ON SOME PROPERTIES OF π-STRUCTURES ON DIFFERENTIABLE MANIFOLD

Chen-Jung Hsu

(Received May 17, 1956)
D. C. Spencer [1]" considered under the name "complex almost-product structure" the structure on the n-dimensional differentiable manifold V_{n} defined by giving two differentiable distributions T_{1}, T_{2} which assign two complemented subspaces of dimension $\geqq 1$ in the complexified tangent space T_{x}^{c} at each point $x \in V_{n}$. G. Legrand [2] called such structure as a π-structure and studied it by generalizing most properties of the almost complex structure which can be regarded as a special case of it [3].

In the following, we assume that on the manifold a structure is defined by giving $r(2 \leqq r \leqq n)$ differentiable distributions $T_{1}, \ldots \ldots, T_{r}$ which assign r complemented subspaces of dimension $\geqq 1$ in the complexified tangent space $T_{x}^{c}\left(T_{r}^{c}\right.$ $=T_{1}+\ldots \ldots+T_{r}$: direct sum) at each point $x \in V_{n}$. We call such structure as an r - π-structure if we want to express the number of the distributions explicitly. Whereas we call it simply as a π-structure if we need not (or can not) express the number r definitely. We generalize some properties of π-structure in the sense of Legrand to the r - π-structure.

In this note we assume that the differentiable manifold V_{n} as well as the distributions $T_{1}, \ldots \ldots, T_{r}$ are of class C^{∞} unless we state it explicitly. It is also assumed that the manifold is arc-wise connected and the second countability axiom is satisfied.

1. Fundamental tensor of the π-structure. Suppose the differentiable manifold V_{n} has a π-structure defined by r differentiable distributions $T_{1}, \ldots \ldots, T_{r}$. Let the projection operations from T_{x}^{C} to T_{α} be denoted as \Re_{α}, then we have

$$
\begin{gather*}
\mathfrak{F}_{\alpha}^{2}=\mathfrak{F}_{\alpha}, \quad \mathfrak{R}_{\alpha} \mathfrak{F}_{\beta}=0 \quad(\alpha \neq \beta), \tag{1.1}\\
\mathfrak{P}_{1}+\ldots \ldots+\mathfrak{B}_{r}=\mathfrak{J}, \tag{1.2}
\end{gather*}
$$

where \mathfrak{J} denotes the identity transformation and the Greek indices vary from 1 to r. Define a transformation \mathfrak{F} on T_{x}^{c} by the following:

$$
\begin{equation*}
\mathfrak{F} v=\lambda \sum_{\alpha} w_{\alpha} \Re_{a} v, \tag{1.3}
\end{equation*}
$$

1) Numbers in bracket refer to the reference at the end of the paper.
where v is any vector in T_{x}^{c}, λ is a non zero complex constant and $w_{\alpha}(\alpha=1, \ldots$ \ldots, r) are the r-th power roots of unity. It is obvious that

$$
\begin{equation*}
\mathfrak{F}^{s} v=\lambda^{s} \sum_{a} w_{a}^{s} \mathbb{B}_{a} v \quad(1 \leqq s \leqq r) \tag{1.4}
\end{equation*}
$$

thus we have

$$
\begin{equation*}
\mathfrak{F}^{r} v=\lambda^{r} v, \quad \text { i. e., } \quad \mathfrak{F}^{r}=\lambda^{r} \widetilde{\mathcal{S}} . \tag{1.5}
\end{equation*}
$$

On the manifold there exists a complex tensor field which induces \mathfrak{F} at each T_{x}^{c}. Let this tensor field be denoted as F_{j}^{i}, then we have from (1.5) the following :

$$
\begin{equation*}
\stackrel{r}{F_{j}{ }^{i} \equiv F_{h_{1}}{ }^{i} F_{h_{2}}{ }_{1}^{h_{1}} F_{h_{3}}{ }^{h_{2}} \ldots \ldots F_{j}^{h_{r-1}}=\lambda^{r} \delta_{j}{ }^{i} .} \tag{1.6}
\end{equation*}
$$

Conversely, if the manifold has a non trivial tensor $F_{;}{ }^{i}$ satisfying (1.6), and \mathfrak{F} be the transformation induced at T_{x}^{c} by F_{j}^{l}, then it is obvious that the proper values of \mathfrak{F} are among $\lambda w_{a}(\alpha=1, \ldots \ldots, r)$. If \mathfrak{F} has actually $s(s \geqq 2$, because $F_{j}{ }^{i}$ is non trivial) of them as its proper values, then the number s and the proper values do not vary when the point x varies on the manifold, because of the differentiability of the considered tensor field F_{j}^{i} and the connectedness of the manifold. Consequently the manifold has s differentiable distributions constituted of s proper subspaces in T_{x}^{c} at each point x. Thus we have

THEOREM 1. 1. The manifold is endowed with $a \pi$-structure if and only if the manifold has a non trivial tensor field $F_{;}^{i}$ satisfying (1.6) for some $r: 2 \leqq r \leqq n$.

A tensor satisfying (1.6) is said to be degenerate if the number of its different proper values $s<r$. An example of degenerate tensor of the type (1.6) is given by :

$$
\begin{equation*}
\underset{1}{F_{j}^{i}}=\left(\cos \frac{\pi}{r}\right) \delta_{j}^{i}+\left(\sin \frac{\pi}{r}\right) \phi_{j}^{i 2)}, \tag{1.7}
\end{equation*}
$$

where $\phi_{j}{ }^{i}$ is assumed to be a tensor defining an almost complex structure on the manifold, i. e., it is a real tensor such that ${ }^{2}{ }_{j}{ }^{i} \equiv \phi_{l}{ }^{i} \phi_{j}{ }^{h}=-\delta_{j}{ }^{i}$. It is obvious that ${\underset{1}{j}}^{r}{ }^{i}=-\delta_{j}^{i}$ and ${\underset{1}{j}}^{F_{j}}$ has only two different proper values.

Now, if the manifold has an r - π-structure, then the tensor $F_{j}{ }^{i}$ defined by (1.3) is non degenerate. For, from (1.2) and (1.4) we have
2) I was informed by Mr. Hatakeyama of the construction of a tensor $F_{j}{ }^{i}$ satisfying $\stackrel{r}{F_{j}}=-\delta_{j}{ }^{i}$ starting from the tensor defining an almost complex structure.

$$
\begin{equation*}
\Re_{\alpha} v=\frac{1}{r} \sum_{s=0}^{r-1} \frac{1}{\left(\lambda w_{\alpha}\right)^{s}} \mathfrak{F}^{s} v \tag{1.8}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
\mathfrak{F} v_{a}=\left(\lambda w_{a}\right) v_{\alpha}, \quad \text { where } \quad v_{\alpha} \equiv \mathfrak{F}_{a} v \in T_{a} \tag{1.9}
\end{equation*}
$$

From (1.9) and $\operatorname{dim} T_{\alpha} \equiv n_{\alpha}>0$, it follows that $\lambda w_{a}(\alpha=1, \ldots \ldots, r)$ is actually a proper value of \mathfrak{F}.

Conversely if the manifold has a non degenerate tensor field F_{g}^{l} satisfying (1.6), then the r proper subspaces corresponding to the r different proper values at each point induce r differentiable distributions which define an r - π-structure. Thus we have:

THEOREM 1.2. For the manifold to have an $r-\pi$-structure, it is necessary and sufficient that the manifold has a non degenerate tensor $F_{j}{ }^{i}$ satisfying (1.6).

The tensor corresponding to the $r-\pi$-structure insisted in the above theorem is called the fundamental tensor of the $r-\pi$-structure as it plays an important role in the study of r - π-structure.

In the sequel, the following notations are used for the convenience sake:

$$
\begin{equation*}
F_{h_{1}}^{i} F_{h_{2}}^{h_{1}} \ldots \ldots F_{j}^{n_{s}-1} \equiv \stackrel{s}{F_{j}^{i}}, \quad F_{j}^{i} \equiv \stackrel{1}{F_{j}^{i}} \quad \text { and } \quad \stackrel{0}{F}_{j}^{i} \equiv \delta_{j}^{i} . \tag{1.10}
\end{equation*}
$$

By use of these notations (1.5) is expressed as

$$
\begin{equation*}
\stackrel{r}{F_{j}^{i}}=\lambda^{r} \delta_{j}^{i} . \tag{1.5}
\end{equation*}
$$

Moreover, if we define the following for a tensor satisfying (1.6):

$$
\begin{equation*}
\bar{F}_{j}^{s}=\frac{1}{\lambda^{a r}} \stackrel{a r-s}{F} ; \quad(a, s: \text { positive integers, } r>a r-s \geqq 0) \tag{1.11}
\end{equation*}
$$

then we have

$$
{\stackrel{s}{F_{h}}{ }^{\imath} \stackrel{\iota}{F_{i}^{h}}=\lambda^{r^{s}+t-r}{ }_{j}^{i} .}^{c}
$$

2. Adapted bases for an r - π-structure. In the sequel, we assume that the indices take the following ranges:

$$
\begin{gathered}
1 \leqq a_{1}, b_{1}, c_{1}, \ldots \ldots \leqq n_{1}, \\
n_{1}+1 \leqq a_{2}, b_{2}, c_{2}, \ldots \ldots \leqq n_{1}+n_{2}, \\
\ldots \\
n_{1}+\ldots \ldots+n_{r-1}+1 \leqq a_{r}, b_{r}, c_{r}, \ldots \ldots \leqq n_{1}+n_{2}+\ldots \ldots+n_{r},
\end{gathered}
$$

whereas

$$
\begin{aligned}
& 1 \leqq i, j, k, \ldots \ldots \leqq n \\
& 1 \leqq \alpha, \beta, \gamma, \ldots \ldots \leqq r .
\end{aligned}
$$

Moreover, we assume that $\bar{a}_{\alpha}, \bar{b}_{\alpha}, \bar{c}_{\alpha}, \ldots \ldots,(1 \leqq \alpha \leqq r)$ take all integers $\left[\left(n-n_{\alpha}\right)\right.$ in number] between 1 and n except for n_{α} integers between $n_{1}+\ldots \ldots+n_{\alpha-1}+1$ and $n_{1}+\ldots \ldots+n_{\alpha-1}+n_{\alpha}$.

