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In the following we study some properties of differentiable manifolds of
class C* which are endowed with three fields of (non trivial) mixed tensors of
class C*: ¢, ¥, and «," satisfying the following relations :

¢ta¢ah = 818th,
"”ta‘l"ah = ezsih’

k'K = &8,
Vb = EP VS = — &y
kY = EVied = — &,
e’ = Eelbd = — &V,

where 8, denotes the Kronecker delta and &, &, & = *1; & = &£,&,&. The
above system contains essentially the following four cases:

Case I. & =6, =& = —1; & = — 1. This is the case of the well-known
quaternion structure.

Case II. & =8 =—1,8=1; €= 1.

Case IIl. & =—1,& =& =1; &€= — 1. This case is called by Liber-

mann the quaternion structure of the second kind, and is also called the complex-
product structure by T. Nagano.

Case IV. &, =&, =& =1; &€=1. All of these structures were studied by
Ehresmann and Libermann [3]¥, the case I was also studied by Obata [7, 8] and
Wakakuwa [10], the case III was also studied by Nagano [4].

In §1, following T. Nagano [4], we define an almost complex structure
and two almost product structures on the tangent bundle T(M) of n dimensional
affinely connected manifold M and show that if M is itself an almost complex
or almost product manifold, then T(M) turns out to have structures mentioned
above, under some conditions for the defined almost complex structure to be
integrable is also obtained.

In §2 we study the affine or metric connections which make the given

*) Numbers in brackets refer to the references at the end of the paper.
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three tensor fields of the structure simultaneously covariant constant.

In §3 we study the homogeneous groups of holonomy with respect to the
connection studied in §2 for cases II, III and IV, by making use of suitable
bases in the tangent space.

In §4 we study if the largest connected group of affine transformations
with respect to the connection in § 2 preserves the structure endowed in the
manifold.

1. Some structures on tangent bundles. In the sequel we assume that
Latin indices 7, 7, &,-..... vary from 1 to 2n, Greek indices a, B, v, vary from
1 to n, and a® is a + 7, so a*, B, v*,...... vary from n + 1 to 2#.

1. 1. Let «* be the local coordinates of a point in M, then the local
coordinates of an element (i. e. a tangent vector of M at a point u € M) of
the tangent bundle T'(M) of M are (u') = (u*, u*) = (u*, v*), where v® are
components of a tangent vector with respect to the natural frame at («%), i. e.

the frame constituted by the vectors—éa—“n Corresponding to a coordinate trans-
u

formation #'* = ' *(u%,...... ,u") we have a coordinate transformation in T(M):
’ ’ ’ 7’ ’m ’m . .
u® = u*(u,...... s u), =90 =8L5 s — OU” & which is called the ex-
ou ouP
tended coordinate transformation of #'* = '*(u?,...... , #"). Then we can define

tensors of T'(M) by using the transformation matrix of the extended coordinate
transformation, i. e.

ou'® ou'® ou” 0

out\ | o4 o™ | | ouf
( ou’ >— ou'* ou| | o~ o ou'®
ou? ou® ou’ou’ ou®

Now we assume that M is an affinely connected manifold having the con-
nection parameters I'g%. It is known that if &*’s are components of a contravariant
vector fields of M, then (0, &*) and (&%, — I'g?€%0") are both contravariant vector
fields of T'(M) [9].

By the way, we would like to show that these vector fields are respectively
a fundamental vector field and a horizontal vector field in T(M), whose linear
connection is uniquely determined by I's§ of M.

Let P(M) be the principal fibre bundle consisting of all frames of M, with
the base manifold M and structural group GL(n, R). With respect to the local
coordinates #®, every frame of M is represented as a set (I,), /, = Xf%, SO

u

(«®, XE) may be considered as local coordinate system in P(M). Let (Y%) be
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the inverse matrix of (X§%) and put ®f = I'\§du”, then the distribution Q, de-
fining the connection in P(M) is the annihilator of ) = Y}dXE + o3X}) [1].

Hence any horizontal vector in P(M) may be represented as E"’—aT— TAE X§

)

oX?
bundle of P(M) with n-dimensional vector space F as standard fibre, correspon-
ding to the connection in P(M), there is a uniquely determined connection in
T(M). Let x € P(M) has the local coordinates (x%, X5), the fibre F, through
(u®) is identified with the tangent space T, at this point by identifying the
° 5 (where &* is
o’
a fixed base of the standard fibre F') in T,. Then the distribution defining the
connection in T'(M) is the image of the horizontal subspace Q, under the
differential ¢ of the mapping ¢: = — x-&, for a certain fixed & = a’é;, i. e.
(w*, X5)— (u*, a’X}) = (u® v"). Since ¢'(&% 77) = (&% v°Y }n%), where (£, %)
are components of tangent vector in P(M) with respect to local coordinates,
we have ¢'(&%, — T3 X)) = (&%, —T',2E%"). Thus (&%, — T's%£Pv") is a horizontal
vector field in T (M). It is evident that (0, &%) is a fundamental vector field
in T(M) as its projection in 7T, vanishes.

or (&, — T 88"X?5). As T(M) may be regarded as an associated fibre

element x-&, (for definition, see [6]) with the vector /, = X~

1. 2. Now consider a linear mapping V¥ on each tangent space of T (M),
whose matrix (¥,) with respect to local coordinates is given as follows :

Ve = Tgot, V' = 3,
;\l,ﬁw* = — Bg - I‘Pﬂ‘ﬂ,’;‘vk‘v", "1"5«“* = — I‘p%'() .

It can be easily seen that

(1. 1)

Vi'Yd = — Skt-
The considered linear mapping tranforms the vectors in the tangent space

of T(M) in the following manner: Let (2,:“ be 7 linearly independent vector
)

fields spanning the tangent space of M at each point of a suitable coordinate
neighborhood U, then the 22 vector fields (0, (ff)”‘) and (g)“‘, —I‘,ﬁgﬂv’) are linearly
5 ¢ @

independent and span the tangent space of T(M) at each point of = %(U).
Then

N o — TeE%Y),
(0.8 ” (g) ? yf’i)v)

1.2 ¥
L =g — 0 -

where (0, &) — (&%, — I'@*£%") is an isomorphism from the vertical subspace
® ® @®
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onto the horizontal subspace of the tangent space of T (M), and is the inverse
of the product of the following two isomorphisms :

'n-’: ('E“, - Pﬁﬁgﬂ‘vy) — (&w} O))
() ) (4)
(&% 0) ——— (0, &),
8) (®)

the former of these isomorphisms is the one induced by the differential of the
natural projection 7, and the latter is the one which defines the soldering property
of T(M).

