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1. Introduction. Let M2n be a differentiable manifold. If there exists a
tensor field φ of type (1,1) over M2n such that

= -8ϊ, (a,b,c = 1,2, ,2n)

then M2n is said to be a differentiable manifold with almost complex structure.
(Tensor fields of the form given above may exist only for some manifolds with
even dimension.) We shall call φ the fundamental collineation of the almost
complex structure. The set of differentiable manifolds with almost complex
structure is wider than the set of complex manifolds.

Every differentiable manifold with almost complex structure φ admits a
poistive definite Riemannian metric g such that

and the manifold is said to have Hermitian structure and to be a Hermitian
manifold. Making use of the metric g and a skew symmetric tensor

Φab = 9aeΦL

we can reduce the structural group of the tangent bundle of any manifold with
almost complex structure to the unitary group U(n). The converse is also true.

Differentiable manifolds with almost complex structure or almost Hermitian
structure were investigated by C. Ehresmann [1], B. Eckmann, A. Frόlicher [2]
and others and were interesting topics on differential geometry and topology in
these fifteen years.

On the other hand, let M2n+1 be a (2n + l)-dimensional differentiable ma-
nifold. If there exists a tensor field φ), contravariant and covariant vector fields
f and ηs over M2n+1 such that

(1.1) Pηt = 1, (i,j,k - 1,2, ,2n + 1)

(1.2) rank |ψj| =2n,

(1.3)
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(l. 4) fa = o,

(1.5) ΦΨ, ^ - Bί + ξ'ηk,

then we say that M2n+ι has (φ, £, η)-structure. (φ, I, ̂ -structure may be regarded

as an analogue of almost complex structure for odd dimensional manifolds.

In the same way as almost complex manifolds we can prove that every

differentiable manifold M 2 n + 1 with (φ, ξ, ̂ -structure admits a positive definite

Riemannian metric g such that

(1.6) 9n? = Vt>

(1.7) QijΦίΦί = 9IΛ -VnVκ>

and Mm+1 is said to have {φ, ξ, η, g)-structure. It is an analogue of the almost

Hermitian structure in almost complex manifold.

Now, an odd dimensional differentiable manifold M2n+1 is said to have

contact structure if there exists a 1-form η over M2n+1 such that

(1.8) ?

The structural group of the tangent bundle of differentiable manifold with contact

structure is reducible to U(n) X 1. The set of differentiable manifolds such that

the structural groups of their tangent bundles reduce to U(n) X 1 is wider than

the set of differentiable manifolds with contact structure and any one of the set

is called differentiable manifold with almost contact structure. Differentiable

manifolds with contact or almost contact structure were investigated by W. Gray

[4] and W. M. Boothby-H. C. Wang [3] rather from topological point of view.

I got the idea of (φ, ζ, η)- structure and (φ, ζ, η, g)-structure in studying mani-

folds with contact structure. However, after I talked some results about these

structures to Y. Hatakeyama, he proved that "The structural group of any dif-

ferentiable manifold M2n+1 with (φ, ξ, ̂ -structure is reducible to U(n) X 1, so

the M2n+ι in consideration is a manifold with almost contact structure. Con-

versely, if M2n+ι is a differentiable manifold with almost contact structure, then

we can endow to M2n+1 a (φ, ξ, η)-structure". (The author's proof is given in

section 5 of the present paper). Therefore, our (φ, ξ, ̂ -structure is closely related

to almost contact structure.

In the present paper, we shall study some algebraic properties on differentiable

manifolds with (φ, ξ, ̂ -structure and (φ, ξ, η, gr)-structure. Differential geometric

properties will be studied in later papers.