A basis (e_{i}) in T_{x}^{c} is called an adapted basis at x if $e_{i_{\alpha}} \in T_{\alpha}$ for all $\alpha=$ $1, \ldots \ldots, r$. Since T_{α} is the proper subspace corresponding to the proper value λw_{a} of \mathfrak{F}, the tensor $F^{i}{ }^{i}$ satisfying (1.5)' has the following components with respect to such an adapted basis:

$$
\begin{equation*}
F_{b_{\alpha}}^{a_{\alpha}}=\lambda w_{a} \delta_{b_{\alpha},}^{\tau_{\alpha}^{\alpha}} \quad F_{b_{\beta}^{\alpha}}^{a}=0 \quad \text { for } \quad \alpha \neq \beta . \tag{2.1}
\end{equation*}
$$

More generally, we have

$$
\begin{equation*}
\stackrel{s}{F_{b_{\alpha}}^{a_{\alpha}}}=\left(\lambda w_{a}\right)^{s} \delta_{b_{\alpha}^{\alpha}}^{\alpha_{\alpha}}, \quad \stackrel{s^{a}{ }_{b}^{\alpha} \alpha}{b_{\beta}}=0 \quad \text { for } \quad \alpha \neq \beta, 1 \leqq s \leqq r . \tag{2.2}
\end{equation*}
$$

The transformation from an adapted basis to any other adapted basis is expressed as follows:

$$
\begin{equation*}
e_{b^{\prime} 1}=A_{b^{\prime} 1}^{a_{1}} e_{a_{1}}, \quad e_{b^{\prime}, 2}=A_{b^{\prime}{ }_{2}^{\prime}}^{a_{2}} e_{a_{2}}, \ldots \ldots, e_{b_{r}^{\prime} r}=A_{b_{r}^{\prime} r}^{a_{r}^{\prime}} e_{a_{r}} \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{1}=\left(A_{b^{\prime}, 1}^{a_{1}}\right), \quad A_{2}=\left(A_{b^{\prime}}^{2}\right), \ldots \ldots, \quad A_{r}=\left(A_{b_{r}^{\prime}}^{a_{r}}\right) \tag{2.4}
\end{equation*}
$$

is respectively an $n_{1} \times n_{1}, n_{2} \times n_{2}, \ldots \ldots, n_{r} \times n_{r}$ non singular matrix.
Let $\left(\theta^{t}\right)$ and $\left(\theta^{i^{\prime}}\right)$ be respectively the dual cobasis of $\left(e_{i}\right)$ and $\left(e_{i^{\prime}}\right)$, then we have

$$
\begin{equation*}
\theta^{a_{1}}=A_{b^{\prime} 1}^{a_{1}} \theta^{b^{\prime} 1}, \quad \theta^{q_{2}}=A_{b^{\prime} 2}^{a_{2}} \theta^{b^{\prime} 2}, \quad \ldots \ldots, \quad \theta^{a_{r}}=A_{b_{r}^{r}}^{a_{r}} \theta^{b^{p_{r}} r} \tag{2.5}
\end{equation*}
$$

Denote $E_{\pi}\left(V_{n}\right)$ as the set of all adapted bases relative to all points in V_{n}, and p as the mapping which assigns each adapted basis in T_{x}^{c} to x. Then $E_{\pi}\left(V_{n}\right)$ is a principal fibre space having p as projection and a subgroup $G\left(n_{1}, n_{2}, \ldots \ldots, n_{r}\right)$ of $G L(n, C)$ as structure group. Here $G\left(n_{1}, n_{2}, \ldots \ldots, n_{r}\right)$ is the group which consists of all matrices of the following form :

$$
\left(\begin{array}{llll}
A_{1} & & & \tag{2.6}\\
& A_{2} & & \\
& & \cdot & \\
0 & & & \\
& & \\
& & A_{r}
\end{array}\right)
$$

where $A_{1} \in G L\left(n_{1}, C\right), \ldots \ldots, A_{r} \in G L\left(n_{r}, C\right)$, hence
$G\left(n_{1}, n_{2}, \ldots \ldots, n_{r}\right) \cong G L\left(n_{1}, C\right) \times G L\left(n_{2}, C\right) \times \ldots \ldots \times G L\left(n_{r}, C\right)$.
3. Torsion of $r-\pi$-structure. Assume that V_{n} has an $r-\pi$-structure. Consider a local section of $E_{\pi}\left(V_{n}\right)$ of class C^{∞} in each neighborhood of V_{n}, then at every point of the neighborhood U there is associated an adapted basis (e_{i}). Let (θ^{i}) be the dual cobasis of $\left(e_{i}\right)$, then we have

$$
\begin{equation*}
d \theta^{t}=\frac{1}{2} C_{j_{k} \theta^{j}}^{\theta^{j}} \wedge \theta^{k} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{{ }_{j k}}^{i}+C_{k j}^{i}=0 . \tag{3.2}
\end{equation*}
$$

Let U^{\prime} be any other neighborhood and $\left(\theta^{l^{\prime}}\right), C^{i^{\prime} k^{\prime} k^{\prime}}$ are defined by the same way, then for any $x \in U \cap U^{\prime}$ we have (2.5). If we put

$$
\begin{equation*}
A_{b^{\prime} \beta}^{a_{\alpha}}=0 \quad \text { for } \quad \alpha \neq \beta \tag{3.3}
\end{equation*}
$$

then (2.5) is expressed as follows :

$$
\begin{equation*}
\theta^{i}=A_{i^{\prime}}{ }^{\prime} \theta^{t^{\prime}} \tag{3.4}
\end{equation*}
$$

from which we have

$$
\begin{equation*}
d \theta^{t}=d A_{i^{\prime}}{ }^{i} \wedge \theta^{t^{\prime}}+A_{i^{\prime}}{ }^{i} d \theta^{i^{\prime}} \tag{3.5}
\end{equation*}
$$

Substitute (3.1) and the corresponding formula for $\left(\theta^{i}\right)$, and then make use of (3.4), we have

$$
\begin{equation*}
\frac{1}{2} C_{j k}{ }^{i} A_{j^{\prime}}{ }^{\prime} A_{k^{\prime}}{ }^{k} \theta^{j^{\prime}} \wedge \theta^{k^{\prime}}=d A_{j^{\prime}}{ }^{i} \wedge \theta^{j^{\prime}}+\frac{1}{2} A_{i^{\prime}}{ }^{i} C_{j^{\prime} k^{\prime} \theta^{\prime}}^{\theta^{\prime}} \wedge \theta^{k^{\prime}} \tag{3.6}
\end{equation*}
$$

Let i take the integers in the range of a_{α}, and then compare the term $\theta^{b^{\prime} \beta}$ $\wedge \theta^{c^{\prime} \gamma}(\beta \neq \alpha, \gamma \neq \alpha)$ in the both sides, we have

$$
C_{b_{\beta^{\prime} \gamma} \gamma}^{a_{\alpha}} A_{b^{\prime} \beta^{\prime}}^{b_{\beta}} A_{c^{\prime} \gamma \gamma}^{c}=A_{a_{\alpha}^{\prime}}^{\alpha_{\alpha}} C_{b^{\prime} \beta^{c^{\prime} \gamma}}^{\alpha^{\prime}} \quad(\beta \neq \alpha, \gamma \neq \alpha),
$$

that is,

$$
\begin{equation*}
C_{b^{\prime} \beta^{\prime} c^{\prime}{ }_{\gamma}}^{a^{\prime}{ }_{c}}=A_{a_{\alpha}}^{a^{\prime}{ }_{\alpha}} A_{b_{\beta}}^{b_{\beta}} A_{c_{\gamma}}^{c_{\gamma}} C_{b_{\beta^{\prime} \gamma}}^{a_{\alpha}} . \tag{3.7}
\end{equation*}
$$

Hence, if we define $t_{j k}{ }^{i}$ as follows :

$$
\begin{equation*}
t_{\bar{b}_{\alpha_{\alpha}}^{\bar{c}}}^{a_{\alpha}}=C_{\bar{b}_{\alpha} \bar{c}_{\alpha}}^{\alpha_{\alpha}} ; t_{j k}{ }^{i}=0 \text { for other indices, } \tag{3.8}
\end{equation*}
$$

then $t_{y c}{ }^{i}$ is a tensor. We call this tensor the torsion tensor of the r - π-structure and call the following form the torsion form of the $r-\pi$-structure :

$$
\begin{equation*}
T^{i}=\frac{1}{2} t_{j k}^{i} \theta^{j} \wedge \theta^{k} \tag{3.9}
\end{equation*}
$$

4. Integrability of the r - π-structure. By definition an r - π-structure defined by r distributions $T_{1}, \ldots \ldots, T_{r}$ is said to be integrable if at each point of V_{n} there exist a neighborhood and n complex valued functions z^{t} of the local coordinates in the neighborhood such that each T_{α} is expressed by $d z^{\bar{a}} \alpha=0$ at every point in the neighborhood.

Suppose that the considered r - π-structure is integrable, then as T_{a} is expressed by $d z^{\bar{a}_{\alpha}}=0, \theta^{t}=d z^{t}$ may be regarded as the dual cobasis of the adapted basis given by a local section of $E_{\pi}\left(V_{n}\right)$ on the neighborhood. Hence (3.1) and consequently the following relations hold for $\theta^{i}=d z^{i}$:

$$
\begin{equation*}
d \theta^{a}{ }_{\alpha}=\frac{1}{2} C_{b_{\alpha} c_{\alpha}}^{a_{\alpha}} \theta^{b} \alpha \wedge \theta^{\rho_{\alpha}}+C_{b_{\alpha_{\alpha}}{ }^{\bar{c}}}^{a_{\alpha}} \theta^{b_{\alpha}} \wedge \theta^{\bar{\natural} \alpha}+T^{a_{a}} \quad(\alpha=1, \ldots \ldots, r), \tag{4.1}
\end{equation*}
$$

where

$$
\begin{equation*}
T^{a_{\alpha}}=\frac{1}{2} C_{\bar{b}_{\alpha} \bar{c}_{\alpha}}^{a_{\alpha}} \theta^{\overline{b_{\alpha}} \alpha} \wedge \theta^{\bar{c}} . \tag{4.2}
\end{equation*}
$$

On the other hand, let \bar{T}_{s} be the direct sum of all T_{α} 's except for T_{s}, then \bar{T}_{s} is expressed by $d z^{\alpha_{s}}=0$ in the considered neighborhood. Thus the distribution given by \bar{T}_{s} is integrable, and $d \theta^{v^{2}}$ belong to the ideal defined by $\theta^{\alpha_{s}}=d z^{\alpha^{2}}$. Therefore from (4.1) we have $T^{a,}=0$, that is the torsion tensor of the $r-\pi$ structure vanishes.

Conversely, assume that the torsion tensor of the $r-\pi$-structure vanishes and moreover, that both the considered manifold and the r - π-structure are of class C^{ω}. Under this situation, both the real and imaginary part of the tensor F_{j}^{i} are real analytic functions of the local coordinates x^{i}. Since T_{a} is spanned by the proper vectors of \mathfrak{F} corresponding to the proper value λw_{a}, it is expressed by the following equations in the local coordinates:

$$
\begin{equation*}
\left(F_{j}^{i}-\lambda w_{a} \delta_{j}^{i}\right) d x^{j}=0 \tag{4.3}
\end{equation*}
$$

As T_{α} is n_{α}-dimensional, this system is of rank $n-n_{\alpha} \equiv \bar{n}_{\alpha}$. Hence (4.3) is equivalent with a system which consists of \bar{n}_{α} independent equations, say :

$$
\begin{equation*}
S_{\alpha}: \quad B_{i}^{\bar{a}} \alpha d x^{i}=0 \tag{4.4}
\end{equation*}
$$