It is proved by Eckmann and Frélicher that for an analytic almost complex
structure Y/ to be integrable, it is necessary and sufficient that [11]

1.9 o= (DL BBy (BE B

For our specified case, we can get ¢, by straightforward calculation: As

M:

u u® u™ = v*, we have

a\lfﬁaz aPBP o, a‘ll\ﬁ = I‘w, a\lfﬂ* =0, a\P‘BE“ =0,
ou’ ou’ ou? ou’ ou

8‘!’&“ e ( aa];m Pp.',’ + 1'1 @ aapﬁa ),vx.va, a‘l’ﬁa —_— (I‘:{Pﬂ]}: + I‘p«)l\l‘\ﬂ!;) 'U}‘,

ou’ ou
a‘!’ﬁf*_ aF a\l" — @
ouw augp o ou i* =~ Id.

Putting these relations in the expression (1.3) of Nijenhuis tensor ¢, we have

tey = (Repelys — Rey Ly + 2 TATyilg) vP0” + 2 TGy,
tay = (Riay + 2 T'%I;) 0%,
teft = (Rgy + 2 T%.Tg;) vP,
gy = 2 T'%p,
(1.4) tey" = (R%y + 2T 52 + 2 T4 T + 2 Te5) v°
+ [ {Rﬁﬂspv: - Rg'r)’]-—‘ﬁ: + 2 TﬁJ‘gH‘yI} Pp'f\ + Rf‘rpl-‘ﬂ([; ‘y:] 'U}"Ua'l.)g’
165" = (Ro5T'x + Rgl'ys + 2 T, IATy) V" — 2 T'gy,
tgye = (Roygl's + RY,Lpl + 2 T80Tl 5) v — 2 Ty,
tpde = (Riys + 2 T, T5) v

Where Rjsy and T'gy are respectively the curvature tensor and torsion tensor of

I'sy in affinely connected manifold M.
From the theorem of Eckmann and Frolicher and the above expressions

(1. 4), we have
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THEOREM 1. 1. The almost complex structure (V') defined above (1.1)
in the tangent bundle T(M) of an affinely connected manifold M of class

C® is integrable, if and only if M is locally flat.

Suppose that M is a Riemannian manifold. If we substitute I's$ by the
Riemann-Christoffel symbol {s%} of the Riemann metric ¢.,3 of M in the above
treatment, we get the corresponding results for the case of Riemannian manifold.

Let G,,; be the Riemann metric defined by Prof. S. Sasaki [9] in the tangent

bundle of Riemannian manifold, i. e.
( Gaﬂ = Ga + gp«’{MPN; {vapg,v,‘,vv’
(1' 5) Gmﬂ* = gpﬁ{/\pm;'v)"
Gw*ﬂ" = GJaup>
then we have
(1- 6) "l"js‘l"ktht = ij-
That is, Gy; is the Hermitian metric in the almost complex manifold
defined above.
If we put

(1- 7) ‘l"u = "I’trGrj,

then we have

a. 8) { Vg = (9op$afa} — Jupleh}) Vs Vape = — Gups
) ‘\l’\a*ﬂ = gaﬂ, ’\Pa*ﬁﬁ = 0-
Let V¥, be defined by
— a‘l’ti + a\l’jk + a\’rkt
(1 9) \Ptﬂc ( au" au‘ au’ )’

then by making use of the relation

s _ , v
3;5 - au‘: = gVB{p Y} —gVY{pB}’

we have the following expressions :

(1. 10) { Vagy = — {GapR8yp + 9poRiuv + 9voR8ea} 0,

T(M)

‘l’mﬁ*‘/ = \l’dﬁy* = "l’wﬁ*Y* = ‘I"w*ﬂy = 1!"”6*7 = ‘l’w*B‘Y“ = \I’m*ﬂ“y“ = 0.

Since it is known [11] that a pseudo Kihlerian manifold is characterized

by skew symmetric tensor V¥;; and symmetric tensor G,; satisfying

(1.11) Vi'VEGy = G t' =0, Vi = 0,
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we have by the theorem of Newlander and Nirenberg [5] from the expressions
of 4, (1.4) and V¥, (1.10) the following :

THEOREM 1. 2. For Riemannian manifold M having metric 9,5, T(M)
is Kahlerian with respect to the structure (1.1) and the metric (1.5) if and
only if M is locally flat [4].

1. 3. In the tangent bundle T'(M) of an affinely connected manifold M,

we can also define the following two almost product structures ¢, and «;*:
¢15 = - I‘g‘;v”, ¢éﬁ = - Bﬂm’ ¢)g“* - - 83 + I‘ PB,'UA‘UJ ¢ﬁ* = Pﬂp
Icp = — Spw, I\’:ﬁ% = O, pr* =2 I“g[f,‘v s ICB* = 85 .

(1. 12) {

We can easily see that «;' is induced by the linear transformation x on the
tangent space of T'(M) which has the vertical and horizontal subspace as the
proper subspaces corresponding respectively to the proper value 1 and — 1.
Moreover, it is easily shown that

w13 | — b = P = —
¢ka‘l"a‘ = - ’\ll‘ka¢ai = ki, lckad’ai = - ‘l’/calcat = — Pl

Thus we have

THEOREM 1. 3. In the tangent bundle T (M) of an affinely connected
manifold M, (¥}, ¢, k') defines a complex-product structure [4].

In the remaining part of this section we assume that M is a differentiable

manifold of dimension n = 2m with an almost complex or almost product
structure @g” :

(1.14) PP = &84,

where & = 1 in case of almost product structure and & = — 1 in case of
almost complex structure.
The extended tensor field ;' of @} defined by

— e T a % 8 2 T at .
(1. 15) Pe = Pg, gt =0, g = ai:i v, @it = @

gives rise to almost complex or almost product structure in the tangent bundle
T(M) of M, i. e. @."p,' = &8. On the other hand, if M is an affinely con-
nected manifold having the connection parameters T's, we have already defined
an almost complex structure ¥,’ (1.1). Then for the structures @, and ¥’ we
have the following relations :

Vi'p " — Y= — & 8¢3 + @ Ty — ‘i’Y“PﬂT>> 7,

"Pﬁ* o — ¢ﬂ* ‘;"k =0,
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A
K a* T kalp @% — TV @eyPe, ops YA Y
(1_ 16) J "I”p PDr P3 ‘I’k FA,,'U v <_ﬁau" + P3 F‘ya P Pﬂa‘)
— Lgpofo? <_—a¢: + @,/T% — /T AZ),
ou _
T at - a* a 3 @ @
Vo'oi™ — @Y = (% + @Iy, — @5 Pﬂz')) v,

So, if I'gy is a g-connection, i. e. @;% = 0, then we get

1.17) Vi'pd = @V
Put ¥."p. = &.x,f, then we have

(1.18)

a— ¢

a
{ K ket = — &8,
— e ¢ __ k3 a [ a ¢ __ g
Kj Pa — Pj Ka ”"‘I'j, lfi‘l'a —‘l’jlca = = &p;.

