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In the following we study some properties of differentiable manifolds of
class C~ which are endowed with three fields of (non trivial) mixed tensors of
class C"°: ΦΛ ψt

h and κt

h satisfying the following relations:

where St

h denotes the Kronecker delta and β19 £2> £3 = ± 1 £ == S1ε2εB. The
above system contains essentially the following four cases:

Case I. £x = £2 = £3 = — 1 £ = — 1. This is the case of the well-known
quaternion structure.

Case II. £x = S2 = - 1, £3 = 1 £ = 1.
Case III. 6t = - 1, £2 = £3 = 1 £ = — 1 This case is called by Liber-

mann the quaternion structure of the second kind, and is also called the complex-
product structure by T. Nagano.

Case IV. £χ = £2 = £3 = 1 £ = 1. All of these structures were studied by
Ehresmann and Libermann [3]*, the case I was also studied by Obata [7, 8] and
Wakakuwa [10], the case III was also studied by Nagano [4].

In § 1, following T. Nagano [4], we define an almost complex structure
and two almost product structures on the tangent bundle 'T(M) of n dimensional
affinely connected manifold M and show that if M is itself an almost complex
or almost product manifold, then T(M) turns out to have structures mentioned
above, under some conditions for the defined almost complex structure to be
integrable is also obtained.

In § 2 we study the afEne or metric connections which make the given

*) Numbers in brackets refer to the references at the end of the paper.
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three tensor fields of the structure simultaneously covariant constant.
In § 3 we study the homogeneous groups of holonomy with respect to the

connection studied in § 2 for cases II, III and IV, by making use of suitable
bases in the tangent space.

In § 4 we study if the largest connected group of afKne transformations
with respect to the connection in § 2 preserves the structure endowed in the
manifold.

l Some structures on tangent bundles. In the sequel we assume that
Latin indices i, jy k, vary from 1 to 2 n, Greek indices a, β, γ, vary from
1 to n, and ά* is a + n, so a*, β*, y*, vary from n + 1 to 2n.

1. 1. Let ua be the local coordinates of a point in M, then the local
coordinates of an element (i. e. a tangent vector of M at a point u € M) of
the tangent bundle T(M) of M are (ul) = (w*, ua*) = (uΛ, v«), where va are
components of a tangent vector with respect to the natural frame at (u")> i. e.

the frame constituted by the vectors—^-. Corresponding to a coordinate trans-
du"

formation ua = ua{uτ, , un) we have a coordinate transformation in T(M):

u« = u«(u\ , u

n\ u'«* = v'« ^J^tf^JteLuP which is called the ex-
3uβ duβ

tended coordinate transformation of ua = u'^iu1, , un). Then we can define
tensors of T(M) by using the transformation matrix of the extended coordinate
transformation, i. e.

du« du'a \

dua*
σuβ* J

3u« 0

\ duβduy duβ

Now we assume that M is an affinely connected manifold having the con-
nection parameters Γβ?. It is known that if ξ*'s are components of a contravariant
vector fields of M, then (0, ξ*) and (£*, — Γβ%ξ3vy) are both contravariant vector
fields of T(M) [9].

By the way, we would like to show that these vector fields are respectively
a fundamental vector field and a horizontal vector field in T(M), whose linear
connection is uniquely determined by Γ̂ γ of M.

Let P(M) be the principal fibre bundle consisting of all frames of M, with
the base manifold M and structural group GL(n, R). With respect to the local

coordinates u", every frame of M is represented as a set (/α), la — Xβ - , so
duβ

(u", Xβ) may be considered as local coordinate system in P(M). Let (Y£) be
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the inverse matrix of (X%) and put ω£ = Ty

a

βduy

9 then the distribution Qx de-

fining the connection in P(M) is the annihilator of θl = Y%dX$, + <»\χl) [1].
*~\

Hence any horizontal vector in P(M) may be represented as ξ* Ty

β

bξ
y Xi

dua

or (£% — Ty

β

8ξ
yX*). As T(M) may be regarded as an associated fibre

bundle of P(M) with w-dimensional vector space F as standard fibre, correspon-

ding to the connection in P(M), there is a uniquely determined connection in

T(M). Let x € P(M) has the local coordinates (ua, Xβ), the fibre Fn through

(ua) is identified with the tangent space Tu at this point by identifying the

element x ξΛ (for definition, see [6]) with the vector lΛ = X% (where ξ" is
3uβ

a fixed base of the standard fibre F) in Tu. Then the distribution defining the

connection in T(M) is the image of the horizontal subspace Qx under the

differential φ' of the mapping φ: x -> α: | 0 for a certain fixed | 0 = Λ8!^, i. e.

