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1. Introduction. Let M* be a differentiable manifold. If there exists a
tensor field ¢ of type (1,1) over M* such that

e = — &, (a,b,c=1,2,...... ,2n)

then M™ is said to be a differentiable manifold with almost complex structure.
(Tensor fields of the form given above may exist only for some manifolds with
even dimension.) We shall call ¢ the fundamental collineation of the almost
complex structure. The set of differentiable manifolds with almost complex
structure is wider than the set of complex manifolds.

Every differentiable manifold with almost complex structure ¢ admits a
poistive definite Riemannian metric ¢ such that

9 PePs = Goas

and the manifold is said to have Hermitian structure and to be a Hermitian
manifold. Making use of the metric ¢ and a skew symmetric tensor

¢a.b = gae¢gs

we can reduce the structural group of the tangent bundle of any manifold with
almost complex structure to the unitary group U(n). The converse is also true.

Differentiable manifolds with almost complex structure or almost Hermitian
structure were investigated by C.Ehresmann [1], B.Eckmann, A. Frolicher [2]
and others and were interesting topics on differential geometry and topology in
these fifteen years.

On the other hand, let M***! be a (27 + 1)-dimensional differentiable ma-
nifold. If there exists a tensor field ¢}, contravariant and covariant vector fields

& and 7, over M**" such that
1.1) En =1, G k=1,2,cc..,2n + 1)
(1.2 rank |@j| = 2n,
(1.3) ¢i€ =0,



460 S.SASAKI

(1' 4) ¢.’f’h = 0,
(1.5) L = — & + &,

then we say that M™*! has (¢, &, 9)-structure. (¢, €, )-structure may be regarded
as an analogue of almost complex structure for odd dimensional manifolds.

In the same way as almost complex manifolds we can prove that every
differentiable manifold M**** with (¢, &, 5)-structure admits a positive definite
Riemannian metric g such that

(1. 6) gué” = 7
(1.7) gu‘b;ﬂs';c = Gk — N>

and M**! is said to have (9, &, 9, 9)-structure. It is an analogue of the almost
Hermitian structure in almost complex manifold.

Now, an odd dimensional differentiable manifold M?®**' is said to have
contact structure if there exists a 1-form % over M**' such that

(1.8) 7 N (dn)" == 0.

The structural group of the tangent bundle of differentiable manifold with contact
structure is reducible to U(n) X 1. The set of differentiable manifolds such that
the structural groups of their tangent bundles reduce to U(n) X 1 is wider than
the set of differentiable manifolds with contact structure and any one of the set
is called differentiable manifold with almost contact structure. Differentiable
manifolds with contact or almost contact structure were investigated by W. Gray
[4] and W. M. Boothby-H. C. Wang [3] rather from topological point of view.

I got the idea of (@, &, #)-structure and (¢, &, 5, g)-structure in studying mani-
folds with contact structure. However, after ] talked some results about these
structures to Y. Hatakeyama, he proved that ‘“The structural group of any dif-
ferentiable manifold M#*** with (@, &, )-structure is reducible to U(n) X 1, so
the M™*' in consideration is a manifold with almost contact structure. Con-
versely, if M™*! is a differentiable manifold with almost contact structure, then
we can endow to M™* a (¢, &, 5)-structure”. (The author’s proof is given in
section 5 of the present paper). Therefore, our (¢, &, )-structure is closely related
to almost contact structure.

In the present paper, we shall study some algebraic properties on differentiable
manifolds with (¢, €, n)-structure and (@, &, 5, g)-structure. Differential geometric
properties will be studied in later papers.