2. Linear map φ and φ + ξη. Let M2n+ι be a differentiable manifold

with (φ, ζ, η)- structure and suppose tensor fields φ;, ξ* and ηs satisfy the relations

(1.1) to (1.5). First we remark that these five relations are not independent.
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(1. 2) shows that there exist (at least locally) vector fieds f* and ηs which satisfy

(1.3) and (1.4). In the second place, putting (1.5) into the associative law

we see that

Hence (1.4) follows from (1.3) and (1.5), and (1.3) follows from (1.4) and

(1.5). In the third place, the existence of solutions of (1.3) and (1.4) shows

that the rank of |φj | is smaller than 2n + 1. However, if ξι is another solution

of (1.3), then (1.5) multiplied by ζk shows us that ξ{ is proportional to ζι.

Hence the rank of \φ]\ is equal to 2n. Therefore, if we only assume that the

rank of |φj | is smaller than 2 n + 1, then (1.2) follows from (1.3), (1.4) and

(1.5).

Let P be a point of M2n+1 and MP be the tangent space of M 2 w + 1 at P.

In MR, the set of vectors vι such that

v% = 0

spans a 2 w-dimensional vector subspace VP of MP. If we vary P over M2n+1

9

the set of such vector subspaces determines a distribution in Mm+1.

Now, we define a linear map

φ: MΓ—* MP

by if -> V, where

(2.1) V = φ)v\ (v* € Mr).

Then we see that

t = 0.

Hence the map φ is a singular map and

φ: MP >VP.

However, if vι € VP, we see that

Accordingly, the map φ restricted to Vp behaves just like the fundamental col-

lineation of an almost complex structure. We shall call φ the fundamental

singular collineation of the (φ, ζ, η)- structure.

Contrary to the map φ, the map
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φ + ξη : Mp —** MP

defined by v* -> v\ where

(2. 2) v* = (φ) + f ^ y , (i/ € At)

is a non-singular transformation. For,

(2. 3) (φj + ξ*ηj) (— φί + 1^) = δi,

as we can easily verify it by (1.1) — (1. 5). The two matrices φ + ξη and — φ
+ ξη are inverse to each other.

In order to clarify the geometrical meaning of the map φ + ξη, we put

t V£ = κ.v ηhjς,

Then

(2. 5) f« = v'ί + vi

and

(2. 6) v\ηt = 0.

We call that τ>| is the ^-component of the vector o* and v\ is the η-component
of the vector tΛ

Now, we can easily see that

fί + ΨX = (*ί + ί W
hence the linear manp φ + ξη may also be defined as t/ -> v£, where

& = v\ + # <

It has the following properties:

1) Any vector with the direction ξι is fixed under the map.

2) Any vector which is contained in the distribution η is transformed in the
same way as by the fundamental collineation of an almost complex structure.

More generally, we see that

(2. 7) Ψ = v\- v\.

Accordingly, vι is the difference of the ^-component and the j -component of the
original vector v(.

3. Associated Riemannian metric g. Let M'2n+1 be a differentiable mani-
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fold with (φy ξ, ̂ -structure. We shall show that M2n+1 admits Riemannian metric
which stands analogous situation to almost Hermitian metric for any differentiable
manifold with almost complex structure. We begin with a lemma.

LEMMA. Suppose I and η be contravariant and covariant vector field on
a differentiable manifold M2n+1 such that

(3. 1) ?η, = 1.

Then M2n+ι admits a positive definite Riemannian metric h such that

(3. 2) ηt = hjj.

N. B. (3.1) and (3.2) imply that f is a unit vector field over M2n+ι

with respect to the metric h.

PROOF. First we take an arbitrary positive definite Riemannian metric on
M2 w + 1. Let {Uj be an open covering of M2n+1 by coordinate neighborhoods
UΛ. In every Ua we take 2n unit vector fields f*α) with respect to the metric
in consideration so that they are orthogonal to each other and contained in the
distribution η. Then 2 n + 1 vector fields ξ\a) and

(3.3) P ^ ^ P

constitute frames over [/«, where A is an abbreviation of 2 n + 1. We put

(3.4) *«£

then h{j is a new positive definite contravariant metric tensor of [/*•
Now, assume Ua Π Uβ is not empty. We denote 2n vector fields over Uβ

constructed in the same way as ξ[a) over Ucc by f(α). Then, over Ua Π Uβ there
exist relations

V(α) ==
ϋ . l

where (cab) is an orthogonal martix, because fr^'s and ζ[a)'s are both orthonormal
vector fields. Hence, we see that

in 2n

/ ! ζ\a)ζ[a) = 2 j f (α)b(Λ).