U-, Xf)->(^Λ, αβX?) - (ιΛ z;γ). Since f(f-, ^ ) = (f-, ^Γ^?), where (f , ̂ )
are components of tangent vector in P(M) with respect to local coordinates,

we have φ\ξ«, - Γy

β

8ξ
yXΪ) = (ξΛ, - Γ y g f V ) . Thus (ξ\ -Tβ«yξ

βvy) is a horizontal

vector field in T(M). It is evident that (0, ξΛ) is a fundamental vector field

in T(M) as its projection in Tu vanishes.

1. 2. Now consider a linear mapping ψ on each tangent space of T(M),

whose matrix (ψf) with respect to local coordinates is given as follows:

fy* = - % - r
It can be easily seen that

φjψa* = - δ/.

The considered linear mapping tranforms the vectors in the tangent space

of T(M) in the following manner: Let ξ* be n linearly independent vector
(δ)

fields spanning the tangent space of M at each point of a suitable coordinate
neighborhood U, then the 2n vector fields (0, ξ*) and (f*, —Yβ^ξβvy) are linearly

(δ) (δ) (δ)

independent and span the tangent space of T(M) at each point of τr~\U).

Then

ί ( , e ) ( , / γ ) ,
(1. 2) t : (ό) (δ) (δ)

( (IΛ, - Γ ^ I V ) >(0, -t);
(β) («) (δ)

where (0, | α ) -> (ξ*9 — Tβ"ξβvy) is an isomorphism from the vertical subspace
(δ) (δ) (d)



406 C.J.HSU

onto the horizontal subspace of the tangent space of T(M), and is the inverse

of the product of the following two isomorphisms:

Γ' : (£-, -
(δ)

(F, o)
(δ)

(!*, o),
(δ)

(δ) ' (δ)

the former of these isomorphisms is the one induced by the differential of the

natural projection 7r, and the latter is the one which defines the soldering property

of T(M).

It is proved by Eckmann and Frόlicher that for an analytic almost complex

structure ψf to be integrable, it is necessary and sufficient that [11]

(i . 3)
V

For our specified case, we can get tM

ι by straightforward calculation: As

ua = u", uΛ* = v%, we have

f - 0
du»

y* βy'βy'

Putting these relations in the expression (1. 3) of Nijenhuis tensor tu

{, we have

(1. 4) I
= 2

+ 2

+

ί + 2

Rtτβrv; + 2
^βS + 2

+ 2 T"yβΓ%) zf

- 2

- 2

Where R^y and T | γ are respectively the curvature tensor and torsion tensor of

Γp" in affinely connected manifold M.

From the theorem of Eckmann and Frόlicher and the above expressions

(1. 4), we have
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THEOREM 1. 1. The almost complex structure (ψf) defined above (1.1)
in the tangent bundle T(M) of an affinely connected manifold M of class
Cω is integrable, if and only if M is locally flat.

Suppose that M is a Riemannian manifold. If we substitute Tβ% by the
Riemann-Christofϊel symbol \^y} of the Riemann metric g#β of M in the above
treatment, we get the corresponding results for the case of Riemannian manifold.

Let Gij be the Riemann metric defined by Prof. S. Sasaki [9] in the tangent
bundle of Riemannian manifold, i. e.

(1-5) j GΛβ« =
G*β* =

then we have

(1. 6) ΨWG.t = GΛ.

That is, Gi3 is the Hermitian metric in the almost complex manifold T{M)
defined above.

If we put

(1.7) ψti = ΨtrGri,

then we have

Ψ ( \ \ \ \ ) \ ψaβ* = - gΛβ,( Ψaβ = (9pβ\κp»\ - 9«p\

* Ψa β = 9«β> Ψ«*β* = 0.