2. Linear map ¢ and ¢ + &. Let M*™*' be a differentiable manifold
with (¢, €, n)-structure and suppose tensor fields ¢j, & and 7, satisfy the relations
(1.1) to (1.5). First we remark that these five relations are not independent.
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(1. 2) shows that there exist (at least locally) vector fieds & and 5, which satisfy
(1.3) and (1.4). In the second place, putting (1.5) into the associative law
(Pibi)P! = Pi(Didh),
we see that
Edin, = i€,

Hence (1.4) follows from (1.3) and (1.5), and (1.3) follows from (1.4) and
(1.5). In the third place, the existence of solutions of (1.3) and (1.4) shows
that the rank of |¢}| is smaller than 2z + 1. However, if & is another solution
of (1.3), then (1.5) multiplied by & shows us that & is proportional to E&.
Hence the rank of |@!| is equal to 27. Therefore, if we only assume that the
rank of |¢}| is smaller than 2 + 1, then (1.2) follows from (1.3), (1.4) and
(1.5).

Let P be a point of M™*! and M, be the tangent space of M**' at P.
In Mp, the set of vectors 7' such that

v =0

spans a 2 n-dimensional vector subspace Vp of Mp. If we vary P over M,
the set of such vector subspaces determines a distribution in M™**,
Now, we define a linear map

¢: Mp—> M-

by v' — ‘¢!, where
2.1 vt = i), (v € Mp).
Then we see that
o' = ($jv')ne = 0.

Hence the map ¢ is a singular map and

¢: Mp—> V5.
However, if v* € Vp, we see that

$i(piv*) = (— 8 + &),

rr
ot =

— ot
Accordingly, the map ¢ restricted to V» behaves just like the fundamental col-
lineation of an almost complex structure. We shall call ¢ the fundamental
singular collineation of the (@, €, n)-structure.

Contrary to the map ¢, the map
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4’ + f"): My — M

defined by v* — 7', where

(2.2) vt = (@) + En)’, (v € Mp)
is a non-singular transformation. For,
(2.3) @) + &) (— Pt + Em) = &,

as we can easily verify it by (1.1) ~ (1.5). The two matrices ¢ + &y and — ¢
+ &7 are inverse to each other.
In order to clarify the geometrical meaning of the map ¢ + &n, we put

{ vt = ("n)E,

2.4
v = v — (W8
Then
(2.5) v = v} + v,
and
(2.6) vime = 0.

We call that v; is the &-component of the vector v* and v, is the #7-component
of the vector v%
Now, we can easily see that

vt + $jv; = () + &m0,
hence the linear manp ¢ + &7 may also be defined as v* — 7%, where
v = v} + P,
It has the following properties :

1) Any vector with the direction & is fixed under the map.
2) Any vector which is contained in the distribution % is transformed in the
same way as by the fundamental collineation of an almost complex structure.
More generally, we see that

v = () + &) (i + Eno*
=(-— & + &%, + En )"
2.7 v = vj — vl

Accordingly, v' is the difference of the &-component and the 5-component of the
original vector %

3. Associated Riemannian metric g. Let M™*' be a differentiable mani-
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fold with (¢, & #)-structure. We shall show that M***! admits Riemannian metric
which stands analogous situation to almost Hermitian metric for any differentiable
manifold with almost complex structure. We begin with a lemma.

LEMMA. Suppose & and n be contravariant and covariant vector field on
a differentiable manifold M™*' such that

(3. 1) ‘ft’h =1
Then M*™™' admits a positive definite Riemannian metric h such that
3.2) 7, = h &,

N.B. (3.1) and (3.2) imply that & is a unit vector field over M™*
with respect to the metric A.

PROOF. First we take an arbitrary positive definite Riemanniah metric on
M*™*, Let {U,} be an open covering of M™*' by coordinate neighborhoods
U.. In every U, we take 27 unit vector fields &, with respect to the metric
in consideration so that they are orthogonal to each other and contained in the
distribution 5. Then 27 + 1 vector fields &, and

(3.3) En=¢

constitute frames over U,, where A is an abbreviation of 2z + 1. We put

n
3.4 B =3 Entley + Entla,

a=1

then A% is a new positive definite contravariant metric tensor of U,.