Accordingly, the metric tensors above over f/α and C7β coincide over t7α Π ί/js.
Consequently, the metric tensor defined above over every U^ of {C/αj constitutes
a single metric tensor h of M2n+1.

In the next place, we define if* over ί/̂  by
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(3. 5) ξ\h) -

Then, we get

Hence, we see that

(3.6) &>*?> = &

By virtue of the last relation, we can easily verify that

(3. 7) λ"f W = δΛfc,

so £(/°'s are covariant orthonormal vector fields over Ua with respect to the metric

h. Therefore, by virtue of (3. 5), ξ\h)'s are contravariant orthonormal vector fields

over UΛ.

From (3.6) we get especially

ftofi* = 0, ffl* = 1.

However, by assumption there exist the relations

PwVi = 0, ?η, = 1.

Comparing these equations we get

It = £ Δ ) =

Consequently, the metric h is the required Riemannian metric.

THEOREM 1. Let M2n+1 be a differentiable manifold with (φ, {, ^-stru-

cture. Then there exists a positive definite Riemannian metric g such that

(3.8)

(3. 9)

N. B. (3.1) and (3. 8) imply that ξ is a unit vector field with respect to
the metric g.

PROOF. Let h be a Riemannian metric over M 2 Λ + 1 which has the properties

stated in the last Lemma and put

Then we can easily verify that
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In the next place we see that

4

that is

fft/ΆΦί — 9ι* —

Hence, the theorem is proved.

We shall say that the metric which has the property stated in the last
theorem an associated Riemannian metric to the given (φ, ξ, ή)-structure. If a
differentiable manifold M2n+ι admits tensor fields (φ, ξ, η, g) such that g is an
associated Riemannian metric of the (φ, ξ, η)-structure, then we say that M2n+1 has
(Φ, %> V> 9)' structure. In this case ζ* is nothing but contravariant components of ηjy

so we may denote it also (φ, η, #)-structure for brevity.
The following theorem gives another analogue of the Hermitian condition

for almost complex manifold.

THEOREM 2. Let M2n+ι be a differentiable manifold with (φ, f, η, g)-
structure, then the relations

(3.10) giS(φi + ?Vh) (φl + ¥Vk) = ghk9

(3.11) gt£- φi + ξιηh){~ φl + &Vk) = ghk

hold good.

PROOF. By virtue of (1.1), (1. 4), (3. 8) and (3. 9) we can easily verify
the first relation. As φ + ξη and — φ + ξη are inverse matrices, (3.11) follows
immediately from (3.10).

The relation (3.10) shows that the linear map

on any tangent space of M2n+ι is an orthogonal transformation with respect to
the Euclidean metric induced on the tangent space by g.

4. Associated 2-forms. Let M2n+ι be a differentiable manifold with (φ, ξ,

η, g)structuτe. We put

(4.1) ΦtJ - gihφ)

Then, the tensor φi3 is skew-symmetric with respect to i and j . To prove it, we
notice the associative law
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(g(iΦίΦDΦ1 =
Putting (3. 9) and (1. 5) into the last equation, we get

which, by virtue of (1. 4) and (3. 8), reduces to

(4. 2) φhι = - φ I A .

Of course, the rank of the matrix (φtJ) is 2 ?2. We call φtJ the associated skew

symmetric tensor of the (φ, | , ?;, ̂ -structure, and the exterior 2-form —φijdxiί\dxs

over M2W+1 the associated 2-form of the (φ, ξ, η, g)~structure.
In the next place we shall study the converse problem. Let M2n+ι be a

differentiate manifold which admits a 2-form —φ i sdx ι ί\dx5 such that the rank of
Zl

the matrix (φ(J) is everywhere 2 n over M2n+1. We shall show; under the assum-
ption that M 2 n + 1 is simply connected, that it admits (φ, ζ, η, ̂ -structure. (We can
remove the assumption of simply-connectedness by a slight modification of (φ, ξ,
η, ̂ r)-structure so that ξ{ and η5 are not globally defined vector fields. However,
we do not want to digress in such direction.)

