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1. Introduction. A definition of the homotopy groups of a semisimplicial
complex, using only the simplicial structure, was given by D.M. Kan [8] and
homotopy theory in the context of abstract semisimplicial theory was deve-
loped. On the other hand thsre exists an important group which was investigated
by E. Spanier [14] for a compact pair (X, A) and was called Borsuk’s cohom-
otopy group. :

In this paper we shall introduce an #n-dimensional cohomotopy group
7 (K; L, M) of an s.s. triad (K; L, M) which is the set of homotopy classes
of maps from (K; L, M) into the triad of singular complexes for some special
spaces. It will be proved that »"(K; L, M) has a group structure and the co-
homotopy sequence of an s.s. triad is exact. In order to prove these properties
we define a one-to-one correspondence which is a generalization of Kan’s one
[9] and recall some results which were already proved in [1]. Moreover we
shall introduce the other #n-dimensional cohomotopy group #"(K; L, M) of an
s.s. triad (K; L, M). It is not proved that the cohomotopy sequence for these
groups is exact, however, it seems to me that this cohomotopy sequence is
also exact. In the last section, we consider the other one-to-one correspondence
and, using this correspondence, define the different definitions of =#"(K; L, M)
and 7, (K; L, M). (Recently the author and others investigated the n-dimensional
homotopy group 7,(K; L, M) of an s.s. triad (K; L, M) [2]). At last it will
be proved that these definitions are equivalent respectively.

2. Preliminaries. Let C denote the space of sequences of real numbers
y=iy} G=1,2...... ) which are finitely non-zero. C is metrized by

dist (3,5) = ( (i - )

DEFINITION 2.1. The sets below are defined by the corresponding cond-
ition on the right.

S”={y€C|yi=Of0ri>n+1and y?_—_ll
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E"+1={y€Clyi=0fori>n+1and 2 y}"él},

1si=n+1
E! = {y € §"|yn.: =01,
El={y € §"|y.. = 0}.
The following relations are obvious
LCEVUET =8""=FE: NELCE!’UE:=S"=E""NEY C....

DEFINITION 2. 2. A topological pair (X, A) is a topological space X and
a closed subset A. A map f of a topological pair (X, A) into a topological
pair (Y, B) is a continuous function from X into Y which maps A into B
and base point to base point, and will be denoted by f:(X, A)— (Y, B).

A topological triad (X; A, B) is a topological space X and closed subsets
A and B which have a non-vacuous intersection A 1 Bs=0. A map f of a
topological triad (X; A, B) into a topological triad (Y; C, D)is a continuous
function from X into Y which maps A, B into C, D respectively and base point
into base point and will be denoted by f:(X; A, B) = (Y; C, D).

DEFINITION 2.3. A CW-pair (X,A) is a CW-complex X [17] and a
subcomplex A and a CW-triad (X; A, B) is a CW-complex X and subcomp-
lexes A and B which have a non-vacuous intersection A N B ==0.

DEFINITION 2.4. An s.s. pair (K, L) is an s. s. complex K and a subcomp-
lex L [7], [11]. An s.s. map f [8] of an s.s. pair (K, L) into an s.s. pair
(P, Q) is a function from K into P which maps L into Q and base point to base
point and commutes with all face and degeneracy operators. It will be denoted
by f:(K,L)— (P,Q). An s.s. triad (K; L, M) is an s.s. complex K and
subcomplexes L and M which have a non-vacuous intersection L N M == 0.
An s.s. map f of an s.s. triad (K; L, M) into an s.s. triad (P; Q,R) is a
function from K into P which maps L, M into Q, R respectively and base
point @ to base point x and commutes with all face and degeneracy operators
and will be denoted by £:(K; L, M)— (P; Q, R).

DEFINITION 2.5. Let (K; L, M) and (P; Q,R) be two s.s. triads. The
function complex (P; Q, R)® "™ is the s.s. complex defined as follows [5],[11]:
An n-simplex of (P; Q, R)(%5™ js any s.s. map f:(K X A,; L X A,, MX
4,) = (P; Q, R) such that f(@n°...q", ) = an°...qn" for all r simplex & € A,
where A, is the standard n-simplex. Its faces f&' and degeneracies fn' are the

composite maps

1 xA
(K X An—1§ L x An—-h M X An—l) - (K X An;L X Am M x A‘n)
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S
1 X pt
(K X An+1; L x An+1’ M X An+1) '—f’<K X An§ L x Am M X An)

L@ or),
where AP :A,_, > A, and pf:A,,, —> A, are given by
MG =7 (G <)
M =7+10G=9)
rG)=7 (G =)
p) =7i—10G>17) for i =0,1,2,.....,n
DEFINITION 2.6. An s.s. triad (P; Q, R) is said to satisfy the extension

condition if P,Q, R and Q N R satisfy tha extension condition [7] and it will
be called a Kan triad.-

PROPOSITION 2.7. If X is a topological space, then the total singular
complex SX [4] satisfies the extension condition.

The proof of this proposition can be found in [12].

PROPOSITION 2.8. If (P; Q,R) is a Kan triad, so is the function com-
plex (P; Q, R)™"™.

This proposition is the generalization of Theorem 3 of [5] and its proof
is completely similar to Gugenheim’s one. therefore it will be omitted.