Now, assume U, Nl Up is not empty. We denote 2 n vector fields over Up
constructed in the same way as &, over U, by &,,. Then, over U, N Ug there
exist relations

2n
&éa) = Z cabgib)’
b=l

where (c,,) is an orthogonal martix, because &,’s and &,,’s are both orthonormal
vector fields. Hence, we see that

2n o 2n
Zféa)fém = Z féa)f{a)-
a=1 a=1
Accordingly, the metric tensors above over U, and U coincide over U, N U,.
Consequently, the metric tensor defined above over every U, of {U,} constitutes
a single metric tensor A of M™*.
In the next place, we define &" over U, by
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(3.5) &y = hUEP.
Then, we get

2n+1

Zf‘@)(&é - f’ék) 5’”) = 0.

k=1

Hence, we see that

(3.6) EL £ = B,
By virtue of the last relation, we can easily verify that
3.7 RUEWER — g

so &W’s are covariant orthonormal vector fields over U, with respect to the metric
h. Therefore, by virtue of (3.5), &€,,’s are contravariant orthonormal vector fields
over U,.

From (3.6) we get especially

EnE® =0, §E® =1.
However, by assumption there exist the relations
fé«}’h =0, &, = 1.
Comparing thsse equations we get
n = &N = hnﬁm,
N = hu‘fj-
Consequently, the metric 4 is the required Riemannian metric.

THEOREM 1. Let M*™*' be a differentiable manifold with ($, &, n)-stru-
cture. Then there exists a positive definite Riemannian metric § such that

(3.8) N = guéj,
(3- 9) gijd’liﬁl’lz = Gnk — M-

N.B. (3.1) and (3.8) imply that & is a unit vector field with respect to
the metric g.

PROOF. Let A be a Riemannian metric over M*"*' which has the properties
stated in the last Lemma and put

1 m
9is = 7(h‘-’ + hiw®' @ + nm,).

Then we can easily verify that

98 = m,
gtjgtfj = 7]{&‘ =1.
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In the next place we see that

%(hu + bS] + 1B
= L { hBbl + hun(— 8 + En) (— 8 + E"n)}

{hhk + hu‘ﬁ;‘ﬁlz - ﬂnﬂk},

l\')’)—‘ N

that is
9Pl = G — e
Hence, the theorem is proved. '

We shall say that the metric which has the property stated in the last
theorem an associated Riemannian metric to the given (@, &, )-structure. If a
differentiable manifold M**' admits tensor fields (¢, €, 5, g9) such that ¢ is an
associated Riemannian metric of the (@, €, )-structure, then we say that M***! has
(¢, &, n, g)-structure. In this case & is nothing but contravariant components of 7,,
so we may denote it also (¢, 7, g)-structure for brevity.

The following theorem gives another analogue of the Hermitian condition
for almost complex manifold.

THEOREM 2. Let M™" be a differentiable manifold with (¢,&,n, 9)-
structure, then the relations

3. 10) 9:;(952 + f"’h) (ot + f”?k) = Gnrs
(3- 11) gu(— ¢/Le + g”?n) (_ 4’12 + ‘fj’h) = Onx
hold good.

PROOF. By virtue of (1.1), (1.4), (3.8) and (3.9) we can easily verify
the first relation. As ¢ + &y and — ¢ + &7 are inverse matrices, (3.11) follows
immediately from (3. 10).

The relation (3.10) shows that the linear map

vt = (i + &,
on any tangent space of M®*!' is an orthogonal transformation with respect to
the Euclidean metric induced on the tangent space by g.

4. Associated 2-forms. Let M**' be a differentiable manifold with (¢, &,
7, g)-structure. We put
(4.1) by = gm¢'j"-
Then, the tensor ¢,, is skew-symmetric with respect to ¢ and j. To prove it, we
notice the associative law
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(gusbipi)di = go,Pu(Bibh).
Putting (3.9) and (1.5) into the last equation, we get
(gre — mam)Pt = g, $0(— & + &),

which, by virtue of (1.4) and (3. 8), reduces to

4.2) ¢ = — d}w
Of course, the rank of the matrix (¢,,) is 27. We call ¢, the associated skew
symmetric tensor of the (¢, &, 5, g)-structure, and the exterior 2-form %tﬁt,dx'/\ dx’

over M™*! the associated 2-form of the (¢, & 7, g)-structure.
In the next place we shall study the converse problem. Let M®*' be a

differentiable manifold which admits a 2-form %tﬁt ;dx* \dz’ such that the rank of

the matrix (¢,,) is everywhere 27 over M**'. We shall show, under the assum-
ption that M™*' is simply connected, that it admits (@, £, #, g)-structure. (We can
remove the assumption of simply-connectedness by a slight modification of (¢, €,
7, g)-structure so that & and 7, are not globally defined vector fields. However,
we do not want to digress in such direction.)