Let ψ(j1ό be defined by

(1.9) t | J i _

then by making use of the relation

duy ~~ duβ "

we have the following expressions:

(l. 10) { r*βy Z ~ _ '

Since it is known [11] that a pseudo Kahlerian manifold is characterized
by skew symmetric tensor ψ(j and symmetric tensor Gi5 satisfying

(1.11) Ψ/Ψ»Gst = Gjk, tkι

ι = 0, ψ(jk = 0,
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we have by the theorem of Newlander and Nirenberg [5] from the expressions

of tj (1.4) and ψijk (1.10) the following:

THEOREM 1. 2. For Rίemannίan manifold M having metric gaβ, T(M)

is Kdhlerian with respect to the structure (1.1) and the metric (1. 5) if and

only if M is locally flat [4].

1. 3. In the tangent bundle T(M) of an affinely connected manifold M,

we can also define the following two almost product structures φf and icf:

ιφβ

Λ=- Γβ*9zf, φf* = - 8?9 Φf* = - δβ* + Γ;Γ f l {Λι ' , φf - Tβ«pv<>;
( L 1 2 ) ' - - * = 0 * . - = 2-

We can easily see that xf is induced by the linear transformation K on the

tangent space of T(M) which has the vertical and horizontal subspace as the

proper subspaces corresponding respectively to the proper value 1 and — 1.

Moreover, it is easily shown that

(l 13) j

Thus we have

- Φ; =
- & v = -

THEOREM 1. 3. In the tangent bundle T(M) of an affinely connected

manifold M, (ψ1/, φ/, /cf) defines a complex-product structure [4].

In the remaining part of this section we assume that M is a differentiable

manifold of dimension n = 2 m with an almost complex or almost product

structure <pβ

a :

(1.14) ^βVv

α = W ,

where £x = 1 in case of almost product structure and €x = — 1 in case of
almost complex structure.

The extended tensor field φ/ of φ% defined by

(1. 15) φβ" = φβ«, ψ£ = 0, ^ r

gives rise to almost complex or almost product structure in the tangent bundle

T(Λί) of M, i. e. φ^φj — Sβj*. On the other hand, if M is an affinely con-

nected manifold having the connection parameters Γ γ̂, we have already defined

an almost complex structure ψ/ (1.1). Then for the structures φf and ψf we

have the following relations:

t' = 0,
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(1. 16) \

au

So, if Yβy is a ^-connection, i. e. φ^Ί = 0, then we get

(l 17) ΨSφS = WW-

Put ψ^ψj = SiKk

ι, then we have

Thus we have

w - ̂ v =

THEOREM 1. 4. If T£ is a φ-connection, no matter of £x — + 1 or — 1,
the pair (φf, ψ1/) defines a structure of case II in the tangent bundle T(M)
of an affinely connected manifold M. The converse also holds good.

Finally for the extended tensor field φf and the almost product structure
tcf in T(M) defined above (1.12), we have the following relations:

Cl /v Cύ Oι 06 tt " Cύ f\

= Ki ψa ~ — ψi •> ψΊ* «α = «γ» ψa = 0,

(l 19)

ψj

= <p«y.

Hence we have

(1.20) i φ y ι c a *yψ°'-~β^*'κ*-yi2ψ**J

If Γ̂ γ is a ^-connection, then we get

- 21) φk κa = κk φa.

Put ~φ^Ka — ~" €ιVk9 then we have

(1. 22)

= 0,

= VlC = ψ =

Thus we have

THEOREM 1. 5. If Γβ* is a φ-connection, then in case Sτ = 1, the pair

(φf, /cf) defines a structure of case IV and in case £τ = — 1, th
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/cf) defines a structure of case II in the tangent bundle T(M). The converse
also holds good.

The same things also hold, if we replace #/ by φ/ of (1.12) in the above
theorem.

2. Affine and metric (φ, ̂ -connection. Suppose the manifold has the
structure (ΦΛ ψ/1, K/1). Starting with any affine connection given on the mani-
fold, we shall obtain an affine connection, with respect to which φ/1, ψ/1 (and
consequently κt

h also, because K^ = — Szψk

πφa) are simultaneously covariant
constant. Such a connection is called a (φ, ^-connection.