PROPOSITION 2.9. Let (X; A, B) be a topological triad. Then the fun-
ction complex (SX; SA, SB)5"™ is a Kan triad.

PROOF. Proposition 2.6 asserts that SX, SA and SB satisfy the extension
condition. On the other hand SA N SB = S(A N B) and S(A N B) satisfies
extension condition. Hence (SX; SA,SB) is a Kan triad. It follows from
Proposition 2.8 that (SX; SA, SB)* *" is a Kan triad.

DEFINITION 2.10. [9] Two s.s. maps f, 9: (K; L, M)~ (SX; SA, SB)
are called homotopic if there exists an s.s. map f':(K X I, L xI, M x I)
— (SX; SA, SB) such that

(i) flle, &n’... n*1) = flo),
(ii) flo, &n’.."™") = g(o),
(iii) Flon°, &)= zn°, where I = A, and @ and x are base

points of K and X respectively.
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We then write f': f~g¢ or f=~g.

PROPOSITION 2. 11. The homotopy relation = is an equivalence on the
simplexes of (SX; SA, SB)*5¥

PROOF. It follows from Proposition 2.8 that function complex (SX; SA,
SB)ShM satisfies the extension condition. An s.s. map f: (K; K, M) — (SX;
SA, SB) is a 0-simplex of the function complex (SX;SA, SB)%™ It is easy
to see that for two s.s. maps £, ¢: (K, L, M) — (SX; SA, SB) such that f7: f
= g, the homotopy f* is a 1-simplex of the function complex such that f’&° =
£, i€ =g. Let f: (K; L, M)— (SX; SA, SB) be an s.s. map, then f3°° =
Jm°€" =: f. Hence f3°: f=~f i.e. the relation ~ is reflexive and it thus remains
to show that f~ ¢ and f=~h imply g =~ h. Let F,, F, € (S§X, SA, SB)" ™
be such that F.&" = f, F\&' = g, F,& = f and F,& = h. Then I-simplices F,,
F, “match” and application of the extension condition yields a 2-simplex F
such that F&° = F, and F&' = F,. A straightforward computation now yields
Fe?e’ = g, F&?¢' = h and hence F&: g~ h.

DEFINITION 2. 12. Let (K; L, M) be an s.s. triad and (X; A, B) a topo-
logical triad. Then =(K; L, M|SX; SA, SB) denotes the set of homotopy classes
of maps (K; L, M)— (SX; SA, SB).

Let K be an s.s. complex and |K| be its geometrical realization (Milnor,
[10]). For an s.s. triad (K; L, M), let (|K|; |L|,|M|) be its geometrical
realization. Let (X; A, B) be a topological triad. Then (SX, SA, SB) is an s.s.
triad.

Let u:(|K|; |L|, |M|)— (X; A, B) be a continuous map. We then define an
s.s. map y(u):(K; L, M) — (SX; SA, SB) as follows [9]. For an n-simplex o
€ K let ¢,: A, —> K be the s.s. map such that ¢,8, = ¢ (where &, is the
oaly non-degenerate n-simplex of A,). Then the singular simplex y(x)o € SX
is defined as the composition

a, el g x,
where |$,| [10] is a continuous map induced by ¢.,.
If ¢ is an n-simplex of L (or M), then yu)o € SA (or SB).

PROPOSITION 2. 13. The function ¢y establishes a one-to-one correspond-
ence between continuous maps (|K|;|L|, |M|)— (X; A, B) and s.s. maps
(K; L,M)— (SX; SA, SB).

PROOF. It is clear that v is a single valued function.
If F:(K; L, M)— (SX; SA, SB) is an s.s. map, we then define a continuous
map v f): (|K|; |L|, |M])— (X; A, B) as follows. For an n-simplex ¢ € K,
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f(o) is a continuous map: |8,| - X. We denote by |o,&,| € |K| [10] the
corresponding element to o € K. Let (f): (|K|; |L|, |M|)— (X; A, B) be
the continuous map such that y(f)||e, &,| = f(o)|¥.| where ¥,:0 — A, is
the s.s. map such that Y¥,o = &,. Therefore ¥(f):(|K|; |LI, |M])— (X; A,
B) is a continuous map. It is easy to see that v is a single valued function.
Now we prove that y is an onto correspondence. Let f:(|K|; |L]|, |M])
— (SX; SA, SB) be an s. s. map. For an n-simplex o of K, f (o) is a continuous
map:|A,| - X and ¥(f) (|0, &) = (@) (|A. ) X. If ¢ € L (or M), ¥(f)
(lo,&,]) = A (or B). Hence v(f):(|K|; |L|, |IM|)—(X; A, B) is a contin-
uous map. Moreover for y(f) we define v @(f):(K; L, M) — (SX; SA, SB).
The singular simplex y(y(f)) ¢ © SX is defined as the composition |4,|

[qS"[ — | K| &4 nSf) Xandif o€ L (or M), 9(y(f)) o € SA (or SB). By the
definition of y(f), ¥(¥(f))e: |A,] > X (or A, or B) is equal to f (o). Then

vy = identity and v is onto. Therefore and vy are inverse to each other.