We introduce first an arbitrary positive definite Riemannian metric h over
M2n+1. As M2n+ι is simply connected the tensor field φύJ admits a vector field I'
over M2n+ι such that

(4.3) ΦJ} = 0.

Although ξι is determined only within scalar factor, we take ζ( so that

(4. 4) h,fP = 1

and put

(4 5) Vi = h()P.

Now, we take the symmetric tensor Φ(hhhkφkj and consider its characteristic
equation

(4-6) IΦtJTΦv + Ph,j\ = 0,

where p is an unknown variable. As h is positive definite, all characteristic roots
are real. We see that 0 is a simple characteristic root and the corresponding
characteristic vector is ££. Moreover, all non-zero characteristic roots are positive.
To see it we assume that px is a non-zero characteristic root and X1 is a cha-
racteristic vector corresponding to ρx. Then,

(4 7) (Φihh
nkφkj + Pιhυ)X} = 0.

If we contract X1 with the last equation we see that

{hi}X
ιX') Pl = VXΦn
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so ρx is positive.

We denote all different non-zero characteristic roots by pl9 p2, , pL, their

multiplicities by vx,v2, , vt and the characteristic spaces corresponding to 0,

Pi, ,Pι by Vθ9Vl9 9Vl9 then

dim Vκ = vk9 λ = 0,1, , /

where we have put vQ = 1.

Now, we wish to change the metric h over M2n+1 so that the new metric g

and the tensor

Φ'j = 9lhΦ»

defined by the new metric g play the roles of g and φ of (φ, ξ, η, g)-structure.

To this purpose in mind we consider linear map of the tangent space MP of

M2n+1 at an arbitrary point P into itself defined by

(4. 8) X1 = hihΦhJX
j, X1 € M P .

If X* € Vu then

holds good. So, we get

Hence, we see that if X1 € Vx, then X c € VΊ too. Moreover, we get

X* - V*φhj(VιφlmXm)

= hih(- PιhhmXm).

Therefore, we see that if X1 € Vl9 then

(4. 9) X€ - - PXX£.

Analogous facts hold good also for vectors of V2, V3, , V̂  too.

Now, let {[/«} bs sufficiently fine open covering of M2n+\ We take, over

any one of Ua, frames el9 , e2n, e± so that el9 , eVχ span Vu ePι+1, 9eVι+V2

span V2, , β»Ί+ +^_i+i> 9 βvi+'-'+vi s P a n Vι a nd ^Δ = ^. We call such

frame an adapted frame. Then we can easily see that the two matrices htj and

Φij have the form
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o\ fa

\ 0 \/ \o
φι 0

where hκ, ψΛ(λ = 1, 2, ,1) are matricens of vκ columns and vκ rows. Therefore,
if we refer to adapted frames, the linear map (4. 8) decomposes into

X«κ = ha^φβκyλX\

X A = 0,

where αλ,#λ,7λ run the range of values JΊ + + i>A_a + 1, , vι + + vk,
X- 1,2, ,1, and

Now, we introduce a new Riemannian metric g over Ua such that

0\

(4.11) 9 =

\ 0

with respect to the adapted frames, where we have put

(4.12) gκ=Vκ~h» λ = l> »*•

As p/s are scalar functions over M2n+ι and do not depend upon the choice of
adapted frames, we see that g for each Ua defines globally a Riemannian metric
over M 2 n + 1.

If we define a linear map of the tangent space MF of Mϊn+1 at any point P
of Ua by

(4.13) 'X^fΦvX',

then it decomposes to

(4.14)

with respect to adapted frames. Hence, we can easily see that

(4.15)
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Consequently, the linear map (4.13) induces an almost complex structure on Vl9

V2, , Vt.