Thus we have

THEOREM 1. 4. If T'g} is a @-connection, no matter of & = +1 or — 1,
the pair (@, V') defines a structure of case II in the tangent bundle T (M)

of an affinely connected manifold M. The converse also holds good.

Finally for the extended tensor field ;' and the almost product structure

k! in T'(M) defined above (1.12), we have the following relations:

a]‘a/caw = l‘yaaaw = - ¢Ya’ aY*alcam = ’cv*aau“ = 09
@ @
(1.19) { /% = (M + ch,ﬂr‘ﬂ;‘> P, ki = ( — o 4 2cp:1“y;> o,
ouf ou’

ayuaxaa* = Ky*aaau* = ¢§’:.
Hence we have
(1. 20) { EE‘Y"@" — ky'pd* = ay“ﬂ"‘ &= 'cy*‘?m“ = @ — rcy*‘%“* =0,
Py — kP, = 2 @ 0.
If I'sy is a @-connection, then we get
(1.21) P Kk = Kk g
Put @'« = — &', then we have

N = &8,
(1- 22) N 7 10k

a ¢ __ a & __ —¢ _—a & __ A ¢ €
Ky Mo = Ny Kq "'—SKP)” D Na — M Po — — K-

Thus we have

THEOREM 1. 5. If T's} is a @-connection, then in case & =1, the pair
(@i &) defines a structure of case IV and in case & = — 1, the pair (@},
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;) defines a structure of case II in the tangent bundle T(M). The converse
also holds good.

The same things also hold, if we replace «; by ¢, of (1.12) in the above
theorem.

2. Affine and metric (¢, ¥)-connection. Suppose the manifold has the
structure (¢,", V¥.", «,*). Starting with any affine connection given on the mani-
fold, we shall obtain an affine connection, with respect to which ¢, ¥ (and
consequently «," also, because «; = — &Yr,"P,’) are simultaneously covariant
constant. Such a connection is called a (¢, ¥r)-connection.

2. 1. To obtain a (¢, Y¥)-connection we have to make use of affine con-
nections which make a given almost product structure covariant constant and
affine connections which make a given almost complex structure covariant con-
stant. Although the former were completely determined by Walker, Willmore,
Yano [12] and Fukami [2], and the latter were completely determined by Obata
[8], we would like to note here that by merely slight modification of the method
of Obata [8], one can get results which are applicable at a time both to the
case of almsot complex structure and the case of almost product structure. For
example, we have the following :

THEOREM 2. 1. In an almost complex (& = — 1) or almost product
(& = 1) manifold with the structure ;" (§,°p," = &,8,"), an affine connection

0
I, is a ¢-connection if and only if there exists an affine connection T';"
0 0 0
such that T, = ®T',". Moreover, ®(I';,* + A,") = ®T'," + —;—(AN"+81¢"’A,-,,“
") for any tensor A"
In the statement of this theorem, ¢-connection is by definition a connection
which makes the structure ¢,* covariant constant, and the operation @ is defined

as follows:

0

2. 2) q)I‘jth = Pjth + %EI(Vj¢£a)¢ah’

0
where v, denotes the covariant derivative with respect to T',".

COROLLARY 2. 2. In a manifold with an almost complex or an almost
product structure @, there always exists a $-connection, which is expressed

0
in the form (2.2) starting from an arbitrary connection I';" on the manifold.

We define also
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0 > 1 oo o
YIy" =Ty + Y &V,
2. 3) o0

Kr,»=T,+ ?Ea(vj/c,a)xah,
for any given affine connection I'," in the manifold. Then we have [8]

THEOREM 2. 3. In a manifold with a structure defined by (¢,", V", "),
an affine connection T'y" is a (b, ¥)-connection if and only if there exists an

0 0 0
* Y n
affine connection T';" such that T';" = ®YT,".

PROOF. We can prove this theorem by quite the same way as in the case
of quaternion structure. By use of the later part of Theorem 2.1, we have

0 0 0
(I)\I’Pj," = (D(Pjth + %Q(V:“I’ta)‘[’an)

@4 U (L | v, 1 0 ay g
=I" + 581(V1¢t )P, +ZE2(V_,~\P‘,G)‘\P'“L +Ze £ (VP
On the other hand, from ¢V, = — E&;x,°, we have
0 0
¢sb(Vj‘;"bd) + "P‘bd(Vﬁth) = - 883(V,-/c,d),
hence

BATENEb = — BTSB! + ET el
Putting this in the above expression of fID\IfIO‘j,", we have
(25)  OUES =T + L (eI + ST + T,
Since the last term is symmetric in ¢,", ¥;" and «,, we find
(2.6) OV =VP = VYK = KV = K& = PK.

0 0
From which it is evident that ®WI',* = ¥®I',," is a (¢, ¥)-connection by the
former part of Theorem 2. 1.

COROLLARY 2. 4. In a manifold with a structure defined by (¢.*, ¥.",
k'), there always exists a ($, ¥)-connection, which is expressed in the form

0
(2.4) starting from an arbitrary affine connection T'y" on the manifold.

2. 2. We consider an almost complex or almost product manifold defined
by the structure ¢,(¢p, " = £,8,"). If a Riemannian metric ¢,, on the manifold
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satisfies

2.7 I = D°P1" Gras

the metric g,, is called a Hermitian metric [8, 11] or an almost product metric
[2] in each case, but we call it equally as a metric associated with the structure
&

Given an arbitrary Riemannian metric v,, in the manifold, it is easily seen

that ¢,, = é—(fyﬂl + &.°b,’y,.) is a metric associated with the structure ¢,". We

have also the following

THEOREM 2. 5. In a manifold with a structure defined by (", V", &),
there always exists a metric associated with all of ¢", V" and «".