As $T_{1} \cap T_{2}=\{0\}$, the system

$$
\begin{equation*}
S_{1}+S_{2}: \quad B_{i}^{\bar{a}_{1}} d x^{i}=0, B_{i}^{\overline{a_{2}}} d x^{i}=0 \tag{4.5}
\end{equation*}
$$

has zero vector as its only solution. Thus the system $S_{1}+S_{2}$ is of rank n. Consequently we can select n_{1} forms $\theta^{a_{1}}$ out of S_{2} such that the system consisting
of $B_{i}^{\bar{i}_{1}} d x^{i}$ and $\theta^{\tau_{1}}$ is independent. Let $\left(e_{i}\right)$ be the dual basis of this system and $\left\langle e_{b_{1}}, \theta^{{x_{1}}_{1}}\right\rangle=\delta_{b_{1}}^{{ }^{{ }_{1}}}$, then $\left\langle e_{b_{1}}, B_{i}^{a_{1}} d x^{i}\right\rangle=0$, hence $e_{b_{1}}$ form a basis of T_{1}. As $\left\langle e_{\bar{b}_{1}}, \theta^{a_{1}}\right\rangle=0$ and $T_{s}(s>1)$ is spanned by some vectors in ($e_{\bar{b}_{1}}$), it follows that $\theta^{a_{1}}$ are linear combinations of forms in $S_{s}(s>1)$. As $\theta^{1_{1}}$ are linear combinations of forms in S_{2} and the system made up by S_{2} and S_{1} is of rank n, we can select n_{2} forms $\theta^{x_{2}}$ out of S_{1} such that the system ($S_{2}, \theta^{a_{2}}$) is linearly independent. By labeling the indices of $e_{\bar{b}_{1}}$ adequately we have $\left.<e_{b_{2}}, \theta^{a_{2}}\right\rangle=\delta_{b_{2}}^{a_{2}},<e_{b_{2}}, B_{i}^{\bar{a}_{2}}$ $d x^{i}>=0$ and $<e_{\bar{b}_{2}}, \theta^{a_{2}}>=0$. Thus $e_{b 2}$ form a basis of T_{2} and $\theta^{x 2}$ are linear combinations of forms in $S_{t}(t \neq 2)$. As the rank of the system $\left(S_{3}, S_{1}\right)$ is also n and $\theta^{\tau_{1}}, \theta^{\tau_{2}}$ are linear combinations of the forms in S_{3}, we can select n_{3} forms $\theta^{a_{3}}$ out of $S_{1}-\left(\theta^{a_{2}}\right)$ and then continue the same processes as above. At last we can split up the system S_{1} in $(r-1)$ subsystems $\left(\theta^{x^{2}}\right),\left(\theta^{\alpha_{z}}\right), \ldots \ldots,\left(\theta^{x} r\right)$ such that ($\theta^{a_{0}}$) are linear combinations of the forms in $S_{t}(t \neq s)$ and each system forms the dual cobasis in $T_{2}, \ldots \ldots, T_{r}$. Thus ($\theta^{\bar{u}_{r}}$) are linear combinations of forms in S_{s} and the rank of the system is $n-n_{s}$, hence the system ($\theta^{a^{\bar{s}}}$) is equivalent with S_{s}. Now as we assume that the torsion tensor of the $r-\pi$-structure $t_{j k}^{i}=0$, we have from (4.1) and (4.2) that
from which it follows that $d \theta^{a} \alpha$ are contained in the ideal defined by $\left(\theta^{a} \alpha\right)$. I. e., the system

$$
\begin{equation*}
\theta^{a^{\alpha}}=0 \tag{4.7}
\end{equation*}
$$

is completely integrable (This means that the distribution $\overline{T_{\alpha}}$ is integrable). Therefore, there exist n_{α} complex valued functions $z^{a}{ }_{\alpha}$ of class C^{ω} such that the system $\theta^{a}{ }_{\alpha}=0$ is equivalent with the system $d z^{{ }^{a} \alpha}=0(\alpha=1, \ldots \ldots, r)$. As the system $\left(F_{j}^{i}-\lambda w_{\alpha} \delta_{j}^{i}\right) d x^{j}=0$ is equivalent with S_{α} which is in turn equivalent with ($\theta^{\bar{a}}=0$), which is again equivalent with $d z^{\bar{a}}{ }_{\alpha}=0$, it follows that the T_{α} is expressed by $d z^{\bar{a}} \alpha=0$, i. e. the considered $r-\pi$-structure is integrable. Thus we have

THEOREM 4.1. If the r - π-structure is integrable, then the torsion tensor of the $r-\pi$-structure $t_{j k}^{i}=0$. Conversely if $t_{j k}^{i}=0$ and moreover both the manifold and the considered r - π-structure are of class C^{ω}, then the r - π-structure is integrable.

From the course of the above proof, it is also evident that the definition of the integrability of an r - π-structure stated above is equivalent to the one made by Walker [4].
5. A formula on torsion form of the $r-\pi$-structure. Assume that the manifold is endowed with an $r-\pi$-structure $(2 \leqq r \leqq n$). We generalize the operations C and M considered by Lichnerowicz [3] and Legrand [2] as follows :

Let $v_{1}, \ldots \ldots, v_{t}$ be any t vectors of T_{x}^{C} and φ be a t-form, then define

$$
\begin{gather*}
\stackrel{s}{C} \varphi\left(v_{1}, \ldots \ldots, v_{t}\right)=\varphi\left(\mathfrak{F}^{s} v_{1}, \ldots \ldots, \mathfrak{F}^{s} v_{t}\right), \tag{5.1}\\
\stackrel{s}{M} \varphi\left(v_{1}, \ldots \ldots, v_{t}\right)=\sum_{k=1}^{t} \varphi\left(v_{1}, \ldots \ldots, v_{k-1}, \mathfrak{F}^{s} v_{k}, v_{k+1}, \ldots \ldots, v_{t}\right), \tag{5.2}\\
\\
(1 \leqq s<r) .
\end{gather*}
$$

If $\boldsymbol{\varphi}_{i_{1}} \cdots \cdots i_{t}$ are components of $\boldsymbol{\rho}$ with respect to a basis at a point x, then the components of $\stackrel{s}{C} \varphi$ and $\stackrel{s}{M} \varphi$ are respectively as follows:

$$
\begin{align*}
& (\stackrel{s}{C} \boldsymbol{\varphi})_{i_{1} \cdots \cdots i_{i}}=\stackrel{s}{F_{i_{1}}{ }^{j_{1}} \ldots \ldots .{\stackrel{s}{F_{i}}}^{s_{t}} \boldsymbol{\rho}_{f_{1}} \cdots \cdots j_{t}}, \tag{5.3}\\
& (\stackrel{s}{M} \boldsymbol{\varphi})_{i_{1}} \cdots \cdots i_{t}=\sum_{k=1}^{t}{ }^{s}{ }_{F_{k}}{ }^{h} \boldsymbol{\varphi}_{i_{1}} \cdots \cdots i_{k-1 i_{k+1}} \cdots \cdots \iota_{t} . \tag{5.4}
\end{align*}
$$

Let $\left(\theta^{i}\right)$ be the dual cobasis of an adapted basis at x, then we say that the form

$$
\varphi=\frac{1}{t!} \boldsymbol{\varphi}_{i_{1} \ldots \ldots i_{t}} \theta^{i_{1}} \wedge \ldots \ldots \wedge \theta^{t_{t}}
$$

is pure of the type $\left(p_{1}, \ldots \ldots, p_{r}\right)$ if the only non zero term in the above expression is the term which is of degree p_{a} with respect to $\theta^{\boldsymbol{a} \alpha}(\alpha=1, \ldots \ldots, r)$. It is evident that this definition is independent of the adapted basis used at x. Let $\boldsymbol{\varphi}_{p_{1}, p_{2}, \ldots, p_{r}}$ be pure of the type ($p_{1}, p_{2}, \ldots \ldots, p_{r}$), then from (2.2), (5.3) and (5.4) it follows that

$$
\begin{gather*}
\stackrel{s}{\boldsymbol{C}} \boldsymbol{\varphi}_{p_{1}, p_{2}, \ldots, p_{r}}=w_{1}^{s p_{1}} w_{2}^{s p_{2}} \ldots \ldots . w_{r}^{s p_{r}} \lambda^{s\left(p_{1}+p_{2}+\ldots+p_{r}\right)} \boldsymbol{\varphi}_{p_{1}, p_{2}, \ldots, p_{r},} \tag{5.5}\\
\stackrel{s}{M} \boldsymbol{\varphi}_{p_{1}, p_{2}, \ldots, p_{r}}=\left(p_{1} w_{1}^{s}+p_{2} w_{2}^{s}+\ldots \ldots+p_{r} w_{r}^{s}\right) \lambda^{r} \boldsymbol{\varphi}_{p_{1}, p_{2}, \ldots, p_{r}} . \tag{5.6}
\end{gather*}
$$

As we shall concern principally with 2 -forms in the sequel, we list here some relations on the operations $\stackrel{s}{C}$ and $\stackrel{s}{M}$ which hold only when applied on 2 -forms. Let $\boldsymbol{\varphi}$ be a 2 -form with components $\boldsymbol{\varphi}_{p q}$, then

$$
\begin{gather*}
(\stackrel{\mathrm{s}}{(M)})_{s k}=\left(\delta_{j}^{p} \stackrel{s}{F}_{k}^{q}+\delta_{k}^{q}{ }^{s}{ }_{j}^{p}\right) \boldsymbol{\varphi}_{p q}, \tag{5.7}\\
(\stackrel{s}{C} \boldsymbol{\varphi})_{s k}=\stackrel{s}{F}_{j}^{p}{ }^{s}{ }^{s}{ }_{k}^{q} \boldsymbol{\varphi}_{p q} . \tag{58}
\end{gather*}
$$

Hence

$$
\begin{equation*}
(\stackrel{s t-s}{C M})_{t k}=\left(\stackrel{s}{F_{j}^{p}}{ }_{j}^{t}{ }_{k}^{q}+\stackrel{s}{F_{k}}{ }^{q} \stackrel{t}{F_{j}^{p}}\right) \boldsymbol{\varphi}_{p q} . \tag{5.9}
\end{equation*}
$$

From these relations we have immediately

$$
\left\{\begin{align*}
\stackrel{0}{M} & =2, & \stackrel{0}{C}=1, \tag{5.10}\\
\stackrel{a r+b}{M} & =\lambda^{a r} \stackrel{b}{M}, & \stackrel{a r+b}{C}=\lambda^{2 a r} \stackrel{b}{C}, \\
\stackrel{a r}{M} & =2 \lambda^{a r}, & \stackrel{a r}{C}=\lambda^{2 a r},
\end{align*}\right.
$$

where a is any positive integer and $0 \leqq b<r$. Moreover, we have

$$
\begin{equation*}
\stackrel{s}{M} \stackrel{t}{M}=\stackrel{s+t}{M}+\stackrel{s}{C} \stackrel{t-s}{M}, \tag{5.11}
\end{equation*}
$$

hence

$$
\begin{equation*}
(\stackrel{s}{M})^{2}=\stackrel{2 s}{M}+2 \stackrel{s}{C}, \quad \stackrel{s}{C}=\frac{1}{2}\left\{(\stackrel{s}{M})^{2}-\stackrel{2 s}{M}\right\} \tag{5.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\stackrel{s}{C} M\left(\stackrel{s}{M} \stackrel{u^{u+s}}{M}-\frac{2 s+u}{M} .\right. \tag{5.13}
\end{equation*}
$$

From the last relation we have

$$
\begin{equation*}
\stackrel{s}{C} M=\lambda^{r} \stackrel{u+s-r}{C} \stackrel{r-u}{M} \quad \text { for } \quad u+s \geqq r, u>r, s ; \tag{5.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\stackrel{s}{C} \stackrel{r-s}{M}=\lambda^{r} \stackrel{s}{M} . \tag{5.15}
\end{equation*}
$$

Now assume that the manifold is endowed with an r - π-structure, and let T^{i} be the torsion form of the structure. Denote

$$
\begin{equation*}
\boldsymbol{\varphi} \circ T \equiv \boldsymbol{\varphi}_{i} T^{i}=\frac{1}{2} \boldsymbol{\varphi}_{i} t_{j k}^{i} \theta^{j} \wedge \theta^{k} \tag{5.16}
\end{equation*}
$$

for any 1 -form $\boldsymbol{\varphi}$, then we have the following :

$$
\begin{equation*}
r^{2} \lambda^{r} d \boldsymbol{\rho}+\sum_{t=1}^{r}\left(-r M^{t}+\frac{1}{2}-\frac{1}{\lambda^{2 r}} \cdot \sum_{s=0}^{r-1} \stackrel{s}{C} \stackrel{t+2 r-2 s}{M}\right) d \stackrel{r-t}{C} \boldsymbol{\varphi}=r^{2} \lambda^{r} \boldsymbol{\varphi} \circ T . \tag{5.17}
\end{equation*}
$$

If we extend the definition of $\stackrel{s}{M}$ so as (5.7) to hold also for negative integer, then instead of (5.17) we have

$$
\begin{equation*}
r^{2} \lambda^{r} d \varphi+\sum_{t=1}^{r}\left(-r \stackrel{t}{M}+\frac{1}{2} \sum_{s=0}^{r-1} \stackrel{s}{C} \stackrel{t-2 s}{M}\right) d \stackrel{r-t}{C} \boldsymbol{\varphi}=r^{2} \lambda^{r} \varphi \circ T \tag{5.18}
\end{equation*}
$$