THEOREM 2. 14. Let (K; L, M)be an s.s. triad and (X; A, B) be a topo-
logical triad. Then the function v induces a one-to-one correspondence 7%
between the homotopy classes of continuous maps (|K|; |L|, |M|)— (X; A,
B) and the homotopy classes of s.s. maps (K;L, M) — (SX, SA, SB).

PROOF. Let u,v: (|K!;|L|, |M|)— (X; A,B) be continuous maps and
F:u~v. Now we consider non-degenerate (n + 1)-simplex

Ti = (O:"': i— 1' i’ i:Z + 1,"', 71) X (01’ 02"': Ot’ 1t+1"":1n+1)

of A, XTI for £=0,1,2,...,n. Then a non-degenerate (n + 1)-simplex of
K X I may be given by (¢, X 1) (r;) for o € K. Now we denote by [o,T;]
this simplex and by [o, 7,&’] its face [0, 7)€’ for 1 =0,1,2,...,n + 1. On the
other hand the n-simplex of |K| is |0, &,| whereo € K, and &, € A,. Then
non-degenerate (z + 1)-simplex of |K| X |[I| may be denoted by [|o, &,], 7]
For an #n-simplex o € K let ¢, : A,y > K X I be the unique s.s. map
such that @, ., &,+; = [0, 7] Then the singular simplex y(F) [o,7,] € SX is
defined as the composition
8l 2o g n = k1 x (11 x,

where |K X I| is canonically homeomorphic to |K X I| [10] and these may
be identified each other. If o is an n-simplex of L (or M), then y(F) (o, 7;)
€ SA (or SB). Therefore y(F): (K X I; L Xx I, M X I) - (SX; SA, SB) is an
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s.s. map. Since y(F) (o, &RC...n"") = y(F)[a, 7,"] = y(u)(o), ¥(F) (a,&n°......
7"") = y(F)o, 7,&""] = 9(v)(o) and ¥(F) (@n°, &) = z1°, ¥(F): v(u) = ¥(v).

Hence v induces a single valued correspondence y* between the homotopy
classes of continuous maps (|K|; |L|, |M]|)— (X; A, B) and the homotopy
classes of s.s.maps (K; L, M)— (SX; SA,SB). Let f,9:(K; L, M)— (SX;

SA, SB) be s.s. maps and G:f=~ g. Now we define a continuous map y(G):
(K| x |Il; |[L| x [I|, |M]| x |I|)~>(X; A, B) as follows. For an n-simplex
o € K, G[o,7;] is a continuous map :A,,, = X. It is easy to see that if o €
L(or M), G[o,7,] is a continuous map: A,,, — A(or B). Let ¥(G): (|K| X
|I; |L] x |I], |M| x |I|)—>(X;A, B) be the continuous map such that

;(G) |[|a': En ' H Ti] = G[O’, Ti] ® I‘PLU,T‘] ' . It iS easy to Verify ;(G) [|U: 87» | H 7080]
= o(f)lle, &, and ¥(G) |[|o, &,|, 7,"""] = ¥(9)| | o, &,]. Therefore ¥(G): ¥(f)
~ y(g). Hence v induces a single valued correspondence vy between the homo-

topy classes of s.s. maps (K; L, M)— (SX; SA, SB) and the homotopy
classes of continuous maps (|K|; |L|, |M|)— (X;A,B). It is easy to see

that y* and vy are inverse to each other.

3. Group structure. Let (X; A, B) be a CW-triad and (Y; C, D) a topo-
logical triad. In [1] we denoted by «(X; A,B'Y; C, D) the set of homotopy
classes of maps of (X; A, B)— (Y; C, D) such that base point is mapped to
base point. Let f*: w(X'; A, B'|Y; C,D) —> =(X; A,B|Y; C,D) be induced
map by a map f: (X;A,B)—> (X;A",B)and ¢,:m(X; A,B|Y; C,D)—>m
(X; A,B|Y’; C',D’) the one by a map @: (Y; C,D)— (Y'; C', D)) as usual.
Let 34: m(X; A,B|Y; C,D) > n(3X; 3A,3B|3Y; 8C, 3D) be the function
induced by suspension as in [15],[16].
Let (Y; C, D)**® denote a function space of maps of (X; A, B) into (Y¥;
C, D) with the compact-open topology. There is a function A: 7 ((Y; C, D)
4P > w(3'X; 8"A, 8’B|Y; C, D) [13] which is one-to-one and natural with
respect to maps f and @ where 2" = 3(3"%).

The following theorem was proved in [1] using A~%o J%.

THEOREM 3.1. Let (X; A, B) be a CW-triad and let Y,C and D be
(n—1), I — 1) and (m — 1)- connected topological spaces respectively, and
assume that dim X < 2n — 2, dim A <2l — 2 and dim B < 2m — 2. Then
we can introduce a group structure into w(X; A,B|Y; C,D), which is
Abelian and natural with respect to maps f and @.

PROPOSITION 3.2. Let |K| be a geometric realization of K, then |K|
is a CW-complex having one n-cell corresponding to each non-degenerate
n-simplex of K.
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This Proposition was proved by J.Milnor in [10].

PROPOSITION 3.3 Let (K; L,M) be an s.s.triad and (X; A,B) be a
topological triad where X. A and B be (n — 1), (I — 1) and (m — 1)-connected
respectively, and assume that dim K <2n — 2, dim L <2/ — 2 and dim
M = 2m — 2. Then w(K; L, M|SX,SA, SB) is an Abelian group.

