AN EXAMPLE OF GENERAL RECURSIVE WELL-ORDERING WHICH IS NOT PRIMITIVE RECURSIVE

Shif-Chao LiU

(Received October 19, 1959)

This note is to define a binary relation $x<y$ which is a general recursive well-ordering of the natural numbers but which is not primitive recursive. Peter [1] has constructed a general recursive function $\varphi(n, x, y)$ which enumerates all the primitive recursive functions of two variables so that given any primitive recursive function $F(x, y)$, there is a natural number n_{0} such that $\phi\left(n_{0}, x, y\right)=F(x, y)$. In terms of this enumerating function we define an ordering of the natural numbers in the following manner. We first arrange all the natural numbers in their natural order

$$
0<1<2<\ldots \ldots
$$

Then for every natural number i we change the places of $2 i$ and $2 i+1$ in the above series, if $\varphi(i, 2 i, 2 i+1)=0$ and $\boldsymbol{\rho}(i, 2 i+1,2 i) \neq 0$; otherwise, let $2 i$ and $2 i+1$ keep their natural order. For example, take $i=0$. By the definition of $\varphi(i, x, y), \varphi(0, x, y)=x$. Then $\varphi(0,2.0,2.0+1)=0$ and $\varphi(0$, $2.0+1,2.0)=1$, therefore 2.0 and $2.0+1$ should change their places. According to this rule we arrange the natural numbers in a new order

$$
1 \prec 0 \prec \ldots \ldots \prec 2 i+1<2 i \prec \ldots \ldots
$$

where $\varphi(i, 2 i, 2 i+1)=0$ and $\varphi(i, 2 i+1,2 i) \neq 0$. Obviously \prec is a wellordering of type ω.

To show that \prec is not primitive recursive, let $W(x, y)$ be the representing function of $x<y$ so that $W(x, y)=0$, if and only if $x \prec y$. Given any natural number i, we distinguish three cases.

Case 1. $\varphi(i, 2 i, 2 i+1) \neq 0$. In this case $2 i<2 i+1$ and therefore $W(2 i, 2 i+1)=0 \neq \varphi(i, 2 i, 2 i+1)$. Case $2 . \varphi(i, 2 i, 2 i+1)=0$ and $\varphi(i, 2 i+$ $1,2 i) \neq 0$. In this case $2 i+1<2 i$, therefore $W(2 i+1,2 i)=0 \neq \varphi(i, 2 i$ $+1,2 i)$. Case 3. $\varphi(i, 2 i, 2 i+1)=0$ and $\varphi(i, 2 i+1,2 i)=0$. In this case $2 i \prec 2 i+1$ but $2 i+1 \cdot 2 i$, therefore $W(2 i+1,2 i) \neq 0=\varphi(i, 2 i+1,2 i)$. We have shown that in any case $W(x, y)$ is not identically equal to the primitive recursive function $\phi(i, x, y)$ which is arbitrarily given. Hence $W(x, y)$ (and consequently $x \prec y$) is not primitive recursive.

The well-known primitive recursive function $[x, 2]$ means that whenever
x is expressed as $x=2 i+j$ where $j<2$ we have $i=[x, 2]$. Formally the function $W(x, y)$ can be defined as follows.

$$
W(x, y)=\left\{\begin{array}{l}
0, \\
0, \\
\text { if }[x, 2]<[y, 2] \\
\\
\quad \boldsymbol{\varphi}([x, 2], y, x)=0 \& \boldsymbol{\rho}([x, 2], x, y) \neq 0 \\
0, \\
\quad \frac{\text { if }[x, 2]=[y, 2] \& x<y \&}{\boldsymbol{\varphi}([x, 2], x, y)=0 \& \boldsymbol{\varphi}([x, 2], y, x) \neq 0}
\end{array}\right.
$$

1, otherwise.
This definition shows that $W(x, y)$ is primitive recursive in $\varphi(i, x, y)$ and consequently that $W(x, y)$ is general recursive.

Thus $x<y$ is an example of general recursive well-ordering of the natural numbers which is not primitive recursive. Kleene [2] has shown that to any general recursive well-ordering of the natural numbers, there is a primitive recursive well-ordering, of the natural numbers, with the same order type. This implies that the types of primitive recursive well-orderings of the natural numbers have exhausted the types of general recursive well-orderings of the natural numbers. However, as the example of this note shows, primitive recursive well-orderings of the natural numbers do not exhaust general recursive well-orderings of the natural numbers.

REFERENCES

[1] R. Peter, Konstruktion nichtrekursiver Funktionen, Math. Annalen 111(1935), 42-60.
[2] S.C. Kleene, On the forms of the predicates in the theory of constructive ordinals, American Journal of Math., 77(1955), 405-428.