We introduce first an arbitrary positive definite Riemannian metric A over
M. As M™*' is simply connected the tensor field ¢;, admits a vector field &
over M**! such that

(4.3) ¢, = 0.

Although & is determined only within scalar factor, we take &' so that
(4.4) h &8 =1

and put
(4. 5) N = hufj-

Now, we take the symmetric tensor ¢,,A"¢,, and consider its characteristic
equation

(4.6) | b ey + phy| = 0,

where p is an unknown variable. As % is positive definite, all characteristic roots
are real. We see that 0 is a simple characteristic root and the corresponding
characteristic vector is &. Moreover, all non-zero characteristic roots are positive.
To see it we assume that p, is a non-zero characteristic root and X* is a cha-
racteristic vector corresponding to p,. Then,

(4- 7) (¢¢hhhk¢k1 + Plhtj)X 7=0.
If we contract X* with the last equation we see that

(hyy X ‘X7)ep, = K" X 9 (¢lch )
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so p, is positive.
We denote all different non-zero characteristic roots by p,, p,,---.-. , P, their
multiplicities by »y, v,,...... , v, and the characteristic spaces corresponding to O,

Pryenenes , P by Vi, Vi,eennnn , V., then
dim Vi=», A=01,.....,1

where we have put v, = 1.
Now, we wish to change the metric A over M™*! so that the new metric g
and the tensor

®) = g"bny
defined by the new metric g play the roles of g and ¢ of (9, &, », g)-structure.
To this purpose in mind we consider linear map of the tangent space Mp of
M?™*™+! at an arbitrary point P into itself defined by
(4.8) X' = h"¢,,X’, X'€ Moy
If X* € V,, then
¢mkhk¢uX == Pll’l“X J
holds good. So, we get
(¢mhhk¢k/ + thu)hjl‘l’th "
= P " (— P hnX ™) + PP X"
= 0.

Hence, we see that if X’ € V,, then X' € V, too. Moreover, we get

Xt = b, (Wb X ™)
= A"~ pipmX™).

Therefore, we see that if X* e V,, then

4.9) X‘= - p.X"

Analogous facts hold good also for vectors of V,, Vi,...... , V., too.

Now, let {U,} be sufficiently fine open covering of M***'. We take, over
any one of U,, frames e,,...... , €ans €5 SO that ey,...... s e, span Vi, e, ... > €y 4,
span V,, ...... s €ppreee by, yalyeees s €yr-onvy span V, and ey = & We call such
frame an adapted frame. Then we can easily see that the two matrices A; and

¢,, have the form
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hl O ¢1 0
hz . ¢2 .
(4 10) h = ‘e s = * e s
h, ¢,
0 1 0 0
where A, $(A =1, 2,...... , 1) are matricens of v, columns and v, rows. Therefore,

if we refer to adapted frames, the linear map (4.8) decomposes into
X = h*8pa, 7, X A,

X2 =0,

X d}‘ = - PAX w)\.
Now, we introduce a new Riemannian metric g over U, such that

9, 0
(4.11) g=| = .