(4.16) φj = gthΦhj

is a globally defined tensor field over M2 w + 1. Denoting the components of φ with
respect to an adapted frame by φ% we see, by virtue of (4.15), that

(4.17) (<

Now, let us denote the transformation of components X* of a vector with
respect to the adapted frame on UΛ and those X1 of the same vector with respect
to a natural frame on UΛ by

Of course, Aι

Λ and Bf are inverse matrices. Then, for components φφί and
φβφ'y of the tensor φφ there exists the relation

φ)φί = AlφfflBί

Hence we see that

/AS Ai\ — Om \J\ ί J-Jr X5Λ\

) ( 1 t)
Λ re TΛΛ Λ n TΛΛ

^ - 81 + A£βc

Δ - 8S + AH

Therefore, there exists a relation

Φffik = — δi + Ai-B^

over every £/Λ. However, the vector which has components Aι

A with respect to
the natural frame has (0, ,0,1) as its components with respect to the adapted
frames, so it is nothing but the vector f'. In the same way the vector which has
components B* with respect to the natural frame is nothing but the vector ηt. We
can easily verify that

(4.18) η( = gj}

holds good. Hence we see that

(4.19) Φ]φί = ~ Si + &ηk

holds globally over M2n+1. We can also see that



470 s. SASAKI

(4.20) Φ]ξj = 0,

(4. 21) φ]Vi = 0,

(4.22) ξ%=l

are true, because they hold good with respect to adapted frames.
From (4.16) we see that

(4. 23) gihφ) = - gjhφ\ = φiS

holds good. So we get

= - gu(- si + ?%)-
Hence, we see, by virtue of (4.18), that

(4. 24) gtjΦίΦί = gut - Vι,Vh

is true. Accordingly, the four tensor fields φ), ξ\ ηf, gi} constitute a (φ, {, η, g)-
structure of the given manifold M2n+1.

Summarizing the above results, we get the following

THEOREM 3. If a differentίable manifold M2n+ι admits (φ, ξ, η, g)-struc-
ture, then M2n+1 admits a skew symmetric tensor φ(J (in other words, 2-form

—φ t jdx ι/\dx5) whose rank is 2n. If M2n+1 is simply connected, the converse is

also true.

5. Contact structure and almost contact structure. Let M2n+ι be a
differentiate manifold with contact structure and let

(5.1) η - Vtdaf

be the 1-form which defines the contact structure. Then we have

(5.2) v/\(dη)nφ0,

where dη means the exterior derivative of η and the symbol Λ means the exterior

multiplication, dη can be written as

(5.3) dη=^-φ{jdx{ Λdx3,
2

where we have put

(5. 4) φis = diVj -

provided that 3< means
Bx*
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By virtue of the condition (5. 2), it follows that dη is a 2-form of rank 2 n
everywhere over M2n+1 and φ(J is a matrix whose rank is everywhere 2 n over
M2n+1. We can easily verify that (5. 2) is equivalent to

(5. 5) VnΦxΦiδ Φzn 2n+i] 4= 0,

where [ ] means a determinant divided by the factorial of the number of
indices.

As the rank of φέj is 2 n, there exists at least locally a vector field ξ* such
that

(5.6) ΦiJtί = O.

However, as ξι is given by

f * — — ΦίκΦ*5 Φzn an+i],
A*

, . I 2 = —ΦmΦbQ 0271 + 1 Π,
^57J λ

where we have put

(5. 8) λ = (2 * + ltotiΦβ&B Φsrc 2n+1],

I* is a vector field globally defined over M2n+1.
To prove I* given by (5. 7) satisfies (5. 6), it is sufficient to verify the case

i = 1. We see that

+ Φnn+iΦii'jφu Φan-i 2n]}

On the right hand side of the last equation, the terms which contain φi2φi3 as a
factor are contained only in the first and second terms and their sum is easily
seen to be

5 φ.ln 2n+1] = 0 .

