r Λ ( | P | ; \Q\, \R\) will be canonically identified to ^-dimensional
homotopy group in the sense of A. L. Blakers-W.S.Massey [3].

THEOREM 6.5. Let (P; Q, R) be an s. s. triad. Then the following seque-
nce is exact'

τr.Λ(P; Q, R) -1* τrn-i(Q, QΠR) -^* 9r»_i(P, Q) - ^ - w».i(P; Q, R) -*-,
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where i2 and j 2 are inclusions and Δ3 is defined so that Δ2 = <y*β+ y* [3].

PROOF. Consider the following diagram:

πXP; Q, R) —-w».i(Q, Q Π R)~ π»-ι(P, Q)—»•„-,(/>; Q,R)-+-

τr""(|P|; \Q\, \R\)^τrU\Ql \Q\ Π \R\pl*U\P\, |Q|)^,.-,(|P|; \Q\, |K|)

The lower sequence is exact [3] and 7* is a one-to-one correspondence. Then
every terms of the upper sequence have a group structure in virtue of γ* and
the exactness of the upper sequ3nce is an immediate consequence of that of
the lower sequence.

Let Sd K be the subdivision [7] of K and SdrK be the r-fold subdiv-
ison of K and let u : (SdrK; SdrL, SdrM, SdrN) -> (P; Q; R; T) be an s. s.
map. Then we shall define

ω*: τr(Sdr^; SdrL, SdrM, SdrN\P; Q9R,T)->

| P | ; \Q\, \R\,\T\).

In order to define this map we prepare the following proposition.

PROPOSITION 6.6. Let (K;L,M,N) be an s. s. tetrad. Then the continu-
ous map \dK\: (\SdK\; | S d L | , | S d M | , |SdiV|)-> ( | ^ | ; | L | , \M\, \N\)
is a homotopy equivalence.

This proposition is the generalization of Lemma 7.5 in [7] and its proof
is similar to Kan's one, therefore it will be omitted.

COROLLARY 6.7. Let (K; L, M, N) be an s. s. tetrad. Then the conti-
nuous map \drK\ :(\SdrK\; \SdrL\, \SdrM\, \SdrN\) -> (\K\ | L | , \M\, \N\)
is a homotopy equivalence.

This corollary is an immediate consequence of Proposition 6.6. For u we
define ω* by <*>*([u]) — \_\u\°η\ where η is an inverse map of [drK] in
Corollary 6. 7. It follows from the following proposition which asserts that
ω* is well defined.

PROPOSITION 6.8. If u, v : (SdrK; SdrL, SdrM, SdrN) -> (P; Q, R, T) are
homotopic s. s. maps, then \ u \ oη — | v \ °η.

PROOF. Let F be a homotopy between u and v. Similarly to the result

of [10], F induces an ordinary homotopy
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(\SdrK\ x |/ | ; |Sd Γ L| x

Hence \u\ ^ |v\ . Therefore |u\

Ί , ISd'MI x

(IPI IQI,

v\ °η.

SdriV| x | 7 | )

L e t / : (\K\; | L | , | M | , \ N \ ) -* ( | P | \Q | , \ R \ , \ T \ ) b e a c o n t i n u o u s m a p

T h e n w e s h a l l d e f i n e a c o r r e s p o n d e n c e ω t t : 7r(\K\; \ L \ , \M\9 \ N \ \ \ P \ ; \Q\,

\R\ \T\)->τr(SdrK; SdrL,SdrM,SdrN\P; Q,R,T). In order to define this

correspondence we prepare the following theorem.

THEOREM 6.9. Let (K;L,M,N) and (P;Q.R,T) be s. s. tetrads and K

finite. Then for every continuous map f:(\K\; \L\, \M\, |JV|)-> ( | P | | Q | ,

IRI, I T\), there exist an integer r > 0 and an s. s. map h : (SdrK; Sd rL, SdrM,

SdrN) -+ (P; Q: R, T) such that the diagram

(\K\Ϊ \L\,\M\,\N\)

\drK\

(|Sd r^|; |Sd rL|, |SdrM|, |SdriV|)

is commutative up to homotopy, i.e., \h\ ^.fo\cΓK\.