PROOF. Let φ be a pure form of the type ($1,0, \ldots \ldots, 0$), say $\boldsymbol{\varphi} \equiv \boldsymbol{\varphi}_{1,0, \ldots, 0}$ $=\boldsymbol{\varphi}_{a_{1}} \theta^{a_{1}}$, then by (3.1), $d \boldsymbol{\rho}=d \varphi_{a_{1}} \theta^{a_{1}}+\varphi_{a_{1}} d \theta^{a_{1}}$ is the sum of the pure form
of the type $\boldsymbol{\varphi}_{2,0, \ldots, 0}\left[\right.$ i. e., $\left.p_{1}=2, p_{2}=\ldots \ldots=p_{r}=0\right]$; pure forms of the type $\boldsymbol{\varphi}_{1,0, \ldots, 0,1,0, \ldots, 0}$ [i. e., $p_{1}=1, p_{2}=\ldots \ldots=p_{r}=0$ except for an integer $s(2 \leqq s \leqq r)$ and $p_{s}=1$]; pure forms of the type $\psi_{0, \ldots, 0,2,0, \ldots, 0}$ [i. e., $p_{1}=\ldots \ldots=p_{r}=0$ except for an integer $s(2 \leqq s \leqq r)$ and $\left.p_{s}=2\right]$ and pure forms of the type $\psi_{0, \ldots, 0,1,0, \ldots, 0,1,0, \ldots, 0}$ i. e., $p_{1}=\ldots \ldots=p_{r}=0$ except for two integers $s, t, s \neq t(2 \leqq s$, $t \leqq r$) and $\left.p_{s}=p_{t}=1\right]$. Whereas $\varphi \circ T$ is the sum of pure forms of the type $\psi_{0, \ldots, 0,2,0, \ldots, 0}$ and pure forms of the type $\psi_{0, \ldots, 0,1,0, \ldots, 0 .}$ As $\varphi=\boldsymbol{\varphi}_{1,0, \ldots, 0}$ is a pure form, with respect to the adapted basis given by the local section, we have

$$
\begin{equation*}
d^{r-t} \boldsymbol{C} \boldsymbol{\varphi}=w_{1}^{(r-t)} \lambda^{(r-t)} d \varphi . \tag{5.19}
\end{equation*}
$$

Therefore the coefficients of

$$
\begin{cases}\varphi_{2,0, \cdots, 0} ; & \varphi_{1,1,0, \cdots, 0} ; \tag{5.20}\\ \boldsymbol{\psi}_{0,2,0, \cdots, 0} ; & \psi_{0,1,1,0, \cdots, 0}\end{cases}
$$

in $\frac{1}{2} \stackrel{s}{C} \stackrel{t-2 s}{M} d \stackrel{r-t}{C} \varphi$ are respectively the following:

$$
\begin{cases}\lambda^{r} ; & \frac{1}{2}\left\{\left(\frac{w_{2}}{w_{1}}\right)^{s}+\left(\frac{w_{2}}{w_{1}}\right)^{t}\left(\frac{w_{1}}{w_{2}}\right)^{s}\right\} \lambda^{r} ; \tag{5.21}\\ \left(\frac{w_{2}}{w_{1}}\right)^{t} \lambda^{r} ; & \frac{1}{2}\left\{\left(\frac{w_{2}}{w_{1}}\right)^{t}\left(\frac{w_{3}}{w_{2}}\right)^{s}+\left(\frac{w_{3}}{w_{1}}\right)^{t}\left(\frac{w_{2}}{w_{3}}\right)^{s}\right\} \lambda^{r}\end{cases}
$$

Taking the summation $\sum_{t=1}^{r} \sum_{s=0}^{r-1}$ of each term in (5.21), we get the following

$$
\left\{\begin{align*}
r^{2} \lambda^{r} ; & 0 ; \tag{5.22}\\
0 ; & 0
\end{align*}\right.
$$

On the other hand the coefficients of the four forms of (5.20) in $-r \stackrel{t}{M} d \stackrel{r-t}{C} \boldsymbol{\varphi}$ are respectively

$$
\begin{cases}-2 r \lambda^{r} ; & -r\left\{1+\left(\frac{w_{2}}{w_{1}}\right)^{t}\right\} \lambda^{r} ; \tag{5.23}\\ -2 r\left(\frac{w_{2}}{w_{1}}\right)^{t} \lambda^{r} ; & -r\left\{\left(\frac{w_{2}}{w_{1}}\right)^{t}+\left(\frac{w_{3}}{w_{1}}\right)^{t}\right\} \lambda^{r}\end{cases}
$$

Taking the summation $\sum_{i=1}^{r}$ of each term in (5.23) we get the following respective coefficient of the forms of (5.20) in $\sum_{t=1}^{r}(-r) \stackrel{t}{M} \stackrel{r-t}{d C} \boldsymbol{\varphi}$:

$$
\left\{\begin{array}{cc}
-2 r^{2} \lambda^{r} ; & -r^{2} \lambda^{r} ; \tag{5.24}\\
0 ; & 0 .
\end{array}\right.
$$

From (5.22) and (5.24) it follows immediately that the respective coefficients of the forms of (5.20) in the left hand side of (5.18) are respectively

$$
\left\{\begin{array}{rr}
0 ; & 0 ; \tag{5.25}\\
r^{2} \lambda^{r} ; & r^{2} \lambda^{r} .
\end{array}\right.
$$

Whereas the corresponding coefficients in $\varphi \circ T$ are respectively

$$
\begin{cases}0 ; & 0 ; \tag{5.26}\\ 1 ; & 1 .\end{cases}
$$

Therefore, the relation (5.18) holds for $\varphi \equiv \boldsymbol{\varphi}_{1,0}, \cdots, 0$ because we can get similar results for the other forms appearing in both sides of (5.18). It is easily seen by the same way that (5.18) holds also for any other pure forms $\boldsymbol{\varphi}_{0, \cdots, 0,1,0}$, $\cdots, 0$ [i. e., $p_{1}=\ldots \ldots=p_{r}=0$ except for an integer $s(2 \leqq s \leqq r)$ and $\left.p_{s}=1\right]$. Thus we have the relation (5.18) for any 1 -form.
6. Components of the torsion tensor of an $r-\pi$-structure. Let $\boldsymbol{\rho}$ be any 1 -form, then as $(\stackrel{s}{C} \boldsymbol{\varphi})_{i}=\stackrel{s}{F_{i}}{ }^{m} \boldsymbol{\varphi}_{m}$, we have

$$
\begin{equation*}
d \stackrel{s}{C} \varphi=\stackrel{s}{\circ} \circ \varphi+\stackrel{s}{\mathscr{G}}, \tag{6.1}
\end{equation*}
$$

where we have put

$$
\begin{equation*}
\stackrel{s}{\mathfrak{f}}_{j k}^{m}=\frac{1}{2}\left(\partial_{j} \stackrel{s}{F}_{k}^{m}-\partial_{k} \stackrel{s}{F}_{j}^{m}\right), \quad(\stackrel{s}{\mathfrak{f}} \circ \varphi)_{f k}=\frac{1}{2}\left(\partial_{j} \stackrel{s}{F}_{k}^{m}-\partial_{k} \stackrel{s}{F}_{j}^{m}\right) \boldsymbol{\varphi}_{m}, \tag{6.2}
\end{equation*}
$$

$$
\begin{equation*}
\stackrel{s}{\mathscr{E}}_{j k}=\frac{1}{2}\left(\stackrel{s}{F}_{k}^{m} \partial_{j} \boldsymbol{\varphi}_{m}-\stackrel{s}{F}_{j}^{m} \partial_{k} \boldsymbol{\varphi}_{m}\right) . \tag{6.3}
\end{equation*}
$$

Moreover, if we put
then we have

Putting (6.1) in the left hand side of (5.18) and then make use of (6.5). we have

$$
\begin{align*}
& A \equiv r^{2} \lambda^{r} d \boldsymbol{\varphi}+\sum_{t=1}^{r}\left(-r \stackrel{i}{M}^{t}+\frac{1}{2} \sum_{s=0}^{r-1} \stackrel{s}{C}^{t-2 s}\right) \stackrel{r-t}{d C} \boldsymbol{\varphi} \\
& =r^{2} \lambda^{r} d \boldsymbol{\varphi}+\left(-r \stackrel{r}{M}+\frac{1}{2} \sum_{s=0}^{r-1} C^{s-2 s}\right) d \boldsymbol{\varphi} \tag{6.6}\\
& +\sum_{t=1}^{r-1}\left(-r M^{i}+\frac{1}{2} \sum_{s=0}^{r-1} \stackrel{s}{M}^{t-2 s}\right)^{r-t} \stackrel{G}{t}^{t} \\
& +\sum_{t=1}^{r-1}\left(-r M^{t}+\frac{1}{2} \sum_{s=0}^{r-1} C^{s-2 s}\right)^{r-t} \stackrel{\rightharpoonup}{f}^{r} \circ \rho .
\end{align*}
$$

As it is shown below, we have

$$
\begin{equation*}
\left.B \equiv \sum_{t=1}^{r-1}\left(-r M^{t}+\frac{1}{2} \sum_{s=0}^{r-1} \stackrel{s}{C} M^{t-2 s}\right)\right)^{r-t}=-r^{2} \lambda^{r} d \varphi-\left(-r M^{r}+\frac{1}{2} \sum_{s=0}^{r-1} \stackrel{s}{C} M^{t-2 s}\right) d \varphi, \tag{6.7}
\end{equation*}
$$ we get

$$
\begin{equation*}
A=\sum_{t=1}^{r-1}\left(-r M^{t}+\frac{1}{2} \sum_{s=0}^{r-1} \stackrel{s}{C} M^{t-2 s}\right)^{r-t} \stackrel{\varphi}{f} \circ . \tag{6.8}
\end{equation*}
$$

From (6.8), (5.18), (5.7) and (5.9) we have

$$
\begin{align*}
& t_{j k}^{l}=\frac{1}{r^{2} \lambda^{r}} \sum_{t=1}^{r-1}\left\{-r\left(\delta_{j}^{p} F_{k}^{q}+\delta_{k}^{q}{ }_{i}^{t}{ }_{i}^{p}\right)\right. \tag{6.9}
\end{align*}
$$

The proof of (6.7) is as follows: Making use of (6.5) we have

$$
B=-r(r-1) \lambda^{r} d \varphi-r \sum_{t=1}^{r-1} \mathfrak{(t , r - t)} \mathfrak{\mathscr { E }}+\frac{1}{2}(r-1) \sum_{s=0}^{r-1}\left(s, \mathscr{S}^{(s, s)}+\frac{1}{2} \sum_{t=1}^{r-1} \sum_{s=0}^{r-1} \mathfrak{g}^{(t-s, r-t+s)}\right.
$$

It is shown below that

Hence we have

$$
\begin{align*}
& +\frac{1}{2}(r-1) \sum_{u=1}^{r-1}(u, r-u) . \tag{6.11}
\end{align*}
$$

As $\stackrel{(0, r)}{5}=\stackrel{(r, 0)}{5}=\lambda^{r}{ }^{(0,0)}{ }_{5}{ }^{(0)}=\lambda^{r} d \boldsymbol{\varphi}$, from (6.5) and (6.11) we have

$$
\begin{aligned}
B & =-(r-1)^{2} \lambda^{r} d \boldsymbol{\rho}-\sum_{t=1}^{r-1} \stackrel{(t, r-t)}{S_{L}} \\
& =-r^{2} \lambda^{r} d \boldsymbol{\varphi}+r \stackrel{r}{r} d \boldsymbol{\rho}-\frac{1}{2} \sum_{s=0}^{r-1} C^{s} M^{r-2 s} d \varphi
\end{aligned}
$$