PROOF. Let v,, be an arbitrary Riemannian metric in the manifold. Then
it is evident that the following g,, is a Riemannian metric :

(2. 8) Gin = —411_ (‘)’m + ¢;a¢hb')’a‘: + ‘l"za‘l"hb')’ab + /Ctalcnb')'M)-

It is also easily seen that g,, is associated with all of ¢, V" and &

In a differentiable manifold with a metric tensor ¢,,, an affine connection
I'," is said to be metric (with respect to ¢;,) if V,9;» = 0. We define an operator
A by

0

0
(2.9) AT =T + %g" Vi

where ¢"* is the inverse of ¢, It is known that an affine connection I'," is

0 0
metric if and only if there is an affine connection I',* such that I'y"= ATL"
It is also known that A commutes with each of ®, ¥ and K. Noting that
OV = VP = VK = KV = K& = &K (2.5), we have

THEOREM 2. 6. In a manifold with a structure (9, ¥, &) and a
metric associated with all of ¢,", ¥, and ", there always exists a metric
(¢, ¥)-connection. Such a connection and only such one is written in the

0 0 0
form ®YAT,* = VOAL,* =------ for some affine connection T',".

3. Groups of holonomy. In this section we study the homogeneous groups
of homolony for the case II, III and IV. Group of holonomy of case I has been
studied by Obata [7] and Wakakuwa [10].

We consider in the manifold a (¢, ¥)-connection, i.e. the connection which
makes all of the three tensor fields ¢,*, ¥,", «,* covariant constant. These tensor
fields are left invariant by the group of holonomy with respect to the considered
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(¢, ¥)-connection. Let P be any point of the manifold, then the linear trans-
formations J, § and K induced respectively by the fields ¢,%, ¥, and «,* in the
tangent space at P commute with each element of the group of holonomy &
By choosing base in the tangent space adequately, we can put the matrices
representing the elements of $p in considerably simple forms.

3. 1. We consider first the case III. Since J* = — E (E denotes the
identity transformation), §* = E and — JF =FF = — «, if @ is any proper
vector corresponding to the proper value 1 of $F, then we have F(Ja)= — J(Fa)

= — Ja, which shows that Ja is a proper vector corresponding to the proper
value — 1 of . Hence the dimensions of the positive subspace [3] (that is the
subspace of the tangent space consisting of all the proper vectors corresponding
to the proper value + 1) and the negative subspace (similarly defined) are equal,

thus the manifold must be even-dimensional, say 27n. Let (ey...... , €,) be a
basis of positive subspace of &, then (Jey,...... , Je,) is a basis of negative
subspace of §. With respect to the basis (e, ...... y €ny J€1> eenn , Je,) of the

tangent space at P, the transformations ¥, § and K are respectively represented
as follows:

3. 1) 3‘=<£ _f”), %=(E(’)‘ _;), Kz(E(,). f"),

where E, denotes the n X 7 unit matrix. Since the elements of $, commute
with each of the above three transformations, they are represented as follows
with respect to the above basis:

3. 2) (‘2 Z)

where A, is any n X n matrix. Conversely if, with respect to suitable basis of
tangent space, the elements of the group of holonomy can be represented as the
above from, then the elements of the group of holonomy commute with each of
$, & and K. Hence there correspond in the manifold three tensor fields ¢,* V",

x," and the manifold has a structure of case [II. Thus we have

THEOREM 3. 1. A manifold is of the case III and its connection is a
(¢, ¥)-connection, if the elements of its group of holonomy can be represented
as form (3.2) refered to suitable bases. Conversely if the manifold is of the
case III, then the elements of the group of holonomy with respect to (¢, ¥)-
connection can be represented as form (3.2) refered to suitable bases.

3. 2. We consider a manifold of case II or case IV. In such a manifold
there is a tensor field «,* such that #,«," = 8,". Let K be the linear transforma-
tion induced by this field in the tangent space at P. We choose a basis of the
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tangent space such that the former p vectors form a basis of the positive
subspace and the latter ¢ = n — p vectors form a basis of the negative subspace
of K. With respect to this basis, K may be represented as follows :

(3. 3) K= (E(‘)” ~ 2) .
Since ¥ and § both commute with K, they can be represented as:
3. 4) (A” 0 )
0 B,
In case II, we have * = — E, §* = — E, hence

A= —E, Bj=—E,

which show that if we restrict J(or ) to the positive subspace T'# or negative
subspace T's of K, it may be seen as transformation induced by an almost com-
plex structure. Thus both p and ¢ are even, say p =2/, ¢g=2m and M is
even-dimensional. As T# and T7 are complementary to each other, the com-
plexification (T7,)° of the tangent space T'p is the direct sum of the complexifica-
tion (T3)% (T5) of T# and T5. Then by choosing suitable bases [7] in (T'})°
and (7 7)° we can represent the restriction of K in T} and T'7 respectively as

follows :
Cr o) Cud)
—E 0/’ —E,0/°

With respect to such base in (T5)% & and $§ = K can be represented respectively
as

0 E, 0 0 0 E, 0 0
—E 0 0 —E 0 0
@5 =" 01 s=["™ 0
0 0 0 E, 0 0 0 —E,
0 0 —E, O 0 0 E, O

Since each element of the group of holonomy commutes with ¥, & and K
in (3.5) and (3. 3), the elements of the group of holonomy are represented as

A, —B, 0 0
B, A4, 0 0
0 0 C, —DJ}
0 0 D, C,

3.6)

Conversely if the elements of the group of holonomy can be represented
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by matrices of the above form, then they commute with §, § and K. Thus
there exist in the manifold three tensor fields ¢,", ¥ and «,* corresponding
respectively to ¥, & and K in (3.5) and (3. 3). Thus we have

THEOREM 3. 2. A manifold is of case II and its connection is a (b, ¥)-
connection, if the elements of its group of holonomy can be represented as
form (3.6) refered to suitable bases. Conversely if the manifold is of case
II, then the elements of group of holonomy with respect to ($, ¥)-connection
can be represented as form (3.6) refered to suitable bases.