0 1
with respect to the adapted frames, where we have put
(4.12) h=Ve b A=1,....,1L

As p)Js are scalar functions over M***! and do not depend upon the choice of
adapted frames, we see that g for each U, defines globally a Riemannian metric
over M*¥*,

If we define a linear map of the tangent space Mp of M***! at any point P

of U, by
(4. 13) Xt = m¢n1X j,

then it decomposes to

"X %\ = o"ABa XA,
(4. 14) { girban

‘X4=0
with respect to adapted frames. Hence, we can easily see that

{ "X = — X%,

4- 15 ’”
( ) X4=0.
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Consequently, the linear map (4. 13) induces an almost complex structure on V;,

(4.16) @) = M‘i’hi
is a globally defined tensor field over M**'. Denoting the components of ¢ with
respect to an adapted frame by ¢§ we see, by virtue of (4.15), that
& 0
0 )
Now, let us denote the transformation of components X of a vector with

respect to the adapted frame on U, and those X* of the same vector with respect
to a natural frame on U, by

X'=A.X" X"=BrX-

(4.17) @ =(

Of course, A%, and B® are inverse matrices. Then, for components ¢)¢p. and
¢dsd; of the tensor ¢¢ there exists the relation

bibi = ALPidIBE.

Hence we see that

won=( 5 CF N E R

& Al 0 o/ \B* B:
_ (- AeB; - A%B‘A)
— AB: — A2B%
_<—83+AchA — 8 + A3 ﬁ)
— & + AAB* — & + AsBY/

Therefore, there exists a relation
Gk = — 8% + ALB)

over every U,. However, the vector which has components A% with respect to
the natural frame has (0,...... ,0,1) as its components with respect to the adapted
frames, so it is nothing but the vector &. In the same way the vector which has
components B} with respect to the natural frame is nothing but the vector 5,, We
can easily verify that

(4- 18) 7 = gufj
holds good. Hence we see that
(4.19) ipe = — 8 + Em

holds globally over M**!, We can also see that
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(4. 20) $E =0,
(4.21) $m = 0,
(4- 22) f{”h =1

are true, because they hold good with respect to adapted frames.
From (4.16) we see that

(4.23) .Qm‘#} = - g;n‘l”i = ¢u
holds good. So we get
9 PPl = ¢,Pl = — ¢,,b1
= — gubPi
= — gu(— & + &n)-
Hence, we see, by virtue of (4.18), that
(4.24) 9B = gnx — M

is true. Accordingly, the four tensor fields ¢j, &, #,, g, constitute a (¢, &, 9, g)-
structure of the given manifold M™**,
Summarizing the above results, we get the following

THEOREM 3. If a differentiable manifold M*"* admits (¢, &, n, g)-struc-
ture, then M™*' admits a skew symmetric tensor ., (in other words, 2-form

%ﬂjdx‘/\dx") whose rank is 2n. If M™* is simply connected, the converse is
also true.

5. Contact structure and almost contact structure. Let M™*' be a
differentiable manifold with contact structure and let

(5' 1) n = mdx‘
be the 1-form which defines the contact structure. Then we have
(5.2) n A (dn)" =0,

where dn means the exterior derivative of 5 and the symbol /A means the exterior
multiplication. d7n can be written as

(.3) dn = -;—qb,,dx' A de,

where we have put
(5.4) ¢u = Oy — O
provided that 9, means

ozt
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By virtue of the condition (5. 2), it follows that d» is a 2-form of rank 2 »
everywhere over M™*' and ¢,, is a matrix whose rank is everywhere 27 over
M*™*'. We can easily verify that (5. 2) is equivalent to

(5- 5) ")ud’za‘l’m ------ ¢2n m+1) =i= 0,
where [ ] means a determinant divided by the factorial of the number of
indices.
As the rank of ¢,, is 27, there exists at least locally a vector field & such
that
(5.6) ¢.,8 =0.

However, as & is given by

& = _1_4)[23#)45 ...... Pun 2041,

r=L 41 1
(5- 7) f - Y ¢l34¢56 """" ¢m+ 1

where we have put

(5.8) A=2n + DnpaPsdss...... Pon 2ns1ss

& is a vector field globally defined over M™*,
To prove & given by (5.7) satisfies (5.6), it is sufficient to verify the case
i =1. We see that

¢UE’ = % {¢12¢L34¢56 ------ ¢2n+l 1]
+ PubusPer .- Lo

+ ¢12n+1¢[12¢34 """ ¢1n—1 2n) ; .