PROOF. In Theorem 2.5 the function f induced a one-to-one correspond-
ence 7, between the homotopy classes of continuous maps (|K|; |L]|, |M|)
— (X; A, B) and the homotopy classes of s.s. maps (K; L, M) — (SX; SA, SB).

In its proof we defined ¢ which induces the inverse correspondence y¥* of o*.
On the other hand |K!, |L| and |M/| are CW-complexes and dim |K| <
2n — 2, dim |L| <2 — 2 and dim |M| < 2m — 2 by Proposition 3.2. Then
it follows from Theorem 3.1 that =(|K|;|L|, |M||X; A, B) has a group
‘structure. Therefore, using v*, we may define the multiplication in =(K;L, M
|SX; SA, SB). It is easy to see that m(K; L, M|SX; SA, SB) is an Abelian
group.

PROPOSITION 3.4. Let f: (K; L,M)— (K';L',M') be an s.s. map and
@:(X;A,B)— (X', A; B) continuous map. Then induced maps f* and (Sp)u
are homomorphisms.

PROOF. Now we consider the following diagrams :

w(|K|: |L|, M| X; A, B-Yr w(K: L, M|SX: SA, SB)
(rDe] A

=(|K'|; |L'|, |IM'||X; A, B) X (KL, M |SX, SA, SB),

and

k]

=(|K|; |L|, |M||X; A, B) <— m(K; L, M|SX; SA, SB)
Py (S‘P)#l

*
w(|K[; |L|, |M||X'; A" B)"— n(K; L,M|SX; SA'SB).
Clearly the commutative relations hold in these diagrams, and (|f]|)*¥ and @y
are homomorphisms [1]. Therefore f* and (S@)y are homomorphisms.
PROROSITION 3.5. If f: (K; L, M)— (K; L, M) is the identity, then f
is the identity.

PROOF. Let a be an element of w(K; L, M|SX;SA, SB) and h be its
representative. Then f*a has a representative hof. Since f is the identity,
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f*a equals to a. Therefore f* is the identity.

PROPOSITION 3. 6. (gof)* = f*og* where f: (K;L, M)~ (K'; L'M') and
9: (K;L'M)Y—~>(K";L",K") are s.s.maps.

PROOF. Let a be an element of w(K''; L', M"|SX; SA,SB) and h be
its representative. Then (gof )¥a has a representative hogof. On the other
hand ¢* @ has a representative hog and f¥og* has a representative hogof.
Therefore (gof)¥* = fH*og*.

PROPOSITION 3.7. If £, 9: (K; L, M) — (K'; L', M') are homotopic, then
®— gt
PROOF. Let a be an element of w(K'; L', M'|SX; SA, SB) and h be its
representative. Then f*a and ¢¥a have representatives hof and hog. Since f
=~ ¢, hof and hog are homotopic. Therefore f* = g*.

PROPOSITION 3.8. If @ : (X;A,B)—(X;A,B) is the identity, then
(S@)y is the identity.

PROOF. Let B be any element of #w(K; L, M|SX; SA, SB) and u be its
representative. Then (S@)y8 has a representative (S@)ou. Since S¢ =
identity, (S@)y8 is the homotopy class of « and hence (S@), is the identity.

PROPOSITION 3. 9. (SY¥oS@)y = (S¥)so (S@)y, where @ : (X; A, B)—
(XA ,B) and ¥: (X;A,B)— (X"; A",B") are continuous maps.

PROOF. Let B be any element of =(K;L,M|SX; SA,SB)and « be its
representative. Then (SYo .S @)y 8 has a representative SVYo.S@ou. On the
other hand (S@)*B has a representative Spou and (SY)yo(S@)yB has a
representative SYroSgou. Therefore (SYoS@)y = (SY)uo(S@)y.

PROPOSITION 3.10. If @,V¥: (X;A,B)—>(X';A,B’) are homotopic,
then Sp and SV are homotophic.

PROOF. Let ®:(X x |I|; A x |I|, Bx |I|)—>(X"; A', B) be a homotopy
between @ and Y. For [o,7,] € SX X I (for ¢ € SX and 7, € A, X I, non-
degenrate (n + 1)-simplex of SX X I may be denoted by [0, 7;]) we define ®:
SX x I—-SX by Ofo,7,]=(S®)o,m]. Then B[c,,E] = (S®)[a, 7,&°] =
@co and Ofc, 7, = (S®)[o, 7,8*"'] = Yoo. If [0, ;] € SA X I (or SB
x I), then Ofa,7,] € SA" (or SB'). Therefore ®: (SX X I;SA x I, SB X
I)—(SX';SA’, SB) is a homotopy between S and S .