Finally, the proof of (6.10) is as follows:

$$
\begin{aligned}
& \left.C=\sum_{t=1}^{r-1} \sum_{s^{\prime}=t-r+1}^{t} \begin{array}{c}
\left(s^{\prime}, r-s^{\prime}\right) \\
s_{j}
\end{array} \quad \text { (putting } s^{\prime}=t-s \text { in } C\right) \\
& =\sum_{t=1}^{r-1}\left(\sum_{s^{\prime}=1}^{t}{\left.\stackrel{(s}{s}, r-s^{\prime}\right)}_{s_{2}}+\sum_{s^{\prime}=t-r+1}^{0}\binom{\left(s^{\prime}, r-s^{\prime}\right)}{s_{2}}\right. \text {. }
\end{aligned}
$$

Since

$$
\begin{aligned}
& \sum_{s^{\prime}=t-r+1}^{0}{ }_{\substack{\left(s^{\prime}, r-s^{\prime}\right) \\
5}}=\sum_{s^{\prime \prime}=1}^{r-t}{ }_{5}^{\left(t-r+s^{\prime}, 2 r-t-s^{\prime \prime}\right)} \quad \text { (putting } s^{\prime}=t-r+s^{\prime \prime} \text { in left hand side) } \\
& =\sum_{s^{\prime \prime}=1}^{r-1}{\stackrel{\left(t+s^{\prime \prime}\right.}{\left.S^{\prime \prime}, r-t-s^{\prime \prime}\right)}}^{S^{\prime}} \sum_{u=t+1}^{r}\left(\begin{array}{c}
(u, r-u) \\
S^{2}
\end{array}\left(u=t+s^{\prime \prime}\right)\right. \text {, }
\end{aligned}
$$

we have

$$
\begin{aligned}
& =\sum_{t=1}^{r-1}\left(\sum_{u=1}^{r} \underset{\substack{(u, r-u) \\
5}}{ }\right)=(r-1) \sum_{u=1}^{r} \underset{\mathcal{S}}{(u, r-u)}
\end{aligned}
$$

7. An application of the relation (5.18). Let the infinitesimal transformation defined by the vector field X be denoted by $X \cdot f$ where f is a function. Let u, v be any two vector fields, φ be any 1 -form, then it is known that the following relation holds:

$$
\begin{equation*}
d \boldsymbol{\varphi}(u, v)=u \cdot \boldsymbol{\varphi}(v)-v \cdot \boldsymbol{\varphi}(u)-\boldsymbol{\varphi}([u, v]), \tag{7.1}
\end{equation*}
$$

where $[u, v]$ is the Poisson's bracket of the two vector fields u, v. Making use
of this formula we have

$$
\begin{equation*}
d^{r-t} \boldsymbol{C} \boldsymbol{\varphi}(u, v)=u \cdot \boldsymbol{\varphi}\left(\mathfrak{F}^{r-t} v\right)-v \boldsymbol{\varphi}\left(\mathfrak{F}^{r-t} u\right)-\boldsymbol{\varphi}\left(\mathfrak{F}^{r-t}[u, v]\right), \tag{7.2}
\end{equation*}
$$

from which we have moreover the following:

$$
\begin{align*}
\stackrel{t}{M} \stackrel{r-t}{C} \boldsymbol{\varphi}(u, v) & =\stackrel{{ }^{r-t} C}{C} \boldsymbol{\varphi}\left(\mathfrak{F}^{t} u, v\right)+\stackrel{r}{C}_{C-t}^{C}\left(u, \mathfrak{F}^{t} v\right) \\
& =\mathscr{F}^{t} u \cdot \boldsymbol{\varphi}\left(\mathfrak{F}^{r-t} v\right)-\mathfrak{F}^{t} v \cdot \boldsymbol{\varphi}\left(\mathfrak{F}^{r-t} u\right) \tag{7.3}\\
& +\lambda^{r}\{d \boldsymbol{\varphi}(u, v)+\boldsymbol{\varphi}([u, v])\} \\
& -\boldsymbol{\varphi}\left(\mathfrak{F}^{r-t}\left[\mathfrak{F}^{t} u, v\right]\right)-\boldsymbol{\varphi}\left(\mathfrak{F}^{r-t}\left[u, \mathfrak{F}^{t} v\right]\right) .
\end{align*}
$$

Hence

$$
\begin{align*}
& \stackrel{s}{s t-2 s} M d C \\
& \overbrace{}^{-t} \boldsymbol{\varphi}(u, v)=\stackrel{t-2 s}{M-t} C \boldsymbol{\varphi}\left(\mathfrak{F}^{s} u, \mathfrak{F}^{s} v\right) \\
&=\mathfrak{F}^{t-s} u \cdot \boldsymbol{\varphi}\left(\mathfrak{F}^{r-(t-s)} v\right)-\mathfrak{F}^{t-s} v \cdot \boldsymbol{\varphi}\left(\mathfrak{F}^{r-(t-s)} u\right) \tag{7.4}\\
&+\mathfrak{F}^{s} u \cdot \boldsymbol{\varphi}\left(\mathfrak{F}^{r-s} v\right)-\mathfrak{F}^{s} v \cdot \boldsymbol{\varphi}\left(\mathfrak{F}^{r-s} u\right) \\
&-\boldsymbol{\varphi}\left(\mathfrak{F}^{r-t}\left[\mathfrak{F}^{t-s} u, \mathfrak{F}^{s} v\right]\right)-\boldsymbol{\varphi}\left(\mathfrak{F}^{r-t}\left[\mathfrak{F}^{s} u, \mathfrak{F}^{t-s} v\right]\right) .
\end{align*}
$$

Since the value $T(u, v)$ of the torsion form of an r - π-structure for the vector fields u, v defines a vector field, we have from (5.18) the following:

$$
\begin{align*}
r^{2} \lambda^{r} \varphi(T(u, v))=r^{2} \lambda^{r} d \varphi(u, v) & +\sum_{t=1}^{r}(-r){ }^{t} M^{r-t} C \varphi(u, v) \tag{7.5}\\
& +\frac{1}{2} \sum_{t=1}^{r} \sum_{s=0}^{r-1} C^{s} M d C \varphi(u, v) .
\end{align*}
$$

Putting (7.3) and (7.4) in the right hand side of the above formula, we have

$$
\begin{align*}
r^{2} \lambda^{r} \boldsymbol{\varphi}(T(u, v)) & =\sum_{t=1}^{r}(-r)\left\{\mathfrak{F}^{t} u \cdot \boldsymbol{\varphi}\left(\mathfrak{F}^{r-t} v\right)-\mathfrak{F}^{t} v \cdot \boldsymbol{\varphi}\left(\mathfrak{F}^{r-t} u\right)\right\}-r^{2} \lambda^{r} \boldsymbol{\varphi}([u, v]) \\
& +r \sum_{t=1}^{r}\left\{\boldsymbol{\phi}\left(\mathfrak{F}^{r-t}\left[\mathfrak{F}^{t} u, v\right]\right)+\boldsymbol{\varphi}\left(\mathfrak{F}^{r-t}\left[u, \mathfrak{F}^{t} v\right]\right)\right\} \\
& +\frac{1}{2} \sum_{t=1}^{r} \sum_{s=0}^{r-1}\left\{\mathfrak{F}^{t-s} u \cdot \boldsymbol{\varphi}\left(\mathfrak{F}^{r-(t-s)} v\right)-\mathfrak{F}^{t-s} v \cdot \boldsymbol{\varphi}\left(\mathfrak{F}^{r-(t-s)} u\right)\right\} \tag{7.6}\\
& +\frac{1}{2} \sum_{t=1}^{r} \sum_{s=0}^{r-1}\left\{\mathfrak{F}^{s} u \cdot \boldsymbol{\varphi}\left(\mathfrak{F}^{r-s} v\right)-\mathfrak{F}^{s} v \cdot \boldsymbol{\varphi}\left(\mathfrak{F}^{r-s} u\right)\right\} \\
& -\frac{1}{2} \sum_{t=1}^{r} \sum_{s=0}^{r-1}\left\{\boldsymbol{\varphi}\left(\mathfrak{F}^{r-t}\left[\mathfrak{F}^{t-s} u, \mathfrak{F}^{s} v\right]\right)+\boldsymbol{\varphi}\left(\mathfrak{F}^{r-t}\left[\mathfrak{F}^{s} u, \mathfrak{F}^{t-s} v\right]\right)\right\} .
\end{align*}
$$

It is seen immediatley that

$$
\begin{align*}
\frac{1}{2} \sum_{t=1}^{r} \sum_{s=0}^{r-1}\left\{\mathfrak{F}^{s} u \cdot \boldsymbol{\varphi}\left(\mathfrak{F}^{r-s} v\right)\right. & \left.-\mathfrak{F}^{s} v \cdot \boldsymbol{\varphi}\left(\mathfrak{F}^{r-s} u\right)\right\} \tag{7.7}\\
& =\frac{1}{2} r \sum_{s=1}^{r}\left\{\mathfrak{F}^{s} u \cdot \boldsymbol{\varphi}\left(\mathfrak{F}^{r-s} v\right)-\mathfrak{F}^{s} v \cdot \boldsymbol{\varphi}\left(\mathfrak{F}^{r-s} u\right)\right\} .
\end{align*}
$$

As it is shown below that

$$
\begin{align*}
D & \equiv \frac{1}{2} \sum_{t=1}^{r} \sum_{s=0}^{r-1}\left\{\mathfrak{F}^{t-s} u \cdot \boldsymbol{\varphi}\left(\mathfrak{F}^{r-(t-s)} v\right)-\mathfrak{F}^{t-} v \cdot \boldsymbol{\varphi}\left(\mathfrak{F}^{r-(t-s)} u\right)\right\} \tag{7.8}\\
& =\frac{1}{2} r \sum_{t=1}^{r}\left\{\mathfrak{F}^{t} u \cdot \boldsymbol{\varphi}\left(\mathfrak{F}^{r-t} v\right)-\mathfrak{F}^{t} v \cdot \boldsymbol{\varphi}\left(\mathfrak{F}^{r-t} u\right)\right\},
\end{align*}
$$

from (7.6), (7.7) and (7.8) we have the following

$$
\begin{align*}
r^{2} \lambda^{r} T(u, v)= & -r^{2} \lambda^{r}[u, v]+r \sum_{t=1}^{r}\left\{\mathscr{F}^{r-t}\left[\mathfrak{F}^{t} u, v\right]+\mathfrak{F}^{r-t}\left[u, \mathscr{F}^{t} v\right]\right\} \tag{7.9}\\
& -\frac{1}{2} \sum_{t=1}^{r} \sum_{s=0}^{r-1}\left\{\mathfrak{F}^{r-t}\left[\mathfrak{F}^{t-s} u, \mathfrak{F}^{s} v\right]+\mathfrak{F}^{r-t}\left[\mathfrak{F}^{s} u, \mathfrak{F}^{t-s} v\right]\right\}
\end{align*}
$$

To prove (7.8), put $t^{\prime}=t-s$, then we have

$$
\begin{aligned}
D & =\frac{1}{2} \sum_{t^{\prime}=1}^{r} \sum_{s=0}^{r-t^{\prime}}\left\{\mathfrak{F}^{t^{\prime}} u \cdot \boldsymbol{\rho}\left(\mathfrak{F}^{r-t^{\prime}} v\right)-\mathfrak{F}^{t^{\prime}} v \cdot \boldsymbol{\rho}\left(\mathfrak{F}^{r-t^{\prime}} u\right)\right\} \\
& +\frac{1}{2} \sum_{t^{\prime}=-(r-2)}^{0} \sum_{s=1-t^{\prime}}^{r-1}\left\{\mathfrak{F}^{t^{\prime}} u \cdot \boldsymbol{\varphi}\left(\mathfrak{F}^{r-t^{\prime}} v\right)-\mathfrak{F}^{t^{\prime}} v \cdot \boldsymbol{\varphi}\left(\mathfrak{F}^{r-t^{\prime}} u\right)\right\} .
\end{aligned}
$$