In the same way all the other terms cancel to each other. Hence

= o.



4?2

Consequently

We can easily see also that

(5.9)

holds good.
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ΦJ' = 0.

?v< = i

Now, by the Lemma of § 3, there exists a positive definite Riemannian
metric h over M2n+1 such that

(5.10) Vt = h{jξ\

Taking this metric h and ξ\ ηj9 φ(j as those of § 4, we get the following

THEOREM 4. Let M2n+1 be a differentiable manifold with contact struc-
ture. If η — ηtdx1 is the 1-fόrm which defines the contact structure, then we
can find a (φ, ζ, η, g)-structure in M2n+1 such thai the vector field ηf is the
one given by the coefficients of the 1-form η and

(5.11) gthφ) = Φtj = dtVj - djm.

Now, a differentiable manifold M2n+ι is said to have almost contact structure
if the structural group of the tangent bundle of the manifold is reducible to
U(n) X 1, where U(n) is the unitary group of n complex variables. We shall
prove the following

THEOREM 5. Let M2n+1 be a differentiable manifold with (φ, ξ, η, g)-
structure, then the structure induces an almost contact structure to M2n+1.
The converse is also true.

PROOF. Let {Ucc} be an open covering of M2n+ι by coordinate neighbor-
hoods. We shall determine orthogonal frames in every Ua, in the following way.
First we put

(5.12) f(A) = ί<, (Δ = 2 * + l)

and take a unit vector field ξ[i) over Ua, so that it is orthogonal to £(Δ). We
define ζ\\*) by

ft.) = Φ5ft>. (1* = n + 1)

Then, we can easily verify that ft}, ft >, f(Δ) are unit vector fields over Ucc
orthogonal to each other.

Next, we take a unit vector field ξ{2) over Ua so that it is orthogonal to
three vector field ft}, ft.}, ξ\A), and put
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Then, we can easily verify that ξ[lh f(2), fJi ), fJz ), f (Δ)
 a r e u r n t vector fields over

t/Λ orthogonal to each other.

Proceeding in the same way, we finally get orthonormal frames (f(λ), f(λ },

fU)) s u c n that

(5.13) tf(W = 4%>w. (\* = n + λ)

We can easily verify that

(5.14) fix, = - Φ I U ,

by virtue of (1. 5). We call such frame an adapted frame.
From our construction, we see easily that the matrix whose elements are

components of the fundamental tensor g with respect to any adapted frame takes
the following form:

IK o
(5.15) g = I 0 δλ

μ

\0 0

By virtue of (5.13) and (5.14), we see also that the matrix whose elements
are components of the tensor φ with respect to the same adapted frame is

(5.16)

Now, let Ua, Uβ ba coordinate neighborhoods such that their intersection

UΛ Π Uβ is not empty. At every point of U« Π Uβ we can take an adapted

frame (ξ\κ), ξ
ι

m, f(Δ)) of Ua and an adapted frame (fA

(λ), f̂ }, F(Δ)) of Uβ. If

we denote by (v\ vλ*, z;Δ), (vκ, vκ*, vA) and φ)9 φ) the components of the same

vector and the fundamental singular collineation respectively with respect to the

two adapted frames, we see that the relations

ι< K
(5.17) v = icϊ. dx

μ

\θ 0

and

(5.18)

hold good. Of course the first matrix of the right hand side of (5.17) is an

orthogonal matrix. As φ and φ have the same form (5.16) with respect to the

two adapted frames, we can easily see from (5.18) that
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(5. 19) aμ = d% bμ = - cμ

hold good. Hence we see that our matrix belongs to U(n) X 1. Consequently,

the (φ9 ξ, η, #)-structure induces uniquely an almost contact structure to M2n+ι.