PROPOSITION 3.11. If @,V : (X; A,B)—> (X'; A ',B) are homotopic,
then (S@)y = (SY)y-
PROOF. Since @ ~ V¥, by Proposition 3. 10, Sp and SY¥ are homotopic.
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Let 8 € w(K; L, M|SX; SA, SB) be any element and « be its representative,
then (S@)yB and (SY)uB have representatives Sgecu and S¥rou respectively
and Spou ~ SY¥rou. Therefore (S@)x = (S¥)x-

4. Exact sequences. Let (K;L,M) be an s.s.triad and (X; A4, z) be a
topological pair with base point z and i: (M, L N M)— (K, L) and j:(K,L, k)
— (K; L, M) be inclusions where %2y C L (1 M is the minimal subcomplex of
L N M which contains base point & of L 1 M. Then ¢, 7 induces the inclusion
|Z], || respectively [10] and these maps induce the homomorphisms |7|#*: 7
(K5 LI X, A)—»=(|M]|, |L| N [M||X,A) and [j|*: =(|K]|; [L],|M]||X;
A,x)—>7w|K|; |L|, |k||X; A, x). On the other hand the homomorphism A :
=(|M|, |L|N|M|| X,A)—=(|K|; |L|, |M||3X;3A, z) was defined in [1].

THEOREM 4. 1. Let (K;L, M) be an s.s. triad with base point k and (X;
A, x) be a topological pair with base point x and assume that X and A
are (n — 1) and (m — 1)-connected respectively and that dim K < 2n — 2, dim
L < 2m — 2. Then the following sequence is exact and natural with respect
to maps |f] :(|K|; |L|,IM]) = (|K'|;|L'|, IM'|) and @:(X,A)—> (X ,A)):

o
(1K1 1L1, 1M1 X5 4,2) 2 n(K 5 LRI X5 A,2)
li]*

— = (|M|; |L] N [M], |k]]| X; A,2)

A
—ax(|K|; |L|, |M|| SX; SA,z)—......

PROOF. It follows from Proposition 3.2 that dim |K| < 227 — 2 and dim
|L| < 2m — 2. Therefore this theorem is an immediate consequence of The-
orem 2.5 in [1].

THEOREM 4. 2. Let (K; L, M) be an s.s.triad with base point k and
(X, A, z) be a topological pair with base point x and assume that X and
A are (n — 1) and (m — 1)-connected respectively and that dim L < 2m — 2.
Then then following sequence is exact and natural with respect to maps

fi(K;L,M)~(K;L',M) and ¢:(X,A)—> (X, A):

#*
w(K; L, M| SX; SA, Sz) L n(K; L, k| SX; SA, Sz)
~ 3
A (M: L 0 M, k| SX; SA, Sz)
A
—L% (K; L, M|S3X; S»A, Sx) -

where i,* and j* are induced by inclusion i,: (M; L N Mky) — (K; L, ko)
and j,: (K; L, ko) = (K; L, M) respectively and A, is defined so that A, =
v¥ Ay

PROOF. Now we consider the following diagram:
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£
=(|K|; |L|, IM||X; A, ) <— m(K; L, M|SX; SA, Sz)
il*| i*|
,—y‘#
w(IK3 LI |8l 1 X5 A.2) = m(K; L, ko|SX; SA, S2)
Yy
lz‘l**l z'f*l

&#
w(|M|; |L| N M, |k]|X; Ax) *—’T”(M; LNM,k, |SX; SA, Sz)
Y
Al A,
,* l

w(|K|; |L|, IM] |8X; 34, z) Y —mn(K; L, M| S5X; S3A, Sz)
1% i*|

Since commutative relations hold in this diagram, this theorem is a direct
consequence of Theorem 4. 1.

5. #"(K; L, M) and #"(K; L, M).
DEFINITION 5.1. let (X; A, B) be a CW-triad and (K; L, M) be an s.s.
triad. Then we define ="(X; A, B) and »"(K; L, M) by

7"(X; A, B) = w(X; A, B|EY; S, p),
7"(K; L, M) = w(K; L, M|SEY; SS"1, Sp).

PROPOSITION 5.2. Let (X; A, B) be a CW-triad such that dim A < 2n
—4. Then w"(X; A, B) is an Abelian group.

PROOF. Since E} is contractible and S"' is (7 — 2)-connected and dim
A=<2n—4, this proposition is a direct consequence of Theorem 3. 1.

Similarly to Proposition 5.2, by Proposition 3.3. we have

PROPOSITION 5.3. If (K;L,M) is an s.s. triad such that dim L < 2n
. — 4, then w"(K; L, M) is an Abelian group.

DEFINITION 5. 4. Let (X; A,B) be a CW-triad and (K; L, M) be an s.s.
triad. Then we define #(X; A, B) and #(K; L, M) by
7(X; A, B) = n(X; A, B|E"; E'™', E™Y),
7(K; L, M) = w(K; L, M|SE?; SE}, SE'™).
PROPOSITION 5.5. Let (X; A, B) be a CW-triad. Then =*(X; A,B) is an
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Abelian group.

PROOF. Since E%, E*', E*' are all contractible, this proposition is a
direct consequence of Theorem 3. 1.

Similarly to Proposition 5.5, by Proposition 3.3, we have
PROPOSITION 5. 6. Let (K; L, M) be an s.s. triad. Then ="(K; L, M) is
an Abelian group.

DEFINITION 5.7. (F.P.Peterson)[13][14] Let (X ,A) be a CW-pair. Then
we define 7"(X,A) by

(X, A) =x(X, A|S", p).
DEFINITION 5. 8. Let (K, L) be an s.s. pair. Then we define #"(K, L) by
(K, L) = w(K, L|SS", Sp).