This theorem is the generalization of Theorem 8.5 in [7] and its proof

is completely similar to Kan's one, therefore it will be omitted.

Let / and g be homotopic continuous maps (\K\; | L | , | M | , \N\)-+ (\P\;

\Q\9 \R\9\T\) and F be its homotopy. Then F is a continuous map

(\K\ x |7 | ; \L\ x | / | , \M\ x x \I\)-*(\P

suchthatF[k,£ n ί ,τ o ε°]=/| | σ Al and F\[\σ,εn\,rn£
n^] = g\ \σ,Sn\. Since|X|

X | / | is canonically homeomorphic^to _ | K X I\9 these spaces may be identified.

By Theorem 6.9, for a continuous map F, there exist an integer r > 0 and an

s. s. map H: (Sdr(iC x /); Sdr(L x 7), Sdr(M x 7), Sd\N x 7)) -^ (P; Q, R, T)

such that |77| ~ Fo\d\K x 7)|. Let h0 and hx be s. s. maps 77|SdrK X (0)

and H\SdrK x (1). Then for [f] we define ω* ([/]) =. [Ao]. Since F: f ^ g

implies 77:Λ 0 ^A 1 ? ω* is well defined. It is easy to see that \ho\ ^

THEOREM 6.10. Let (K; L, M, N) and (P; Q, R, T) be s. s. tetrads and K

finite. Then correspondences ω t t and ωtt are one-to-one and ωtt is an inverse

of ω#.
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PROOF. It was proved already that ω* and ωtt are single valued. Let / :

1; \L\,\M\.\N\)-*(\P\;\Q\9\R\,\T\)bea continuous map. By those

difinitions »«([/]) - [ho] and »*(»*[/]) - Vι,oη] - lfo\(ΓK\ oη]. By corol-

lary 6.7, drKo η^l. Therefore ω*(ω*[/J) = [/] and ω* is onto.

Let Γ be the set {y € C\ y* = 0 for / > * and - 1 ^ y ^ 1 (<; i rg n)]

and /" be its boundary and /*, I? be simplicial subdivisions of In, Γ respecti-

vely. It follows that /? and Iΐ may be considered as s. s. complexes [12].

PROPOSITION 6.11 Let (K;L,M) be an s.s. triad and K finite. Then
7rn(K; L, M)9 given in Definition 5.1, may also be defined by

τrn(K; L, M) - τ r (Sdχ SdrL, SdrM |/Γ; 7Γ, q0)

for sufficiently large integer, r > 0 where q0 is a base point of /f.
PROOF. By its definition τrn(K; L, M) = τr(K;L9 M\SEn; SSn'\ Sp) and

there exists a one-to-one correspondence
γ * : τr(K; L, M | 5 £ w ; 5 5 " " 1 , Sp)-+ π{\K\; \L\,\M\\En; S"'1, p). O n the

other hand there exists a one-to-one correspondence

ω* : 7r(Sd rK; SdrL, Sd rM| Iΐ, k, go) -+ τr( | K | | L | , | M | | | / ? | ; |77|, | ^ 0 | ) .

The image of γ* is canonically identified with the image of ω*. Therefore
this proposition holds.

PROPOSITION 6.12. Let (P; Q, R, p) be an s.s. triad with base point p.
Then TΓJJP; Q, R)9 given in Definition 6Λ, may also be defined by

ΓOA), Sdp

<ΦO, 1

PROOF. By its definition τr(P; Q,,R)=TT(K; 30ΔB,axΔίi,

P;Q,R,Po).

S\P\;S\Q\,

*5̂ >ol) and there exists a one-to-one correspondence γ t t : 7rΛ(P; Q, R) ->
', \Q\, \R\)- On the other hand there exists a one-to-one correspondence

ωft .

ίΦO.l
P;

τr( | Δ B | ;

ίΦθ,l

P;Q,R,Po)

The image of γ* is canonically identified with the image of ω*. Therefore
this proposition holds.
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