On the right hand side of the last equation, the terms which contain ¢..$;;s as a
factor are contained only in the first and second terms and their sum is easily
seen to be

(= D" it .- L —
+ (= 1) ¢ brbus. ... b 21y = 0.
In the same way all the other terms cancel to each other. Hence

¢11‘El =0.
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Consequently
¢t = 0.
We can easily see also that
(5.9) =1

holds good.
Now, by the Lemma of § 3, there exists a positive definite Riemannian
metric A over M™*! such that

(5.10) 0 = h £
Taking this metric 2 and &, 7, ¢,; as those of §4, we get the following

THEOREM 4. Let M™*' be a differentiable manifold with contact struc-
ture. If n = n,da* is the 1-form which defines the contact structure, then we
can find a (b, & 1, g)-structure in M™** such that the vector field 7, is the
one given by the coefficients of the 1-form n and

(5.11) gu®} = b, = om; — O

Now, a differentiable manifold M**! is said to have almost contact structure
if the structural group of the tangent bundle of the manifold is reducible to
U(n) x 1, where U(n) is the unitary group of » complex variables. We shall
prove the following

THEOREM 5. Let M™*' be a differentiable manifold with ($,&, 1, g)-
structure, then the structure induces an almost contact structure to M™*.
The converse is also true.

PROOF. Let {U,} be an open covering of M**' by coordinate neighbor-
hoods. We shall determine orthogonal frames in every U, in the following way.
First we put

(5.12) En=¢, A=2n+1)
and take a unit vector field &, over U, so that it is orthogonal to &,. We
define &Ep{-) by

Eiy = PiEL- *=n+1)
Then, we can easily verify that &k, &h., &l are unit vector fields over U,
orthogonal to each other.

Next, we take a unit vector field &} over U, so that it is orthogonal to
three vector field &, &iw), €4, and put

féz«) = 95;&%2) (2*'= n+ 2)
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Then, we can easily verify that &), &, &hw, &b, Ela) are unit vector fields over
U, orthogonal to each other.
Proceeding in the same way, we finally get orthonormal frames (&), &,

E z A)) Such that

(5.13) Eowy = Dl A*=n+2)
We can easily verify that
‘ (5.14) En=— ¢;£ZM),

by virtue of (1.5). We call such frame an adapted frame.

From our construction, we see easily that the matrix whose elements are
components of the fundamental tensor g with respect to any adapted frame takes
the following form :

& 0 0
(5. 15) ’ g=lo0o & o
0 0 1

By virtue of (5.13) and (5.14), we see also that the matrix whose elements
are components of the tensor ¢ with respect to the same adapted frame is

0 -8 0
(5. 16) ¢=[s8 o0 0
0 0 0

Now, let U,, U be coordinate neighborhoods such that their intersection
U. N Ug is not empty. At every point of U, | Ug we can take an adapted
frame (&), Ehw, Ela) of U, and an adapted frame (&, &L, Ea) of U If
we denote by (", v, v%), (¥, v, v*) and ¢}, @ the components of the same
vector and the fundamental singular collineation respectively with respect to the
two adapted frames, we see that the relations

a, by 0 o
(5.17) v=|lcp d. O oM
0 0 1 vt
and
(5.18) ¢’ = ¢l

hold good. Of course the first matrix of the right hand side of (5.17) is an

orthogonal matrix. As ¢ and ¢ have the same form (5.16) with respect to the
two adapted frames, we can easily see from (5.18) that
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(5.19) a,=d, b= —c)

®

hold good. Hence we see that our matrix belongs to U(xz) X 1. Consequently,
the (¢, & 7, g)-structure induces uniquely an almost contact structure to M**'.

Conversely, let M*"*! be a differentiable manifold with almost contact structure
and let {U,} be an open covering of M***' by coordinate neighborhoods. Then,
by definition, we can take frames over every U, so that, if U, 1 Ug is not
empty, the transformation of components of the same vector with respect to
frames of U, and Up is given by a matrix which is a real representation of
U(n) X 1, i.e. an orthogonal matrix of the form

a., b 0
—b, a. 0
0 0 1

We call such frames adapted frames.
If we take a symmetric tensor field ¢ over U, whose components are given

by
& 0 0
0 & 0
0 0 1

with respect to adapted frames, all such tensor fields g over U,’s are unified to a
single positive definite tensor field over M*™*!. We take it as the tensor field
which defines a Riemannian metric over M***!. In the same way, all tensor fields
over U,’s of type (1,1) whose components with respect to adapted frames are
given by

0 -8 0
S 0 0
0 0 0

constitute a single tensor field ¢ over M™*%.