PROPOSITION 5.9. Let (X, A) be a CW-pair such that dim X < 2n — 2.
Then w(X, A) is an Abelian group.

This Proposition is a direct consequence of Theorem 3. 1.
Similarly, Proposition 3.3 implies

PROPOSITION 5.10. Let (K, L) be an s.s. pair such that dim K < 2n
— 2. Then w"(K, L) is an Abelian group.

DEFINITION 5.11. Let (X, A) be a CW-pair and (K, L) be an s.s. pair.
Then we define #"(X, A) and »"(K, L) by

(X, A) =n(X,A|E}, S*7)
(K, L) = w(K, L|SE%, SS§").
It is easy to verify that following Propositions hold.
PROPOSITION 5.12. Let (X,A) be a CW-pair such that dim A < 2n — 4.
Then (X, A) is an Abelian group.

PROPOSITION 5.13. Let (K, L) be an s.s.-pair such that dim L < 2n
— 4. Then w"(K, L) is an Abelian group.

Let ®:(EY X I,S*"' x I) > (S", E) be defined so that if ®, = ®|(E:
X t), then

@, = identity map of (E;, S*') into (S*, EZ),

®,:(E}, S"")— (S",p) is a homeomorphism of E} — S"'onto S" — p.
Let (X, A) be a CW-pair and f, ¢: (X, A) — (E}, S*) be continuous maps.
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PROPOSITION 5.14. If f and § are homotopic, then ¢ ,of =~ ¢ og.
It is easily seen that this proposition holds.

DEFINITION 5.15. The function ¢, induces a set transformation from ="

(X, A) to #"(X, A). Hereafter this transformation will also be denoted by ¢,.
PROPOSITION 5.16. ¢, : #"(X, A) = n(X, A) is a homomorphism.
PROOF. We considered the following diagram in [1]:

52
w(K; L, M| X;Y, Z) —> m(8?K; 8°L, °M|$°X, 8°Y, $Z)
A

~— (32 X; S2Y, $2Z)(58M),
Now we consider the special cases as follows:
— 3% A
'Ir"(X, A) kil 77(52X, gSaA | zng:’ Qszsn-l) 72((62E,T,5"‘S"_1)(X"‘))

¢ CXNN| @)

2

8 )y
2(X, A) — w(32X, $°A|3°S", p) —— my(32S", p)5).

In virtue of Theorem 1.1 and Theorem 1.2 in [1], 4 and M\ are natural with
respect to map ¢, and the map (3%¢,), : m,((B’E}, 325" ) D) —m, (325", p) )
is a homomorphism.

We defined group structures in 7"(X, A) and #%(X, A) using A 'og% in [1].
Therefore ¢, : 7 (X,A) - #"(X, A) is a natural homomorphism induced by
(B2 1 m((B2EL, 3°57) 0) = ary((B°S7, p) ™).

Let W:(E" x I; E** x I, E¥* x I) » (E*, S*™*, E*") be defined so that if
Vv, = V|(E; X t), then

Y, = identity map of (E%; E}™*, E*') into (E}; S*7!, E*™Y)

V.. (EL; EY?, EXY)— (E?; S, p) is a homeomorphism of E} — E*!
onto E} — p.
Let (X; A, B) be a CW-triad and f, g9:(X; A, B)— (E!; E!™', E*") be conti-

nuous maps.
PROPOSITION 5.17. If f and g are homotopic, then Yrof ~ {rog.

It is easily seen that this proposition holds.
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DEFINITION 5.18. The function ¥, induces a set transformation from 7"
(X; A, B) to (X; A, B) by Proposition 5.17. Hereafter this transformation
will also be denoted by ..

Similarly to Proposition 5.16, we have
PROPOSITION 5.19. ¥, : #'(X; A, B) > w(X; A, B) is a homomorphism.

DEFINITION 5.20. Let (K, L) be an s.s. pair such that dim K < 2n — 2
dim L <2n — 4.

Now we consider the following diagram :

#

(K|, |L]) <— 7 (K, L)
b, | @w |

,Yﬂ:
~'(|K|, |L|)— ="K, L)

We define (¢,)y : 7" (K,L) — #"(K, L) such that (¢,)y = y*é,y*. Then (¢,)¥ is
a homomorphism.

Similarly we define a homomorphism (Y))y : 7"(K; L, M) — ="(K; L, M),
where (K; L, M) is an s.s. triad.

THEOREM 5.21. Let (K; L, M) be an s.s. triad and assume that dim
L < 2n — 4. Then the following sequence is exact and natural with respect
to a map f(K;L,M)— (K;L',M):

* = " ) A, —h1] a*
a(K; L, M)—7"K,L)—7"(M,L N M)—7""(K;L, M)—....

PROOF. In virtue of Proposition 5.3, and Proposition 5.10, #*(K;L, M)
and #*(K,L) are abelian groups for ¢ =7 and since dim (L N M) =<
dim L < 2n — 4, #*(M. L N M) is an abelian group for ¢ = ». Th=:n this the-
orem is a direct consequence of Theorem 4.2.

DEFINITION 5.22. An s.s. triple (K,L,M) is an s.s. complex K and a
subcomplex L and a subcomplelx M( C L).