3. 3. Finally we consider the case IV in which the three tensor fields ¢,",
V. and «," are linearly independent. Since J* = F* = E, J and & can be re-
presented in the form (3.4) in which

A;=E, B,=E,

Thus if we restrict J (or §) in the positive subspace 17 or negative sub-
space T'r of K, it can be seen as a transformation &, or a transformation &,
induced in T’} and Tz by almost product structures. By suitable choice of bases
in T} and T7, &, and 2, can be respectively represented as

B ) (58 reemnes
) s T S=p = dq.
0 —E, 0 —E, ptru=gq

Hence with respect to such base in tangent space J and § = K3 can be
represented

E. 0 0 0 E. 0 0 0
0 —~E 0 0 0O —E, 0 0
3.7 = , =
GD S=ly o E o 5=l o o —& o
0O 0 0 —E 0 0 0 E

The elements of the group of holonomy commute with J, § and K in (3.7)
and (3. 3), so they can be represented as follows:

A4, 0 0 0

.8 0 B, 0 0
) 0 0 C, o0
0O 0 0 D,

Conversely if the elements of the group of holonomy can be represented as
the form (3.8). then they commute with J, & and K of (3.7) and (3. 3). Hence
in the manifold there exist three tensor fields ¢,*, ¥ and «,* of case IV cor-
responding to ¥, & and K of (3.7) and (3. 3). Thus we have
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THEOREM 3. 3. A manifold is of case IV with three linearly indepen-
dent tensor fields and its connection is a (b, V)-connection, if the elements
of its group of holonomy can be represented as form (3.8) refered to suitable
bases. Conversely if the manifold is of case IV with three linearly indepen-
dent tensor fields, then the elements of the group of holonomy with respect to
(b, ¥)-connection can be represented as (3.8) refered to suitable bases.

4. Transformations preserving the structures. Obata [7] has proved that
in an irreducible almost complex manifold of dimension 2 7, if the largest con-
nected group of affine transformations does not preserve the almost complex
structure, then 7z is even and the homogeneous holonomy group is contained in
the real representation of the quaternionian linear group. In this section we study
analogous things for almost product manifolds but only some partial results are
obtained.

4. 1. Let @ be a differentiable homeomorphism or a transformation of an
n-dimensional differentiable manifold A onto itself. We denote by the same
letter @ the differential of ¢, its extension to the tensor spaces and also that
to the algebra of tensor fields.

For any geometric object Q, if Q = @), we say that  is invariant under
@ or that @ preserves Q. If I" is an affine connection on the manifold, and
I' = @I, then @ is called an affine transformation (with respect to the given
affine connection T').

Let A(M) be the group of all affine transformations of M onto itself, and
Ay(M) be the connected component of the identity in A(M). It is known [7]
that the set P(r, s) of all parallel tensor fields of type (r, s) on M is a finite
dimensional vector space over R, and that A(M) acts on P(r, s) as a group of
automorphisms. Moreover, the homomorphism p of A(M) into GL(h, R) (where
h = dim P(r, s)) defined by p(@)-& = @-& for any &€ € P(r, s) is continuous.

Let M be of dimension 27 and has an almost product structure ¢, which
induces in the tangent space T» a transformation F whose positive and negative
subspaces 17, TF are both assumed to be of dimension 7. On M we consider
an affine connection which makes the given structure covariant constant. Let
Hpr be the homogeneous holonomy group of M at the point P € M. We choose
a basis of T'p such that its former 7z vectors constitute a basis of T and its
latter z vectors constitute a base of T (thus each vector of the basis is a
proper vector of F'), then F has the following form relative to this basis:

.1) F=(1‘; ﬂi’:)

E, being the unit matrix of degree n. Since F is invariant under £, (because
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¢ is covariant constant), the matrix F commutes with any elements of $», so
that any element A of $p has the form

@2 (5 2

relative to the above basis. A4,, A, being matrices of degree n. This means that
$p is a subgroup of the direct product GL(n, R) X GL(#%, R).

Let P(1,1) be the vector space spanned by all parallel tensor fields of type
(1, 1) on M and P*(1,1), P (1, 1), be respectively the subset of all the elements
x of P(1,1) such that «,"«." = 8" or x"x. = — 8. Then any element @ of
A(M) transforms linearly P(1,1), P*(1,1) and P~(1, 1) respectively onto itself.
Assigning # € P(1,1) to the value K of « at P,P(1,1) is isomorphic with
the subspace of the tensor space of type (1, 1) over T'» consisting of all tensors
invariant under $p, i. e. P(1, 1) is isomorphic with the commutator algebra £
of $p. It is obvious that P*(1,1) and P~(1, 1) are respectively isomorphic with
the subset &+ or $~ consisting of the commutator K such that K = E or K?
= — E.

We consider first the manifold whose group of holonomy §» consists of the
elements (4.2) in which A,, A, are both irreducible on complex field, and con-

tains a subgroup $p=< {identity} consisting of elements of the form

(4. 3) (‘: Z)

in which A is irreducible on complex field.

Let
(6 %)
K, K,
be any element in the commutator algebra of $p, then
<A1 0) (K1 K2>_ <K1 KZ) (Al 0>
0 A,/ \K, K, K, K,/ \0 A/’
which gives

A1K1 = K1Au A2K4 = KaAQ,
(4. 4) {

AK, = K,A, AK;=KA,.
As $p contains 9p, the last two formulas hold also for A, = A, = A, i. e.

AK, = K,A, AK; = K;A.
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Since in each element (4.2) of $», A, and A, are irreducible on complex
field, by Schur’s lemma we have

4.5) (K1 K2> _ (alE,, azE,,> ’
K3 K4 aaEn a4En

where «;, a;, a3, @, are real numbers.

If $» contains Hp» as a proper subgroup, then £, actually contains elements
(4.2) in which A, == A,, then from the last two formulas of (4.4) we have
a;, = a3 = 0. Thus in this case, any element in the commutator & of ©r can
be written as

a.E, 0
(4. 6) ( ' )
0 aE,
Hence the following two elements form a basis of & :
E, 0 E, 0
“7) E=( ) F=( )-
0 E, 0 —E,

Let K = aE + bF € &, then we have a* + 2 = 1, ab = 0. It follows that
®* contains only the following four elements: = E, == F. Thus P*(1, 1) consists
of =3¢, and =+ ¢, which induce = F in the tangent space. Since p(@)-P*(1, 1)
C P*(1,1) for every @ € A(M), we have p(@)p = ¢ (because p(@p)-I= =T
for every @ € A(M)). p being continuous, we have p(@)-¢ = ¢ for every @ €
Ay(M), i. e. Al(M) preserves the almost product structure ¢.