If we put $t^{\prime \prime}=t^{\prime}+r$, then the last term of the above formula turns out to be

$$
\begin{aligned}
& \frac{1}{2} \sum_{t^{\prime \prime}=2}^{r} \sum_{s=r+1-t^{\prime \prime}}^{r-1}\left\{\mathfrak{F}^{t^{\prime \prime}-r} u \cdot \boldsymbol{\varphi}\left(\mathfrak{F}^{2 r-t^{\prime \prime}} v\right)-\mathfrak{F}^{t^{\prime \prime}-r} v \cdot \boldsymbol{\varphi}\left(\mathfrak{F}^{2 r-t^{\prime \prime}} u\right)\right\} \\
& \quad=\frac{1}{2} \sum_{t^{\prime \prime}=2}^{r}\left(t^{\prime \prime}-1\right)\left\{\mathfrak{F}^{t^{\prime \prime}} u \cdot \boldsymbol{\varphi}\left(\mathfrak{F}^{r-t^{\prime \prime}} v\right)-\mathfrak{F}^{t^{\prime \prime}} v \cdot \boldsymbol{\varphi}\left(\mathfrak{F}^{r-t^{\prime \prime}} u\right)\right\} \\
& \quad=\frac{1}{2} \sum_{t^{\prime \prime}=1}^{r}\left(t^{\prime \prime}-1\right)\left\{\mathfrak{F}^{t^{\prime \prime}} u \cdot \boldsymbol{\varphi}\left(\mathfrak{F}^{r-t^{\prime \prime}} v\right)-\mathfrak{F}^{t^{\prime \prime}} v \cdot \boldsymbol{\varphi}\left(\mathfrak{F}^{r-t^{\prime \prime}} u\right)\right\} .
\end{aligned}
$$

Hence we have (7.8).
For giving an application of (7.9), we first calculate some formulas to be used :

From (1.4) we have
and

$$
\begin{aligned}
\mathfrak{F}^{r-t}\left[\mathfrak{F}^{t} u, v\right] & =\lambda^{r} \sum_{\beta=1}^{r} \sum_{\alpha=1}^{r}\left(\frac{w_{\alpha}}{w_{\beta}}\right)^{t} \mathfrak{F}_{\beta}\left[\mathfrak{F}_{\alpha} u, v\right] \\
\mathfrak{F}^{r-t}\left[\mathfrak{F}^{t-s} u, \mathfrak{F}^{s} v\right] & =\lambda^{r} \sum_{\gamma=1}^{r} \sum_{\beta=1}^{r} \sum_{\alpha=1}^{r}\left(\frac{w_{\beta}}{w_{\gamma}}\right)^{t}\left(\frac{w_{\alpha}}{w_{\beta}}\right)^{s} \Re_{\gamma}\left[\Re_{\beta} u, \Re_{\alpha} v\right] .
\end{aligned}
$$

From these two formulas we have respectively

$$
\begin{gather*}
\sum_{t=1}^{r} \mathfrak{F}^{r-t}\left[\mathfrak{F}^{t} u, v\right]=r \lambda^{r} \sum_{\alpha=1}^{r} \mathfrak{F}_{\alpha}\left[\mathfrak{F}_{\alpha} u, v\right], \tag{7.10}\\
\sum_{t=1}^{r} \sum_{s=0}^{r-1} \mathfrak{F}^{r-t}\left[\mathfrak{F}^{t-s} u, \mathfrak{F}^{s} v\right]=r^{2} \lambda^{r} \sum_{\alpha=1}^{r} \mathfrak{F}_{\alpha}\left[\mathfrak{F}_{\alpha} u, \mathfrak{F}_{\alpha} v\right] . \tag{7.11}
\end{gather*}
$$

It is obvious that

$$
\begin{equation*}
[u, v]=\sum_{\alpha=1}^{r} \mathfrak{F}_{\alpha}[u, v] . \tag{7.12}
\end{equation*}
$$

Substitute (7.10), (7.11) and (7.12) in (7.9), we have

$$
\begin{align*}
r^{2} \lambda^{r} T(u, v) & =r^{2} \lambda^{r} \sum_{a=1}^{r}\left\{-\mathfrak{\Re}_{\alpha}[u, v]+\mathfrak{F}_{\alpha}\left[\Re_{\alpha} u, v\right]+\Re_{\alpha}\left[u, \Re_{\alpha} v\right]-\Re_{\alpha}\left[\Re_{\alpha} u, \Re_{\alpha} v\right]\right\} \tag{7.13}\\
& =r^{2} \lambda^{r} \sum_{\alpha=1}^{r} \Re_{\alpha}\left\{-\Re_{\alpha}[u, v]+\Re_{\alpha}\left[\Re_{\alpha} u, v\right]+\Re_{\alpha}\left[u, \Re_{\alpha} v\right]-\left[\Re_{\alpha} u, \Re_{\alpha} v\right]\right\} .
\end{align*}
$$

Let $N\left(P_{\alpha}\right)$ be the Nijenhuis tensor of the projection tensor ${\underset{\alpha}{\alpha}}_{P_{j}^{i}}$ induced by \mathfrak{P}_{α}. As it is known that

$$
\begin{equation*}
N\left(P_{\alpha}\right)(u, v)=-\mathfrak{B}_{\alpha}\left[\mathfrak{B}_{\alpha} u, v\right]-\mathfrak{B}_{\alpha}\left[u, \mathfrak{B}_{\alpha} v\right]+\mathfrak{B}_{\alpha}[u, v]+\left[\mathfrak{F}_{\alpha} u, \mathfrak{B}_{\alpha} v\right], \tag{7.14}
\end{equation*}
$$

we have from (7.13) the following

$$
\begin{equation*}
T(u, v)=-\sum_{\alpha=1}^{r} \mathfrak{\Re}_{\alpha} N\left(P_{\alpha}\right)(u, v) . \tag{7.15}
\end{equation*}
$$

8. π-connections on the differentiable manifold endowed with an r -π-structure. Let V_{n} be a differentiable manifold having an $r-\pi$-structure. By definition a π-connection on V_{n} is an infinitesimal connection defined on the principal fibre space $E_{\pi}\left(V_{n}\right)$. Let $E_{c}\left(V_{n}\right)$ be the principal fibre space consisting of all complex bases at all points of V_{n}, and having $G L(n, C)$ as its structure group. It is evident that $E_{\pi}\left(V_{n}\right)$ can be seen as a subspace of $E_{c}\left(V_{n}\right)$, so a local section in $E_{\pi}\left(V_{n}\right)$ can also be regarded as a local section in $E_{c}\left(V_{n}\right)$. Thus a π^{-} connection can also be regarded as a complex linear connection, that is an infinite-
simal connection on $E_{c}\left(V_{n}\right)$. If a complex linear connection is determined by complex valued Pfaff forms (ω_{j}^{i}) with respect to the local section in $E_{\pi}\left(V_{n}\right)$, we say that (ω_{j}^{i}) defines a connection relative to the adapted basis of the $r-\pi$ structure. A complex linear connection (ω_{j}) defined relative to the adapted bases of the r - π-structure can be regarded as a π-connection if and only if the values of the forms ($\omega_{j}{ }^{t}$) belong to the Lie algebra of the structure group $G\left(n_{1}, n_{2}, \ldots\right.$ $\left.\ldots, n_{r}\right)$ of $E_{\pi}\left(V_{n}\right)$, that is to say, the following condition are satisfied:

$$
\begin{equation*}
\omega_{\bar{a}_{\alpha}}^{a_{\alpha}}=0 \quad(\alpha=1,2, \ldots \ldots, r) . \tag{8.1}
\end{equation*}
$$

Let $\nabla F_{j}{ }^{i}$ be the absolute differential of the tensor $F_{j}{ }^{i}$ with respect to the connection (ω_{j}^{i}), then we have

$$
\begin{equation*}
\nabla F_{j}^{i}=d F_{j}^{i}+\omega_{k}{ }^{i} F_{j}^{k}-\omega_{j}^{k} F_{k}{ }^{i} . \tag{8.2}
\end{equation*}
$$

Referring to an adapted basis of the r - π-structure and then make use of (2.1) we have

$$
\begin{align*}
& \nabla F_{b_{\alpha}}^{a_{\alpha}}=\lambda w_{\alpha} \omega_{b_{\alpha}}^{a_{\alpha}}-\lambda w_{a} \omega_{b_{\alpha}}^{a_{\alpha}}=0, \\
& \nabla F_{b_{\beta}}^{a_{\alpha}}=\lambda w_{\beta} \omega_{b_{\beta}}^{a_{\alpha}}-\lambda w_{a} \omega_{b_{\beta}}^{a_{\alpha}}=\lambda\left(w_{\beta}-w_{\alpha}\right) \omega_{b_{\beta}}^{a_{\alpha}} \tag{8.3}\\
& \quad(\alpha, \beta=1,2, \ldots \ldots, r ; \alpha \neq \beta) .
\end{align*}
$$

Therefore (8.1) is equivalent to

$$
\begin{equation*}
\nabla F_{j}^{i}=0 \tag{8.4}
\end{equation*}
$$

Thus we have the following :
THEOREM 8.1. A complex linear connection can be regarded as a π connection if and only if the absolute differential of the tensor F_{j}^{i} (the fundamental tensor of the r - π-structure) with respect to the considered connection vanishes.

From (1.3) and (1.8) we have the following for the tensor fields $P_{\alpha_{j}}{ }^{i}$ induced by \mathfrak{B}_{α} :

$$
\begin{aligned}
F_{j}^{i} & =\lambda \sum_{\alpha=1}^{r} w_{\alpha} P_{\alpha j}^{i}, \\
P_{\alpha j}^{i} & =\frac{1}{r} \sum_{s=0}^{r-1} \frac{1}{\left(\lambda w_{a}\right)^{s}} \bar{F}_{j}^{s} .
\end{aligned}
$$

Hence (8.4) is equivalent with the following :

$$
\begin{equation*}
\nabla P_{\alpha_{j}}^{i}=0 \quad(\alpha=1, \ldots \ldots, r) \tag{8.5}
\end{equation*}
$$

From (8.6) we can see easily that a π-connection is the connection with respect to which each of the considered r-distributions is parallel (See Fukami [5]).

LEMMA. Let $\left(\omega_{j}^{i}\right)$ be any complex linear connection defined relative to the adapted basis of the r - π-structure, then the following forms (π_{j}^{*}) determine a π-connection:

$$
\begin{equation*}
\pi_{b_{\alpha}}^{a_{\alpha}}=\omega_{b_{\alpha}^{\alpha}}^{a}, \quad \pi_{\bar{a}_{\alpha}}^{a_{\alpha}}=0 ; \quad(\alpha=1, \ldots \ldots, r) . \tag{8.6}
\end{equation*}
$$

For the proof, the only thing must be shown is that (π_{i}^{i}) defines a complex linear connection. But this is easily seen from its transformation rule with respect to the adapted basis.

The connection (π_{j}^{i}) stated in the above lemma is called the π-connection induced by the complex linear connection (ω_{g}). Let

$$
\begin{equation*}
\omega_{j}^{t}=\gamma_{j k}^{i} \theta^{k}, \quad \pi_{j}^{t}=l_{j k}^{i} \theta^{k}, \tag{8.7}
\end{equation*}
$$

where (θ^{t}) is the dual cobasis of the adapted basis at each point defined by the considered local section.