THEOREM 5.23. Let (K, L, M) be an s.s. triple and assume that dim
K < 2n — 2. Then the following sequence is exact :

- . A
w(K, L) L 2K, M) e a L, M) (K, L),

where it and j are inclusion maps and A, is defined similarly to A, of
Theorem 4.2.

PROOF. By virtue of Theorem 14.3 in [14], the following sequence is

exact :
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i3 Z'#

A
(1K1, |M]) Lom"(|K|,|M]) 7| L], | M])—a"(|K], |L]) ...

In virtue of the isomorphism ¥, it is easy to see that this theorem holds.

6. m(K; L, M).

DEFINITION 6.1. A CW-tetrad (X;A,B,C) is a CW-complex X and
subcomplexes A, B and C which have a non-vacuous intersection A 1 B N C
=+ 0. A map f of a CW-tetrad (X; A, B,C) into a CW-tetrad (Y; D, E, F) is
a continuous function from X to Y which maps A, B,C into D, F, E respec-
tively and base point to base point and will be denoted by f: (X; A,B,C)
— (Y; D, E,F).

DEFINITION 6.2. An s.s. tetrad (K;L, M, N) is an s.s. complex K and
subcomplexes L, M and N which have a non-vacuous intersection L 1 M N
N=0. An s.s. map f of an s.s. tetrad (K; L, M, N) into an s.s. tetrad
(S|P|;S|Q], SIR|, S|T]) is a function from K to S|P| which maps L,
M, N into S|Q|, S|R|, S|T| respectively and base point to base point and
commutes with all face and degeneracy operators and will be denoted by f:

(K; L, M, N)—> (S|P|; S|Q], S|R]|, S|T]).
Similarly to a case of triads, the following theorem holds.

THEOREM 6.3. Let (K; L, M, N) and (P; Q, R, T) be s.s. tetrads. Then
the function & induces a one-to-one correspondence yv* between the homotopy
classes of continuous maps (|K|; |L|, | M|, |N|)— (|P|;|Q]l, |R]|, |T]|) arnd
the homotopy classes of s.s. maps (K; L, M, N)—(S|P|; S|Q|,S|R|,S|T]).

DEFINITION 6.4. Let (P; Q, R, p) be an s.s. triad with base point p. Then
we define for n > 2, 7,(|P|; |Q]J, |R]|) and 7(P; Q, R) by

([P [Q, |R]) = w(|8,]5 [2684], 2841, 22 2ul|IP]; [Q1, R, [po]),

0,1

(P Q, R) = m(A,; 2A,, 0,4, > 2A.| S|P|; S|QI, SIRI, S|pol)

i=0,1

This set =, (|P|;|Q/l, |R|) will be canonically identified to #-dimensional
homotopy group in the sense of A.L. Blakers-W.S.Massey [3].

THEOREM 6.5. Let (P; Q, R) be an s.s.triad. Then the following seque-
nce is exact:

A . .
Wn(P, Q’ R) '_i’ Wn—l(Qa Q ﬂ R) _zi’ 77'n—l<P, Q) ’Ji* 77"!—1(P; Q, R) >y,
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where i, and j, are inclusions and D, is defined so that A, = y*8, y*[3].

PROOF. Consider the following diagram :

="(P; Q, R) "éi"ﬂ'n—l(Q, Qn R)"t_z" T a-1(P, Q)LWIL-I(P" Q.R)—>---
7| 7| 7| b
Jox

(P10 IR a0 11 N R (P 10) o (P Q) [R) =

The lower sequence is exact [3] and ¥* is a one-to-one correspondence. Then
every terms of the upper sequence have a group structure in virtue of ¢* and
the exactness of the upper sequance is an immediate consequence of that of
the lower sequence.

Let Sd K be the subdivision [7] of K and Sd"K be the rfold subdiv-
ison of K and let »: (Sd'K; Sd'L, Sd'M, Sd'N)— (P; Q; R; T) be an s.s.
map. Then we shall define

o*: 7(Sd'K; Sd'L, SA'M, SA'N|P; Q,R, T)—
(| K[: |L[, IM[,IN[[IP[; |Ql, [R], |T]).

In order to define this map we prepare the following proposition.

PROPOSITION 6.6. Let (K; L,M,N) be an s.s. tetrad. Then the continu-
ous map |dK|: (|SdK|; [SdL|, |SdM|, [SIN|)—(|K|; |LI|, |M]|, |N])

is a homotopy equivalence.

This proposition is the generalization of Lemma 7.5 in [7] and its proof
is similar to Kan’s one, therefore it will be omitted.

COROLLARY 6.7. Let (K; L, M,N) be an s.s. tetrad. Then the conti-
nuous map |d'K| :(|SIK|; |SdL|, |Sd'M|, |[SI'N|)— (|K|; |L|, |[M], |N])

is a homotopy equivalence.

This corollary is an immediate consequence of Proposition 6.6. For u we
define ©* by ©¥([#]) = [|u]|on], where 5 is an inverse map of [d'K] in
Corollary 6.7. It follows from the following proposition which asserts that
o* is well defined.

PROPOSITION 6.8. If u,v: (SA'K; SA'L, SA"M,Sd'N) - (P;Q,R, T) are
homotopic s.s. maps, then |u|on = |v|on.