If $»= D» then in (4.5) @, = a; = 0 need not hold, and the following
two elements and E, F in (4.7) form a basis of ®:

. 8) G = (g If)) H= (EO - ]f))

It is evident that these four elements satisfy the following relations :

F*=E G°=E H = —E,

4.9
(4.9) {GHz—HG—*—F, HF=—-FH=G, GF= - FG=H.

Let V", " be respectively the parallel tensor field deduced by parallel
displacement from G and H. Then (¢,*, V", «) define on the manifold M a
structure of case III. Let K = gE + bF + ¢G + dH, then the conditions for K
to belong to & or 8 are: a* +0* + *—d*=1or — 1, ab =ac=ad = 0.
From these relations we conclude that 8% consists of = E and elements of the
form bF + ¢G + dH with b* + ¢* — d® = 1, and that & consists of the ele-
ments of the form &F + ¢G + dH with 4* + ¢* — d* = — 1.
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Since p(@)-P*(1,1) C P*(1,1), p(@)p = = I or p(p)p =0 + c¥ + dr with
b* + ¢* — d*= 1. But as p(@)(*=1I)= = 1T for every @ € A(M), so p(@)p==
=+ I. Thus we have

P(¢)¢ = 4114’ + azf\l" +aux € P+(1, 1),

(4. 10) { @)V = and + ay¥ + ase € PH(1, 1),
similarly we have

(4.10) APk = aud + an¥ + awe € P°(1,1),
where

(4.11)

2 2 2
an +an —ay =1,

2 2 2
{ az t+ an—an=1,

ai + ai — ai = — 1.

We identify

an 277 a3
P(¢) =| an (7273 Aasz
as, Az, ass

Now, we denote by P*(1,1) the subspace of P(1,1) spanned by ¢, ¥ and «.
Then p(p), for every @ € A(M), is an automorphism of P*(1,1). If & =¢£&¢
+ &V + &k and 9 = 0, + 0¥ + 9wk, where &, &, &, 91, 75, 73 € R, then we
have

‘f"’) = (‘El"h + 52772 - Es"la)l'*' (‘52’73 - ‘53772)4’ + (ga"h - El"?;«!)‘[’ - (51”72 - §2")1)’C-

We call &, + &7, — &m; the scalar product of & and #, and denote it as (&, 7).

And (&5 — Emo)d + (En — Ems)¥ — (Eme — Exmi)ee is called the vector product
of & and %, and is denoted by & X 5. Then the above relation is written

En=(& I+ &xn.

Since p(@) is a homomorphism, p(@)(&n) = (p(®)-&)-(p(@)-n) for every @ €
A(M). So we have

(P(@)E, p(@)n) = (& 7),
(P(@)-&) x (p(e)-m) = ple)- (£ Xn).

Thus the linear transformation p(@) leaves invariant the inner and vector products
in P*(1.1), so that p(@) is a Lorenz transformation. And we have

THEOREM 4. 1. Let M be an almost product manifold. Suppose that 1°
the elements of its holonomy group 9, are represented as (4.2) in which A,,
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A, are n X n matrices and irreducible on the complex field and that 2° $p
contains a subgroup =+ {identity} which consists only elements of the form
(4.3) where A is irreducible on the complex field. Then the almost product
structure is preserved by A(M) except for the case when M is a manifold
with a structure of case III. In this case A(M) acts on the vector space
spanned by ¢, ¥, & as a group of Lorenz transformations.

4. 2. We consider next the manifold whose group of holonomy $, consists
of the elements of the form (4.2) in which A,, A, are both irreducible on real
field but reducible on complex field Moreover, we assume that $p contains a
subgroup $pr== {identity} which consists of elements of form (4.3) in which
A is irreducible on real field but reducible on complex field. Let T% and T'% be
the n-dimensional subspaces of the tangent space T» at P which are left in-
variant by the group of holonomy $r The complexification (T5)" of T is the
direct sum of the respective complexification (T'5)" (T%)° of Tr and T% It is
known ([7] appendix) that if we choose suitable bases in (T'})° and (T'3)°, then
the elements of the group of holonomy restricted to (T or (Tp)° are res-
pectively represented by the matrices of the form

(o %

where B is a complex matrix of degree m(n = 2m), and B is the conjugate
complex matrix of B. With respect to such base in (T'p)° the elements of the
group of holonomy are represented as

B, 0 0 0

0 B 0 0
4. 12 ,
(4.12) 0 0 B O0

0 0 0 B,

in which the complex matrices B, and B, are both irreducible on complex field.
Any real linear transformation of T» may be represented as

K, K, H, H,
K, K, H, H,

4.13

. 13) L. L M M,
L, L. M, M,

The conditions for the matrix (4.13) to commute with every element of the
group of holonomy are as follows:
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K,B, = B.K,, K,B, = B,K,,

H,B, = B,H,, H,B, = B,H,,
(4.14) -
L,B,=B;L,, L;B,=B,L,,

M,B, = B,M,, M,B,= B,M,.

As the group $p contains p (B, = B, = B) as a subgroup, we have also the
following

{ H,B= BH,, H,B= BH,,

(4. 15) _
L,B=BL, L,B=BL,

Since B,, B, are irreducible on the complex field, if §» = H» the commutator
of the group of holonomy must be of the following form [7] with respect to a
suitable base in (T5)°:

a.E, /31Jz a,.E, BsJ,

(4. 16) ﬁlJl alEm E2Jl E2Em ,

a,E, B3, a.kl, B,

B, oa:E. BJ, a.E.
where B’s may be zero. If some 80, then m = 2/ and J, is of the following
form:

=(5 o)

But if $, contains $» as a proper subgroup, then &, = 8, = a; = 8, = 0. Because,
as H, = a,E, satisfies H,B, = B,H, for B,==B,, it follows that a, = 0.
Similarly a;=0. Now if 8, =<0, then det H, == 0 and we have B, = H,”'B,H,
= B, which contradict to the assumption that $p is a proper subgroup of

Similarly 8; = 0. Thus if $» contains §» as a proper subgroup, the elements
of the commutator algebra of $p are of the form:

a.E, B.J, 0 0

B, a.E, 0 0
0 0 a.E, B,
0 0 :—é o, 3 E4Em

(4.17)

If p contains Hpr as a proper subgroup and both factor G;, G, of DHp=
G, X G, are not the subgroup of real representation of quaternionian linear
group, then the elements of the commutator algebra of £, are of the form
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aE, 0 0 0
0 aE, O 0
0 0 aF, 0
0 0 0 aE,