Put

$$
\begin{equation*}
\tau_{j k}^{i}=l_{j_{k}}^{i}-\boldsymbol{\gamma}_{j k}^{i} \tag{8.8}
\end{equation*}
$$

then $\tau_{j k}^{l}$ is a tensor, and we have the following with respect to the adapted basis:

$$
\begin{equation*}
\underset{\tau_{\beta^{k}}}{a_{\alpha}}=-\gamma_{\hat{o}_{\beta^{k}},}^{a_{\alpha}} \quad \tau_{b_{\alpha^{k}}}^{a_{\alpha}}=0 \quad(\alpha \neq \beta) . \tag{8.9}
\end{equation*}
$$

As the covariant derivatives $\nabla_{k} F_{j}^{i}$ of F_{j}^{i} with respect to the connection (ω_{j}^{i}) are defined by the following:

$$
\begin{equation*}
\nabla F_{j}^{i}=\nabla_{k} F_{j}^{i} \theta^{k} \tag{8.10}
\end{equation*}
$$

from (8.3) we have

$$
\begin{equation*}
\nabla_{k} F_{b_{\alpha}}^{a}=0, \quad \nabla_{k} F_{b_{\beta}}^{a_{\alpha}}=\lambda\left(w_{\beta}-w_{\alpha}\right) \gamma_{v_{\beta^{k}}}^{\alpha_{\alpha}} \quad(\alpha \neq \beta) \tag{8.11}
\end{equation*}
$$

Making use of (2.2) we have generally

From the above formulas we have
hence

$$
\begin{equation*}
\frac{1}{r \lambda^{r}} \sum_{s=1}^{r-1}\left(\nabla_{k}{\stackrel{s}{b_{\beta}^{c}}}_{c_{\alpha}^{\alpha}}^{r-s_{\alpha_{\alpha}}} F_{c_{\alpha}}^{a_{\alpha}}=-\gamma_{b_{\beta}^{k}}^{a_{\alpha}^{\alpha}}=\tau_{b_{\beta^{k}}^{a}}^{a_{\alpha}} \quad(\alpha \neq \beta ; \alpha, \beta=1, \ldots \ldots, r) .\right. \tag{8.13}
\end{equation*}
$$

From (8.12) we have moreover,

Therefore, it is evident that the tensor $\tau_{j k}^{i}$ has the following components in the local coordinate system :

$$
\begin{equation*}
\left.\tau_{j k}^{l}=\frac{1}{r} \frac{1}{\lambda^{r}} \sum_{s=1}^{r-1}\left(\nabla_{k} \stackrel{s}{F}_{s}^{s}\right)\right)_{l}^{r-s} . \tag{8.15}
\end{equation*}
$$

Thus we have the following:
THEOREM 8.2. Let $\gamma_{j k}^{i}$ be the parameters of a linear connection in the local coordinate system, then the following are parameters of $a \pi$-connection:

$$
\begin{equation*}
l_{j k}^{i}=\gamma_{j k}^{i}+\frac{1}{r} \frac{1}{\lambda^{r}} \sum_{s=1}^{r-1}\left(\nabla_{k} \stackrel{s}{F_{j}^{l}}\right) \stackrel{r-s}{F_{l}^{i}} . \tag{8.16}
\end{equation*}
$$

This connection is the π-connection induced by the linear connection $\gamma_{j k}^{i}$ (Tachibana [6]).

Next, let $\bar{\pi}_{j}^{t}$ be any π-connection and let $\bar{\pi}_{j}^{t}=\bar{l}_{j k}^{t} \theta^{k}$. Put

$$
\begin{equation*}
\sigma_{j k}^{i}=\overline{l_{j k}^{i}}-l_{j k}^{i}, \tag{8.17}
\end{equation*}
$$

then $\sigma_{j k}^{i}$ is a tensor. As $\bar{\pi} s_{\beta}^{a}=\pi{ }_{o_{\beta}}^{a_{\alpha}}=0$, we have following with respect to the adapted basis :

$$
\begin{equation*}
\sigma_{b_{\beta^{k}}}^{a_{\alpha}}=0 \tag{8.18}
\end{equation*}
$$

This is also the sufficient condition for $\bar{\pi}_{j}{ }^{t}$ and $\pi_{j}{ }^{t}$ be both the π-connection.
Since
with respect to adapted bases, we have

Hence it follows that

Thus if (8.18) is satisfied we have

From (8.21) and (8.22) it is evident that if $\sigma_{j k}^{i}$ satisfies (8.18), then its components with respect to a local coordinate system are as follows:

$$
\begin{equation*}
\frac{1}{r}\left(\sigma_{i k k}^{i}+\frac{1}{\lambda^{r}} \sum_{s=1}^{r-1} \stackrel{r}{F}_{j-s}^{F_{j}^{d}} \sigma_{d k}^{c} \stackrel{s}{F}_{c}^{i}\right) . \tag{8.23}
\end{equation*}
$$

Conversely, for any tensor $\sigma_{j k}^{i}$ the tensor having (8.23) as its components satisfies (8.18). Thus we have

THEOREM 8.3. Let $\gamma_{j k}^{i}$ be the parameters of a linear connection in the local coordinate system, then any π-connection can be expressed as follows:

$$
\begin{equation*}
\boldsymbol{\gamma}_{j k}^{\prime}+\frac{1}{r} \frac{1}{\lambda^{r}} \sum_{s=1}^{r-1}\left(\nabla_{k} \stackrel{s}{F_{j}^{l}}\right)^{r-s}{ }_{l}^{i}+\frac{1}{r}\left(\sigma_{j k}^{i}+\frac{1}{\lambda^{r}} \sum_{s=1}^{r-1}{ }^{r-s}{ }_{j}^{d} \sigma_{d k}^{c}{ }^{c}{ }_{F}^{s}{ }_{c}^{i}\right), \tag{8.24}
\end{equation*}
$$

where $\sigma_{j k}^{i}$ is a tensor [6].

9. Distinguished π-connections.

LEMMA. Let $\omega_{j}^{i}=\gamma_{j k}^{i} \theta^{k}$ be any complex linear connection defined relative to the adapted basis of the π-structure, then the following forms ($\hat{\pi}_{j}{ }^{i}$) determine a π-conneciion:

For the proof, the only thing must be shown is that $\gamma_{\hat{\sigma}_{\alpha}{ }^{3}{ }^{3}{ }^{a}}$ define a tensor. But this is easily seen.

Now assume that $\omega_{j}^{i}=\boldsymbol{\gamma}_{j k}^{i} \theta^{k}$ is a symmetric linear connection (complex or real) defined relative to the adapted basis. Then as it is without torsion, we have

$$
\begin{aligned}
& d \theta^{i} \alpha=\theta^{j} \wedge \omega_{j}{ }^{,{ }^{\alpha} \alpha}
\end{aligned}
$$

Let T^{i} be the torsion form of the considered r - π-structure, we have

Let $\widehat{\mathfrak{F}}^{\mathbf{a}}$ be the torsion form of the π-connection $\left(\hat{\pi}_{j}{ }^{i}\right.$), then we have

$$
\begin{equation*}
\widehat{\mathfrak{S}}^{a_{\alpha}}=d \theta^{a}{ }_{\alpha}-\theta^{b}{ }^{b} \wedge \hat{\boldsymbol{\pi}}_{b_{\alpha}}^{a_{\alpha}} . \tag{9.4}
\end{equation*}
$$

Substituting (9.1) in the above formula, we have

$$
\begin{equation*}
\widehat{\mathfrak{S}}^{a_{\alpha}} \alpha=d \theta^{\alpha} \alpha-\theta^{b} \alpha \wedge \omega_{b_{\alpha}}^{a}-\gamma_{5_{\alpha_{\alpha}}{ }^{b}}^{a_{\alpha}} \theta^{5} \alpha \wedge \theta^{b} \alpha \tag{9.5}
\end{equation*}
$$

Then from (9.2), (9.3) and (9.5) we get

$$
\begin{equation*}
\widehat{\mathfrak{s}}^{a_{\alpha}}=T^{a_{\alpha}}, \quad \alpha=1, \ldots \ldots, r . \tag{9.6}
\end{equation*}
$$

Thus we have
THEOREM 9.1. There exists a π-connection having the torsion tensor of the considered r - π-structure as its torsion tensor. Hence the r - π-structure is without torsion if and only if there exists a symmetric π-connection.

The connection insisted in the above theorem is called the distinguished π connection for the simplicity of statements.

Since π-connection is a connection with respect to which each of the r distributions of the π-structure is parallel, we have from Theorem 4.1 and Theorem 9.1 the following:

COROLLARY. For an r - π-structure, there exists a connection making each of the distributions parallel and moreover which is symmetric if the π-structure is integrable (See Walker [4]).

We are now in the stage of obtaining the parameters of the distinguished π-connection $\hat{\pi}_{j}^{i}=\hat{l}_{j k}^{i} \theta^{k}$ defined in (9.1). From (9.1) we have
where $\pi_{j}^{i}=l_{j k}^{i} \theta^{k}$ is the π-connection induced by the symmetric connection $\omega_{i}{ }_{i}$. Let $\mathfrak{\Im}^{i}$ be the torsion form of the π-connection $\pi_{j}{ }^{i}$, then we have

$$
\mathfrak{S}^{i}=\left(\pi_{j}^{i}-\omega_{j}^{i}\right) \wedge \theta^{j}=-\tau_{\mu k}^{i} \theta^{j} \wedge \theta^{k}
$$

From (8.9)

$$
\begin{equation*}
\mathfrak{S}^{a_{\alpha}}=\frac{1}{2}\left(\gamma_{b_{\beta} c_{\gamma}}^{a_{\alpha}}-\gamma_{c_{\gamma^{\prime} \beta}}^{a_{\alpha}}\right) \theta^{b_{\beta}} \wedge \theta^{c} \gamma+\sum_{\beta} \gamma_{o_{\beta}{ }^{c} \alpha}^{a_{\alpha}} \theta^{b_{\beta}} \wedge \theta^{c} \alpha,(\alpha \neq \beta, \alpha \neq \gamma) . \tag{9.9}
\end{equation*}
$$

Let $S_{j_{k}}^{\ell}$ be the torsion tensor of the π-connection $\left(\pi_{j}{ }^{\prime}\right)$, that is,

$$
\begin{equation*}
\mathfrak{s}^{t}=-S_{j k}^{i} \theta^{j} \wedge \theta^{k}, \quad\left(S_{j k}^{i}=-S_{k j}^{i}\right) \tag{9.10}
\end{equation*}
$$

then we have

$$
\left\{\begin{array}{l}
S_{b_{\beta^{\prime} \gamma}}^{a}=-\frac{1}{2}\left(\gamma_{b_{\beta}{ }^{c} \gamma}^{a_{\alpha}}-\gamma_{c_{\gamma_{\beta}}}^{a_{\alpha}}\right), \quad S_{b_{\beta^{c} \alpha}}^{a_{\alpha}}=-\frac{1}{2} \gamma_{b_{\beta}{ }^{c} \alpha^{\prime}}^{a_{\alpha}} \tag{9.11}\\
S_{b_{\alpha^{c} \alpha}}^{a_{\alpha}}=0, \quad(\alpha \neq \beta, \alpha \neq \gamma) .
\end{array}\right.
$$

On the other hand, since (8.21) holds for any tensor $\sigma_{j k}^{i}$, it follows that

From these formulas, it is evident that the parameters of the distinguished connection in the local coordinates are as follows (because $\hat{l}_{j k}^{i}-l_{j k}^{i}$ is a tensor):

$$
\begin{equation*}
\hat{l}_{j k}^{l}=l_{j k}^{i}-\frac{2}{r}\left(S_{j k}^{i}+\frac{1}{\lambda^{r}} \sum_{s=1}^{r-1}{ }^{r-s}{ }_{s}^{d}{ }_{d a k}^{c} \stackrel{s}{F_{c}}{ }^{\iota}\right) \tag{9.13}
\end{equation*}
$$

Thus we have the following :
THEOREM 9.2. Let $l_{j k}^{i}$ be the π-connection induced by a symmetric connection and let $S_{j k}^{i}$ be its torsion tensor, then the connection defined in (9.13) is a distinguished π-connection (in the local coordinates).