PROOF. Let F be a homotopy between # and ». Similarly to the result
of [10], F induces an ordinary homotopy
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(ISTK| x |I];[SAL| x [1|, [Sd'M| x |I|, |SAN| x [I])—
(IP[; [QL [R], [T]).

Hence |u| =~ |v|. Therefore |u|on =~ |v]|on.

Let £: (IK|; |L|, |M], [N))=(|Pl; 1Q], |RI, |T]) be a continuous map
Then we shall define a correspondence o*: #(|K|; |L|, |M|, |N|||P|; |Q],
|IR||T])— «(S8d'K; SA'L,Sd'M,SA'N|P; Q,R,T). In order to define this

correspondence we prepare the following theorem.

THEOREM 6.9. Let (K;L, M, N) and (P;Q.R,T) be s.s. tetrads and K
finite. Then for every continuous map f:(|K|; |L|, |M|, |N|)—(|P|;|Ql,
|R|,|T|), there exist an integer r > 0 and an s.s. map h:(Sd'K; Sd'L, Sd'M,
SA'N) — (P; Q. R, T) such that the diagram

(IKI: 1L], 1M1, IND —2— (PI5 121 |RI, 1T])

!d’K]I /Thl

(ISdK|; |Sd'L|, |Sd"M|, |SdN])

is commutative up to homotopy, i.e., |h| =~ fo|d' K|.

This theorem is the generalization of Theorem 8.5 in [7] and its proof
is completely similar to Kan’s one, therefore it will be omitted.

Let f and g be homotopic continuous maps (|K|; |L|,|M]|, |N|)— (|P];
|Q], |R|,|T'|) and F be its homotopy. Then F is a continuous map

(K[ > [1l; |L] x 1], [M] x 1], [N| x [I])=>(|P[; [QLIR], |T])

such that F[|a, &,|, 7&"]1=f| |0,&,| and F|[|e, €|, 7, |=g||0,&,]. Since| K|
X |I|is canonically homeomorphic:to |K X I|, these spaces may be identified.
By Theorem 6.9, for a continuous map F, there exist an integer » > 0 and an
s.s. map H:(Sd(K x I); SA'(L x I), SA"(M x I), SA'(N x I)) > (P; Q,R, T)
such that |H| ~ Fo|d'(K x I)|. Let h, and h, be s.s. maps H|Sd'K X (0)
and H|Sd'K x (1). Then for [ f] we define o* ([f]) = [h,]. Since F: f=g

implies H: hy =~ h,, o* is well defined. It is easy to see that |h,| ~ fo|d'K]|.
THEOREM 6.10. Let (K; L, M, N) and (P;Q,R,T) be s.s. tetrads and K

Sfinite. Then correspondences ®* and o% are one-to-one and ®* is an inverse

of ¥,
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PROOF. It was proved already that ©* and o* are single valued. Let f:
(IK|; |IL|,|M].IN|)—(|P];|Ql, |R|, |T|) be a continuous map. By those

difinitions @*([ £]) = [A] and @*(@*[ f]) = [heon] = [fo|d'K|oy]. By corol-
lary 6.7, d'Ko n ~ 1. Therefore o*(@*[ f]) = [ f] and ®* is onto.

Let I" be the set {y € C| y'=0for i >n and —1=<y' <1 (Zi < n)}
and I" be its boundary and I}, I7 be simplicial subdivisions of I7, I respecti-
vely. It follows that I7 and r may be considered as s.s. complexes [12].

PROPOSITION 6.11 Let (K;L,M) be an s.s. triad and K finite. Then
7 (K; L, M), given in Definition 5.1, may also be defined by

w(K; L, M) = =(SAK; STL, ST M| I*; IT, o)

JSor sufficiently large integer, r > 0 where q, is a base point of I7.
PROOF. By its definition #(K; L, M) = »(X; L, M|SE"; SS""%, Sp) and
there exists a one-to-one correspondence
v*: w(K; L, M|SE"; SS™%, Sp) > =(|K|; |L|, |M||E"; S*, p). On the

other hand there exists a one-to-one correspondence

o* : (STK; STL, SIM| I, I, g~ w(|K|; (LI, |M|[IT[; [TV, |go]).
The image of y* is canonically identified with the image of ®*. Therefore
this proposition holds.

PROPOSITION 6.12. Let (P; Q,R.p) be an s.s. triad with base point p.
Then m.(P; Q, R), given in Dzfinition 6.4, may also be defined by

m(P; @, R) = m(SdA; ST(@,8), ST@,A), ST 3 2 A,) P, R ).

20,1

PROOF. By its definition 7(P; Q R)=m(An; 2)8,,0,4,, > 94,

i+0,1

S|p[; S|1Ql,

S|R|, Spy|) and there exists a one-to-one correspondence *: m(P; Q, R) —>
7|P|; |Ql, |R]). On the other hand there exists a one-to-one correspondence

o*: w(STA,; ST@A,), SI@A), ST ( 3 2, ){ P Q Rpo)—

0,1

W(IA'L{$ !aOAn|, ’alAnLI Z 8{An|

i=0,1

P; Q> R’PO)

The image of ¥* is canonically identified with the image of ®* Therefore
this proposition holds.
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