(4.18)

We can choose adequate real base in (7'5)° such that the following items hold :

(i) If $» contains Hp as proper subgroup and is a direct product of two
subgroups of GL(n, R), none of which is the subgroup of the real representation
of quaternionian linear group, then the commutator algebra of $p is spanned by
the Kronecker products of

G D 6D = (Ce) (&9

that is, the following four elements:

E, O 0 0 E, O 0 0
0 E, O 0 0O E, 0 0
E= , F= ,
0 0 E, O 0 0 —-E, O
0 0 0 E, 0 0 0 —E,
(4.19)
0O E, 0 0 0O E, O 0
—E, 0 0 —-E,
G = 0  H= 0 0 0 '
0 0 0 E, 0 0 0 —E,
0 0 —-E, O 0 o E, O

(ii) If Hp» contains Hpr as proper subgroup and is a direct product of two
groups which are both the subgroup of real representation of quaternionian linear
group, then the commutator algebra of $» is spanned by the Kronecker products
of (m=210)

G2 o) = (0 ) 7o) (Gog) G o)

that is the four elements in (4.19) and the following four elements:

J 0 0 0 J 0 0 0

0 —J, 0 0 0 —J, 0 0
(4.20) I= : , J= ’ ,

0 0 0 —J 0 0 0 J
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0 J 0 0 0o J, 0 0
K = J, 0 0 0 . L= J, 0 0 0 '

0 0 0 J 0 0 0 —J,

0 0o J 0 0 0 —-J, 0

(iii) If »= H»r, then the commutator algebra of H» is spanned by the
Kronecker products of

N Y R i Y X i
1 0—1 10 —-10 0 E, E, 0 0 —J, J, 0

In case (ii) the eight elements in (4.19) and (4. 20) satisfy the following
relations :

E=F'=-G'=—H'=—-I"=—J*=— K= — L3
F=FE=—-GH=—-HG=—1J=—JI=— KL= — LK,
G=FH=GE=HF = —1K=—JL=KI=LJ,
H=FG=GF=HE=—IL=—JK=KJ=LI,

I =FJ=GK=HL=IE=JF=—KG= — LH,

J =FI=GL=HK=1IF=JE=—KH=— LG,
K=FL=—-GI=—HJ=1G=JH=KE = LF,
L=FK=—-GJ=—HJ=IH=JG=KF=LE.

Let R =aE + bF + ¢G + dH + el + fJ + gK + hL, then the conditions
for R to belong to & or & are as follows:
@a+b)—(c+di—(+f)—(@+h*=1o0 —1,
(@+b)(c+d)=0,(a+bde+f)=0,(a+b)(g+h)=0,
ab —cd — ef — gh =0,
ac +bd =0, ae + bf =0, ag + bh = 0.

Solving these equations,we get for case (ii) the following results: & consists
of £ E and = F. & consists of ¢G + dH + el + fJ + gK + hL with ¢d +
ef +gh=0and ¢* + & + e + f* + ¢* + h* = 1. Then it follows that in such
a manifold the almost product structure ¢ (which induces F on the tangent
space) is left invariant by A,(M), but none of the almost complex structures is
left invariant.
Let S = aE + bF + ¢G + dH, then the conditions for S to belong to &*
or & are as follows:
{ @+ —(c+di=1o0r —1,
(@a+b)(c+d)=0,ab—cd=0, ad + bc = 0.

(4.21)

(4. 22)

(4. 23)



424 C.].HSU

Solving these equations we get for case (i) the following results:

!+ consists of = E, = F. & consists of =G, = H. It follows that in this
case the manifold has a structure of case II and all the structures ¢, ¥, x are
left invariant by Ao(M). Thus we have

THEOREM 4. 2. Assume that the group of holonomy Pr of the manifold
is the direct product of two subgroups of GL(n, R), each of which 1is irre-
ducible on real field but reducible on complex field. Moreover we assume
that $p contains a subgroup Hp whose elements are all of the form (4.3) in
which A is inreducible in real field but reducible in complex field. Then if
none of the factors of the direct product is the subgroup of real represeniation
of quaternionian linear group, the manifold has a structure (¢;", ¥/, k") of case
II and all of ¢, ¥ and x are preserved by A M). If both of the factors of
the direct product are subgroups of real representation of quaternionian linear
group, then the manifold has a structure defined by seven tensor fields deduced
Sfrom elements in (4.21) by parallel displacement. In such a manifold the
almost product structure ¢ (deduced from F) is left invariant, but almost
complex structures are not.

4. 3. Finally we consider the manifold whose group of holonomy is the
direct product of four subgroups of GL(m, R), each of which is irreducible on
complex field. Then the elements of the group of holonomy £» can be repre-
sented as

A 0 0 0
0 B 0 0
4.24) ,
0 0o C 0
0 0 0 D

where A, B, C, D are matrices of degree m. Moreover, we assume that $p
contains a subgroup §»== {identity} whose elements are all of the form:

A 0 0O
0A 0O

(4. 25) 604 o ; (A: irreducible on complex field).
0 0 0 A

The condition for the matrix :

P'l Ql P2 QE
R1 S1 R2 S2
Pa Q3 P4 Q4
3 R3 S3 R4 S4

(4. 26)
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to be a commutator of the group $r are as follows:
AP, = P /A, AQl = QIB9 AP, = P,C, AQz = QzD:
BR, = R,A, BS, = S,B, BR, = R,C, BS, = S,D,
CP; = P,A, CQ; = Q;B, CP,=P,C, CQ, = Q.D,
DR; = R;A, DS; = S;B, DR, = R,C, DS, = S,D.