From (9.3) we have the following expression for the torsion tensor $t_{j \boldsymbol{k}}^{i}$ $\left(T^{t}=\frac{1}{2} t_{i k}^{i} \theta^{j} \wedge \theta^{k}\right)$ of the $r-\pi$-structure:

$$
\begin{equation*}
t_{0_{\beta} c_{\gamma}}^{\alpha}=\left(\gamma_{v_{\beta} c_{\gamma}}^{a}-\gamma_{c_{\gamma^{\prime} \beta}}^{a}\right), \quad t_{b_{\alpha}{ }^{c} \beta}^{a}=0 \quad(\alpha \neq \beta, \alpha \neq \gamma) . \tag{9.14}
\end{equation*}
$$

Again from (8.21) we have

Therefore, from these formulas and (9.11), (9.14) we get

Hence it is evident that the torsion tensor of the $r-\pi$-structure has the following components in the local coordinates:

$$
\begin{equation*}
-\frac{r}{2} t_{j k}^{i}=(r-2) S_{j k}^{i}-\frac{1}{\lambda^{r}} \sum_{t=1}^{r-1}\left(\stackrel{t}{j}_{j}^{p} \delta_{k}^{q}+\delta_{j}{ }^{p} F_{k}^{t}\right) S_{p q}^{p} F_{h}^{r-t}, \tag{9.17}
\end{equation*}
$$

where $S_{j k}^{\ell}$ is the torsion tensor of the π-connection induced by a symmetric connection.
10. Some other expressions of the torsion tensor of r - π-structure. Let $\nabla_{p}{ }_{p}{ }_{q}{\underset{q}{m}}^{m}$ be the covariant derivatives of the tensor $\stackrel{r-t}{F_{q}^{m}}$ with respect to the linear connection $\Gamma_{j k}^{i}$, then we have
where

$$
\begin{equation*}
S_{p q}^{h}=\frac{1}{2}\left(\Gamma_{p q}^{l}-\Gamma_{q p}^{h}\right) \tag{10.2}
\end{equation*}
$$

is the torsion tensor of the connection $\Gamma_{p q}^{\prime \prime}$.
Put (10.1) in (6.9), then by some straightforward calculation we have

$$
\begin{align*}
t_{j k}^{m} & =\frac{1}{r^{2} \lambda^{r}} \sum_{t=1}^{r-1}\left\{-r\left(\delta_{j}{ }^{p} F_{k}{ }^{q}+\delta_{k}{ }^{q} F_{j}^{t} F^{p}\right)+\frac{1}{2} \sum_{s=0}^{r-1}{ }^{s} F_{j}^{s}{ }_{j}^{s} F_{k}^{k_{1}}\left(\delta_{j_{1}}^{t-2 s} F_{k_{1}}^{q}\right.\right. \\
& \left.\left.+\delta_{k_{1}}^{t-2 s} F_{j_{1}}^{p}\right)\right\}\left(\nabla_{p} F_{q}{ }^{r-t}-\nabla_{q}{ }^{r-t} F_{p}{ }^{m}\right)+\frac{2}{r^{2} \lambda^{r}} \sum_{t=1}^{r-1}\left\{-r\left(\delta_{j}{ }^{p} F_{k}{ }^{q}{ }^{q}+\delta_{k}{ }^{q} F_{j}^{t}{ }^{p}\right)\right. \tag{10.3}
\end{align*}
$$

Thus, if $\Gamma_{j k}^{i}$ is symmetric we have

By some straightforward calculation, the right hand side of the above formula can also be written as follows:

If $\Gamma_{j k}^{i}$ is a π-connection, we have

$$
\begin{equation*}
+\frac{1}{r^{3} \lambda^{r}}\left\{(r-1)(2 r-1) \lambda^{r} S_{j k}^{m}+r \sum_{t=1}^{r-1} F_{j}^{t}{ }^{p}{ }^{r-t} F_{k}{ }^{G} S_{p q}^{m}-\sum_{t=1}^{r-1} \sum_{s=1}^{r-1} F_{j}^{t-s} F_{k}^{r-t+s} F_{k q}{ }^{q} S_{p q}^{m}\right\} \tag{10.6}
\end{equation*}
$$

As it can be seen by some simple calculations, the right hand side of the above formula can also be written as follows:

Or more simply,

$$
\begin{equation*}
t_{j k}^{m}=\frac{2(r-1)^{2}}{r^{2}} \Phi \Phi^{\prime} S_{j k p}^{m} \tag{10.8}
\end{equation*}
$$

where the operations Φ and Φ^{\prime} are defined as follows:

$$
\begin{align*}
& \left.+\frac{1}{2} \sum_{t=1}^{r-2} \sum_{s=t+1}^{r-1}\left(\stackrel{s}{F_{j}}{ }^{t-s} F_{k}{ }^{q}+\stackrel{s}{F_{k}}{ }_{k}{ }^{t-s}{ }_{j}{ }_{j}{ }^{p}\right)\right\}\left(\nabla_{p} \stackrel{F}{F}_{q}{ }^{m}-\nabla_{q}{ }_{a} F_{p}{ }^{m}\right) . \tag{10.5}
\end{align*}
$$

$$
\begin{align*}
& t_{j k}^{m}=\frac{1}{r^{2} \lambda^{r}} \sum_{t=1}^{r-1}\left\{-r\left(\delta_{j}{ }^{p}{ }^{t}{ }_{k}{ }^{q}+\delta_{k}{ }^{q}{ }^{t}{ }_{j}{ }^{p}\right)\right. \\
& \left.+\frac{1}{2} \sum_{s=0}^{r-1}{ }^{s}{ }_{j}^{j_{j}}{ }^{s} F_{k}^{k_{1}}\left(\delta_{j_{1}}^{v} F_{k_{1}}^{p}+\delta_{k_{1}}^{q} F_{j_{1}}^{t-2 s}\right)\right\}\left(\nabla_{p}{ }_{p}^{r-t}{ }_{q}{ }^{m}-\nabla_{q}{ }_{q}^{r-t}{ }_{p}{ }^{m}\right) . \tag{10.4}
\end{align*}
$$

$$
\begin{aligned}
& \left.+\frac{1}{2} \sum_{s=0}^{r=1} F_{F_{1}^{\prime}}^{s} F_{k}^{s k_{1}}\left(\delta_{j_{1}}^{t-2 s} F_{k_{1}}^{s}+\delta_{k_{1}}^{q} F_{j_{1}}^{t-2 s}\right)\right\} S_{p_{1}}^{r} F_{h}^{r-t}{ }^{m}+\frac{1}{r^{2} \lambda^{r}}\left\{(r-1)(2 r-1) \lambda^{r} S_{j k}^{m}\right.
\end{aligned}
$$

$$
\begin{align*}
& \Phi S_{j k}^{m}=S_{j k}^{m}-\frac{1}{r-1} \frac{1}{\lambda^{r}} \sum_{s=1}^{r-1} \stackrel{F}{k}_{k_{1}}^{s} S_{j k_{1}}^{h} F_{h}^{r-s}{ }^{m} \tag{10.9}\\
& \Phi^{\prime} S_{j k}^{m}=S_{j k}^{m}-\frac{1}{r-1} \frac{1}{\lambda^{r}} \sum_{s=1}^{r-1} F_{j}^{s} S_{j_{1 k}}^{n} \stackrel{r-s}{r-s} F_{h}^{m} . \tag{10.10}
\end{align*}
$$

Finally we add a remark: Denote

$$
\begin{equation*}
\varphi \circ \stackrel{s}{N} \equiv \stackrel{s}{C} d \varphi+d \stackrel{s}{C} \stackrel{s}{M} \varphi-\stackrel{s}{M} d \stackrel{s}{C} \varphi ; \quad s=1, \ldots \ldots, r-1, \tag{10.11}
\end{equation*}
$$

where φ is any 1 -form. Then it can be easily seen that for the cases $r=3,4$, $5,6, \varphi \circ T$ can be expressed by $\varphi \circ N^{s}(s=1, \ldots \ldots, r-1)$. For example, we have

But the same does not hold good generally. For example, it is easily shown that for the case $r=7, \varphi \circ T$ can not be expressed by the same way.
11. Characteristic forms of r - π-structure. Groups of holonomy. Following Legrand [2] we can define the characteristic forms of $r-\pi$-structure and obtain some analogous results. Let $\left(\pi_{j}^{l}\right)$ be a π-connection defined relative to the adapted bases of the considered local section. Its curvature forms are as follows:

$$
\begin{equation*}
\Omega_{j}^{i}=d \pi_{j}^{i}+\pi_{k}^{i} \wedge \pi_{j}^{k} \tag{11.1}
\end{equation*}
$$

where $\pi_{a_{\alpha}}^{a_{\alpha}}=0(\alpha=1, \ldots \ldots, r)$. Put

$$
\begin{equation*}
\psi_{\alpha}=\lambda w_{\alpha} \Omega_{a_{\alpha}}^{a_{\alpha}} \quad(\alpha=1, \ldots \ldots, r) \tag{11.2}
\end{equation*}
$$

then it is easily seen that each of the 2 -forms ψ_{a} (called the characteristic forms of the π-connection) is closed and that the cohomology class of the characteristic form ψ_{x} is independent of the π-connection used. Moreover, it is also easily seen that $\frac{1}{w_{1}} \psi_{1}+\cdots \cdots+\frac{1}{w_{r}} \psi_{r}$ is homologous to zero.

It is trivial that for the manifold having an $r-\pi$-structure the group of holonomy with respect to an adapted basis is the subgroup of $G\left(n_{1}, n_{2}, \ldots \ldots, n_{r}\right)$. In relation to the characteristic forms of the π-connection, the following theorem is easily proved:

THEOREM 11.1. For the restricted homogeneous group of holonomy to be a subgroup of $S_{\alpha} G\left(n_{1}, \ldots \ldots, n_{r}\right)$, it is necessary and sufficient that the α-th characteristic form ψ_{α} vanishes on V_{n}.

In the statement of the above theorem, $S_{\alpha} G\left(n_{1}, \ldots \ldots, n_{r}\right)$ means a group consisting of the elements of the form :

$$
\left(\begin{array}{cccc}
A_{1} & & & \\
A_{2} & & & 0 \\
& \cdot & \cdot & \\
0 & & & A_{r}
\end{array}\right)
$$

in which the determinant of A_{α} (α : fixed) is equal to 1 .
Acknowledgement : I express my profound gratitude to Prof. S. Sasaki for his kind guidance and many valuable suggestions.

REFERENCES

[1] D. C. Spencer, Differentiable manifolds, Mimeographed notes, Princeton University.
[2] G. LEGRAND, Etude d'une généralisation des structures presque-complexes sur les variétés différentiables, Rendiconti del Circols Matematico di Palermo, VII (1958), VIII(1959).
[3] A. Lichnerowicz, Théorie globale des connexions et des groupes d'holonomie, Ed. Cremonese Roma, (1955).
[4] A. G. Walker, Connexions for parallel distributions in the large, Quart. J. Math., Oxford (2), 6(1955).
[5] T. FUKAMI, Affine connections in almost product manifolds with some structures, Tôhoku Math. Jour., 11(1959).
[6] S. TAChibana, A remark on linear connection with some properties, Natural Sci. Report of the Ochanomizu Univ., 10(1959).

Tôhoku University and
National Taiwan University (Formosa).