Conversely, let M2n+1 be a differentiable manifold with almost contact structure

and let \Ua\ be an open covering of M2n+1 by coordinate neighborhoods. Then,

by definition, we can take frames over every Ua so that, if Ua Π Uβ is not

empty, the transformation of components of the same vector with respect to

frames of UΛ and Uβ is given by a matrix which is a real representation of

U(n) X 1, i. e. an orthogonal matrix of the form

0 0

We call such frames adapted frames.

If we take a symmetric tensor field g over Ua whose components are given

by

0

0

with respect to adapted frames, all such tensor fields g over UJs are unified to a

single positive definite tensor field over M2n+1. We take it as the tensor field

which defines a Riemannian metric over M2n+1. In the same way, all tensor fields

over Ua's of type (1,1) whose components with respect to adapted frames are

given by

0

0

0

0

0

00

constitute a single tensor field φ over M2n+ι.

The same is true for a contra variant vector field ζ with components (0,...

..., 0,1) and covariant vector field η with components (0, , 0,1) with respect

to adapted frames. We can easily verify that

£% ~ 1> Vi =

Φftί = - Si + F

hold good with respect to adapted frames.
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However, these equations are all tensor equations. So, they hold good for
every natural frames too. Consequently, any differentiable manifold with almost
contact structure is a differentiable manifold with (φ, ξ, ̂ -structure.

N.B. Hatakeyama's theorem stated in the introduction follows immediately
from Theorem 1 of § 3 and Theorem 5 of this section.

6. The form η/\(dη)n of differentiable manifold with contact structure.
Let M2n+ι be a differentiable manifold with contact structure η. Then, by virtue
of Theorem 4, we can find a (φ, ξ, η, g)-structure such that

(β. 1) gihφ) = Φu = dflj - djVi-

Now, we take an open covering \UΛ\ of M2n+1 by coordinate neighborhoods
and let ξ\κh |(λ* }, ζ{^ be a field of orthonormal frames over Ua. We put

(β. 2) ηίh) = gj'w,

then η\h) is the inverse matrix of ζι

w.
As ζ[h)'s and ηfvs constitute bases of contravariant vector fields and covariant

vector fields over JJΛ respectively, we can easily verify, by virtue of (l. 1), (l. 3),
(1. 4), (5.13) and (5.14), that

Hence we get

(6. 4) φtJ =

Putting (6.4) into ηιiφ^φ4δ φ2n 2W+n we see that

= Φivzφu Φ2

n

= Σ 2mηlPηl»ηr>ηP ^f-WίWϋ

Δ ) n

Therefore, we get
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V11Φ23Φ45 <t>2n<l>2n+l}

= (_ lfΨ12nnl tβ'ή? η^ηTλ

On the other hand, if we consider 2 n + 1 1-forms ηw = ηftydxι and denote

the volume element in Ua of our Riemannian manifold M2n+ι by dV, then over

Ua we see that

dV = ηW A ηm A Λ ηW A η m A Λ η™ A V™

= (2» + 1)! tffη? tfiPηSZ ηSPηSlifc1 Λ Λ dx*ll+1.

Threfore we get

(6. 6) dV = (- l ) " ^ 2 2 ( 2 " + })l i T p ^ β ψ2n M+uώ:1 Λ Λ
Z n !

Comparing the last equation with

(6. 7) η A (dηf = ( 2 n * 1 ) l V i<M>« Φm *«^dxι Adx*A Λ dx*n+\

we get finally

(6. 8) v Λ (dη)n = ( - l)~^~n\ dV

Consequently, we get the following

THEOREM 6. Let M2n+1 be a dίfferentiable manifold with contact structure

and η be the 1-form which defines the structure. Then η Λ (dη)n coincides,

within a numerical factor, with the volume element of the Riemannian metric

g, where g is the metric of the associated (φ, ξ, η, g)-structure to the given

contact structure of M2n+ι.

N. B. As η Λ (dηf 4 s 0 everwhyere over M2n+\ we see from (6. 5) that

r$>ηψ> ηTηTλ V^vίnli] has the same sign everywhere over M2n+\ This

fact gives a proof that every contact manifold is orientable.
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