2. 1. To obtain a (φ, ̂ -connection we have to make use of affine con-
nections which make a given almost product structure covariant constant and
affine connections which make a given almost complex structure covariant con-
stant. Although the former were completely determined by Walker, Willmore,
Yano [12] and Fukami [2], and the latter were completely determined by Obata
[8], we would like to note here that by merely slight modification of the method
of Obata [8], one can get results which are applicable at a time both to the
case of almsot complex structure and the case of almost product structure. For
example, we have the following:

THEOREM 2. 1. In an almost complex (£i = — 1) or almost product
(Sx = 1) manifold with the structure φ{

h (ΦfΦ* = Siδ/1), an affine connection
o

i y is a φ-connection if and only if there exists an affine connection Vβ

h

such that Γ / = Φ Γ / . Moreover, Φ ( i y + A/) = Φ Γ / + —(Ajj

h + ε1φi

bAji>a

Zl

ΦJ1) for any tensor Aj{

h.

In the statement of this theorem, φ-connection is by definition a connection
which makes the structure φ/4 covariant constant, and the operation Φ is defined
as follows:

O O - i

(2. 2) ΦΓ/ = Γ/ + JL

0

where v^ denotes the covariant derivative with respect to Γ^Λ.

COROLLARY 2. 2. In a manifold with an almost complex or an almost
product sfructure φ/1 there always exists a φ-connection, which is expressed

0

in the form (2. 2) starting from an arbitrary connection TH

h on the manifold.

We define also
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for any given afβne connection Γ#Λ in the manifold. Then we have [8]

THEOREM 2. 3. In a manifold with a structure defined by (ΦΛ ψt\ *,*),
an affine connection Tj{

/1 is a (φ, ^-connection if and only if there exists an

affine connection Γ / such that Γ / = Φ Ψ Γ / .

PROOF. We can prove this theorem by quite the same way as in the case
of quaternion structure. By use of the later part of Theorem 2.1, we have

Γ/ = Φ(Γ/ + ±εάfrM
(2.4)

On the other hand, from φt

bψb

d = — £^sfc^ we have

hence

0
/4Putting this in the above expression of ΦΨΓ^ /4, we have

(2. 5) Φ Ψ Γ / = ΓΛ» + - 1 - {δxCvA^α* + « 2(v^ ί°)tαΛ + ^ V Λ % ' !

Since the last term is symmetric in φt\ ψf and κt

Λ, we find

(2. 6) ΦΨ = ΨΦ = ΨK = KΨ = KΦ = ΦK.

0 0

From which it is evident that ΦΨΓ j(

ft = ΨΦTjt

Λ is a (φ, ^)-connection by the
former part of Theorem 2.1.

COROLLARY 2. 4. /w a manifold with a structure defined by (ΦΛ ψt\
κt

h), there always exists a (φ, ψ)-connection, which is expressed in the form
n

(2. 4) starting from an arbitrary affine connection Tj{

h on the manifold.

2. 2. We consider an almost complex or almost product manifold defined
by the structure φfiΦfφd1 = GAΛ). If a Riemannian metric gih on the manifold
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satisfies

(2. 7) gth = ΦSΦSg**

the metric gih is called a Hermitian metric [8,11] or an almost product metric
[2] in each case, but we call it equally as a metric associated with the structure

Given an arbitrary Riemannian metric yih in the manifold, it is easily seen

that gih = (yth + φt

aφh

byba) is a metric associated with the structure φ«\ We

have also the following

THEOREM 2. 5. In a manifold with a structure defined by (ΦΛ ψ{\ κ{

h),
there always exists a metric associated with all of ΦΛ ψ{

h and κ{

h.