The same is true for a contravariant vector field £ with components (0,...
...»0,1) and covariant vector field » with components (0,...... ,0,1) with respect
to adapted frames. We can easily verify that

¢}E1 = O, ¢;77‘ = O:
Et’]t =1, = gu'f",
i = — & + En,

hold good with respect to adapted frames.
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However, these equations are all tensor equations. So, they hold good for
every natural frames too. Consequently, any differentiable manifold with almost
contact structure is a differentiable manifold with (¢, &, 5)-structure.

N.B. Hatakeyama’s theorem stated in the introduction follows immediately
from Theorem 1 of §3 and Theorem 5 of this section.

6. The form nA\(dn)" of differentiable manifold with contact structure.
Let M**! be a differentiable manifold with contact structure 7. Ther, by virtue
of Theorem 4, we can find a (@, &, 9, g)-structure such that

(6- 1) gmd”; = ¢u = Oy — O

Now, we take an open covering {U,} of M™*' by coordinate neighborhoods
and let &), &L, . be a field of orthonormal frames over U,. We put

(6. 2) "7?") = gufzu);

then 7™ is the inverse matrix of &,,.

As E)’s and 7{"’s constitute bases of contravariant vector fields and covariant
vector fields over U, respectively, we can easily verify, by virtue of (1. 1), (1. 3),
(1.4), (5.13) and (5. 14), that

(6.3) ¢) = Etnd — Elpyni”.

Hence we get

n
6.4) by =S (i — Py,

p=1

Putting (6. 4) into 73P.Pss...... P 2ni1y We see that

NPass...... L T
= ¢L12¢34 ------ ¢2n—1 2nM2n+1]

n
_ * #)Y ({7 )
= 22 (@9 — nfoni?) ({0 — 9nl™).....

HaVyeen,p=1

* ( ( * A
------ (775‘;»—)17725) - 772?»)-177% ))ﬂénlu

n
— % (u* ) py (V¥ *) (. A
= > 2. ... B0y
p=1

P Vyenns

. " on W, ) (P (1) (6%, (A)
—_— P (v *’
= > (1) 7 2"P9»...... b/ Nt/ Rk P Nah Nini1l-

MyVyeenyp=1

Therefore, we get
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"711¢23¢45 ------ DonPan1 1
n(n+1)
= (-1

On the other hand, if we consider 27 + 1 1-forms 7™ = 5 dz* and denote

(6.5)

1 2 1% * A
2"l 9P PSS i,

the volume element in U, of our Riemannian manifold M**' by dV, then over
U, we see that

AV =9 N 9® A ...... AN g™ A L A 9™ A @
=2n+ D! 9PP...... 2P, ) dxt A ... A dz*,
Threfore we get
n(n+1) [
6.6) AV =(-1) —%’i}l absBesrr bom amendt A oorre A A2
n:

Comparing the last equation with

6.7) 7 A (dn)" = Qf—";;—l)!n DB ... Do smsndx® A dx? N ... A dz*™*1,

we get finally
n(n+1)

(6.8) pNA\dn)=(—1) % aldV
Consequently, we get the following

THEOREM 6. Let M™*' be a differentiable manifold with contact structure
and n be the 1-form which defines the structure. Then 7 N (dn)" coincides,
within a numerical factor, with the volume element of the Riemannian metric
g, where g is the metric of the associated ($,&,n, g)-structure to the given
contact structure of M™*'.

N.B. As 9 A (dg)" == 0 everwhyere over M*™*!, we see from (6.5) that
9. Gl s 7iInis; has the same sign everywhere over M?"*1, This

fact gives a proof that every contact manifold is orientable.
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