4.27)

As $p contains Pp as subgroup, the above relations also hold good when we put
A =B =C=D in them. Since each factor of the direct product of »r is
irreducible on complex field we conclude that the commutators of $p= $, are
of the following form :

a1Em BlEvn azEm, ﬁzEm

¥1En  8:En  En 8:En

aaEm. BaEm a4Em /34Em

vsEn 8En viEn 8,En

(4.28)

If the group $r contains merely the elements of the following form (in this
case we denote p = 51»):

A0 0O
0B 0O
(4. 29) 0 0A 0 ; (A, B: irreducible on complex field),

0 0 0B
then the commutators of $pr = 5;» can be represented as
a,En 0 a.E, 0
0 S En 0 8:En
d;,-Em 0 a4Em, 0
0 S8En 0 S.E,

(4. 30)

If Hp actually contains elements of the form (4.24) in which any two of A, B,
C, D are distinct from each other, then the commutators of p are of the follow-
ing form:
a.E. 0 0 0
0 8E. O 0
0 0 akFE. O
0 0 0 &,En

(4.31)

Then the commutator algebra of $» is spanned by the Kronecker products of
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((1) (1)> <0 —1) with <0 E,,.> (0 —;‘),,,)’

that is, the following four elements :

E. O 0 0 E. O 0 O
0 E. O 0 0 E. O 0
E = ) F = ’
0 0 E, O 0 0 —E, O
0 0 E, 0 0 0 —E
(4.32)
E. O 0 0 E. 0 0 0
—E, —E, 0
c—| 0 o o L_[o© 0
0 0 E. O 0 0 —E. O
0 0 0 —E, 0 0 0 En

In case when §» contains merely the elements of the form (4.29), i. e.

when Hp = :5;-, then the commutator algebra of 9, is spanned by the Kronecker
products of

G G Gor G o) e (5 2) (7 _e)

that is, the four elements in (4.23) and the following elements :

T 0 E L Fe 0 0 ,
E. 0 0 0 E. 0 0 0
0 E. O 0 0 E. O 0
(4.33)
0 0 E. O 0 0 —E. 0
~ 0 0 0 —En. ~ 0 0 0 Ea
G = N H =
E. 0 0 0 E. 0 0 0

If §»= Hn then the commutator algebra of $» is spanned by the Kronecker
products of

10y/1 0\ /01 /0-—1 E, 0O E. O 0 En 0 E.
(0 1)’ (o —1>’ (1 o)’ (1 0) Wlth( 0 E,,.>’ < 0 —E,,,)’ (E,,. 0 ) (—Em 0 )
The eight elements in (4. 23) and (4.33) satisfy the following relations :
E=F oG m—F - —F =G — B,
[F = FE=GH= HG = EF = — FE= GH = — HG,
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G = FH =GE = HF = EG = — FH = GE = — HF,
H=FG=GF=HE=FEH= — FG=GF = — HE,
= — FF = GG = — HH = EE = FF = GG = HH,
= — FE=GH = — HG = EF = FE = GH = HG,
= — FH=GE = — HF = FG = FH = GE = HF,

H= — FG = GF = — HE = EH = FG = GF = HE.

Let R = aE + bF + ¢G + dH + aE + b7?‘~+ G + c’l‘ﬁ: then the conditions for
R to belong to §* or &  are as follows:

(@+cP+@G+di+@+cr—G+dr=1o0r —1,
@+ +d) =0, @+c)@+c)=0 (@a+ )& +d) =0,
ac + bd +Z?—EE=O,

ab + cd =0, aZ+c:Z=O, ab + cd = 0.

(4. 34)

! Q=B

(4. 35)

By solving these equations we have the following results :
®* consists of = E, =G, bF + dH + aE + ¢G + bF + dH with B+c)?
+@+cP—G@+df=1bd+ac—bd=0 and i%Ei—%G + o(F = H)

+;(Ei5)+ZiFiH) with b’+}—%:%. R~ consists of bF + dH +

GE+cG+bF +dH with 0 +d' + @+ — (B +d=—1, bd + ac—
bd = 0. It follows that if 9$r = H» the manifold has seven structures deduced

from (4. 34) by parallel displacements, but none of the almost product structures
or almost complex structures is preserved by A1) except the one induced by
G.

Let S = gE + bF + ¢G + dH, then the conditions for S to belong to &*
are as follows:

(4. 36) {(“+C)2+(b+d)“=1, (@+c)®+d) =0,

ac+bd=0, ab+ cd=0.
By solving these equations we conclude that &* consists of = E, &= F, =G,
iHi%@+®i$ﬂ%ﬂmﬁ%@+Hﬁ%@—@ﬂmﬁ@

actually contains elements of the form (4.24) in which any two of A, B, C, D
are distinct from each other, then the manifold has a structure of case IV
defined by ¢, ¥, &« (induces respectively F, G, H in Tr) and all of these
structures are left invariant by Ao(M). Thus we have
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THEOREM 4.3. Assume that the group of holonomy $r of the manifold
is the direct product of four subgroups of GL(m, R) each of which is irre-
ducible on complex field. Moreover we assume that Hp contains a subgroup

D» whose elements are all of the form (4.25). If r contains elements of
the form (4.24) in which any two of A, B, C, D are distinct from each
other, then the manifold has a structure of case IV and all of ¢, ¥ and «

are left invariant by A(M). If Hp= ZSSP, then the manifold has seven stru-
ctures which induce in Tp the transformations in (4.34), but none of the
structures is left invariant by A\M) except .

In concluding, I wish to express my profound gratitude to Prof. S. Sasaki
for his kind guidance and suggestions.

REFERENCES

[1] S.S.CHERN, Differentiable manifold. Chicago lecture notes, (1952).

[2] T.FUkKAMI, Affine connections in almost product manifolds with some structures,
Toéhoku Math. Journ., 11(1959).

[31 P.LIBERMANN, Sur le probléeme d’équivalence de certaines structure infinitésimales
réguliéres. Ann. Matematica. 36(1954).

[4] T.NAGANO, Isometries on complex-product space, Tensor, 9(1959).

{5] A.NEWLANDER AND L. NIRENBERG, Complex analytic coordinates in almost complex
manifolds. Ann. of Math. 65(1957).

[6] K.NoMmizu, Lie groups and differential geometry, (1956).

[7] M.OBATA, Affine transformations in an almost complex manifold with a natural
affine connection, Journ. of the Math. Soc. of Japan, 8(1956).

[8] M.OBATA, Affine connections on manifolds with almost complex, quaternion or
Hermitian structure, Jap. Journ. of Math. 26(1956).

[9]1 S.SAsAKI, On the differential geometry of tangent bunbles of Riemannian manifolds
I, Tohoku Math. Journ., 10(1958).

[10] H. WAKAKUWA, On Riemannian manifolds with homogeneous holonomy groups Sp(z),
Tohoku Math. Journ., 10(1958).

[11] K.YANO, Quelques remarques sur les variétés a structure presque-complexe, Bull.
Soc. Math. France 83(1955).

[12] K.YANO, Affine connexions in an almost product space, Kodai Math. Seminar
Report, 11(1959).

TOHOKU UNIVERSITY AND
NATIONAL TAIWAN UNIVERSITY FORMOSA.