PROOF. Let yih be an arbitrary Riemannian metric in the manifold. Then
it is evident that the following gih is a Riemannian metric :

(2. 8) gih = -±-(yih + φ/ φΛα* + ΨWΎO* + KM*).
4

It is also easily seen that gih is associated with all of φ{

h, ψ/1 and κt

h.
In a differentiable manifold with a metric tensor gm an affine connection

ΓflΛ is said to be metric (with respect to gih) if VJ&Λ
 = 0. We define an operator

Λ by

(2.9) i

where gha is the inverse of gia. It is known that an afSne connection Γ ^ is
0 0

metric if and only if there is an affine connection Vβ

h such that T/ = ΛΓ/.
It is also known that Λ commutes with each of Φ, Ψ and K. Noting that
φψ = ψφ = ψK = KΨ = KΦ = ΦK (2. 5), we have

THEOREM 2. β. In a manifold with a structure (φt\ ψ/1, κt

h) and a
metric associated with all of φt\ ψth and tct

h, there always exists a metric
(Φ> ψ)~connection. Such a connection and only such one is written in the

form ΦΨΔΓ/ = ΨΦΛΓ/ = for some affine connection Γ/.

3. Groups of holonomy. In this section we study the homogeneous groups
of homolony for the case II, III and IV. Group of holonomy of case I has been
studied by Obata [7] and Wakakuwa [10].

We consider in the manifold a (φ, ̂ -connection, i.e. the connection which
makes all of the three tensor fields φt\ ψt

h, κt

h covariant constant. These tensor
fields are left invariant by the group of holonomy with respect to the considered
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(Φ> ΨO-connection. Let P be any point of the manifold, then the linear trans-

formations ^s, % and K induced respectively by the fields φ/1, ψt

h and κ(

h in the

tangent space at P commute with each element of the group of holonomy $P.

By choosing base in the tangent space adequately, we can put the matrices

representing the elements of ξ)P in considerably simple forms.

3. 1. We consider first the case III. Since £y2 = — E (E denotes the

identity transformation), $2 = E and — ̂ 5$ = £ξ £j = — tc, if a is any proper

vector corresponding to the proper value 1 of %, then we have 5(£jα) = — ΛKS^)

= — ̂ j<2, which shows that ^a is a proper vector corresponding to the proper

value — 1 of $. Hence the dimensions of the positive subspace [3] (that is the

subspace of the tangent space consisting of all the proper vectors corresponding

to the proper value + 1) and the negative subspace (similarly defined) are equal,

thus the manifold must be even-dimensional, say 2 n. Let (e19 , en) be a

basis of positive subspace of $, then ffie19 , ^en) is a basis of negative

subspace of $• With respect to the basis (e19 , en9 5se19 , ^en) of the

tangent space at P9 the transformations £?, $ and K are respectively represented

as follows:

where En denotes the n X n unit matrix. Since the elements of ξ>P commute

with each of the above three transformations, they are represented as follows

with respect to the above basis:

0.2, ( Λ ;
A. O

U
where An is any n X n matrix. Conversely if, with respect to suitable basis of

tangent space, the elements of the group of holonomy can be represented as the

above from, then the elements of the group of holonomy commute with each of

£J, 3" a n d K. Hence there correspond in the manifold three tensor fields φ(

h

9 ψt\

κt

h and the manifold has a structure of case III. Thus we have

THEOREM 3. 1. A manifold is of the case III and its connection is a

(φ, ^-connection, if the elements of its group of holonomy can be represented

as form (3. 2) refered to suitable bases. Conversely if the manifold is of the

case III, then the elements of the group of holonomy with respect to (φ, ψ)-

connection can be represented as form (3. 2) refered to suitable bases.

3. 2. We consider a manifold of case II or case IV. In such a manifold

there is a tensor field K/1 such that icftc* — δ{

h. Let K be the linear transforma-

tion induced by this field in the tangent space at P. We choose a basis of the
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tangent space such that the former p vectors form a basis of the positive
subspace and the latter q — n—p vectors form a basis of the negative subspace
of K. With respect to this basis, K may be represented as follows:

(3-3)

Since ^ and

(3.4)

0 ~ lϊq'

both commute with K9 they can be represented as:

fApM, o \
v o BJ°

In case II, we have !^2 = — E, S 2 = — E9 hence

Ap — — E9 Bq = — E9

which show that if we restrict £J(or g) to the positive subspace T ί or negative
subspace Tr of K, it may be seen as transformation induced by an almost com-
plex structure. Thus both p and q are even, say p = 21, q = 2m and M is
even-dimensional. As T ί and T ? are complementary to each other, the com-
plexification (Tjϊf of the tangent space 7V is the direct sum of the complexifica-
tion (T?)σ, (T^)61 of T ί and Tϊ Then by choosing suitable bases [7] in (Tϊf
and (Tp)c> we can represent the restriction of K in Tf and T ? respectively as
follows:

/ 0 EΛ / 0 £ m \

V-JS, 0 / ' V- £ m 0 /

With respect to such base in (TP)
C, ^ and $ = K^s can be represented respectively

as

(3. 5)

Since each element of the group of holonomy commutes with $, $ ai*d K
in (3. 5) and (3. 3), the elements of the group of holonomy are represented as

1

\

0

-Et

0

0

E,

0

0

0

0

0

0

-Em

0

0

Em

0

\

/

/ 0

- Et

0

\ 0

Eι

0

0

0

0

0

0

Em

0

0

- E

0

(3.6)

IAP -

B,

0

0

A,

0

0

0

0

cQ

A

0 '

0

-A

Conversely if the elements of the group of holonomy can be represented
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by matrices of the above form, then they commute with £J, $ and K. Thus
there exist in the manifold three tensor fields φι, ψth and K? corresponding
respectively to ^, % and K in (3. 5) and (3. 3). Thus we have

THEOREM 3. 2. A manifold is of case II and its connection is a (φ, ψ)
connection, if the elements of its group of holonomy can be represented as
form (3. 6) refered to suitable bases. Conversely if the manifold is of case
II, then the elements of group of holonomy with respect to (φ, ψ)-connection
can be represented as form (3. 6) refered to suitable bases.

3. 3. Finally we consider the case IV in which the three tensor fields φt\
ψ/1 and Ki*1 are linearly independent. Since ξy2 = g 2 — E, 3> and $ can be re-
presented in the form (3. 4) in which

J±p = : Ep, JBq === Eq.

Thus if we restrict ^ (or $) in the positive subspace Tp or negative sub-
space Tp of K, it can be seen as a transformation Zp or a transformation 2Q

induced in TP and Tp by almost product structures. By suitable choice of bases
in TP and T j , S^ and 2>Q can be respectively represented as

(Er 0 \ (Et 0 \

U -E)' VO - J
c a n

Er

0

0

0

0
-Et

0

0

0

0

Et

0

0 \

0

0

-EJ

(Er

0

0

\ o
with

0

-E.

0

0

3, S

0

0

-Et

0

and i

0 \
0

0

£ j

K. in (3.7)

Hence with respect to such base in tangent space
represented

(3. 7)

The elements of the group of holonomy commute with
and (3. 3), so they can be represented as follows:

(3.8)

Conversely if the elements of the group of holonomy can be represented as
the form (3. 8). then they commute with $, % a n d K of (3. 7) and (3. 3). Hence
in the manifold there exist three tensor fields φ(

h, ψ£

h and K/1 of case IV cor-
responding to ζy, % and K of (3.7) and (3. 3). Thus we have

0

0

0

0

Bs

0

0

0

0

ct
0

0

0

0

A
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THEOREM 3. 3. A manifold is of case TV with three linearly indepen-
dent tensor fields and its connection is a (φ, ψ)-connection, if the elements
of its group of holonomy can be represented as form (3. 8) refered to suitable
bases. Conversely if the manifold is of case IV with three linearly indepen-
dent tensor fields, then the elements of the group of holonomy with respect to
(Φ> ^-connection can be represented as (3. 8) refered to suitable bases.

4. Transformations preserving the structures. Obata [7] has proved that
in an irreducible almost complex manifold of dimension 2 n, if the largest con-
nected group of affine transformations does not preserve the almost complex
structure, then n is even and the homogeneous holonomy group is contained in
the real representation of the quaternionian linear group. In this section we study
analogous things for almost product manifolds but only some partial results are
obtained.

4. 1. Let φ be a differentiate homeomorphism or a transformation of an
n-dimensional differentiable manifold M onto itself. We denote by the same
letter φ the differential of φ, its extension to the tensor spaces and also that
to the algebra of tensor fields.

For any geometric object Ω, if Ω = φίϊ, we say that Ω is invariant under
φ or that φ preserves Ω. If Γ is an affine connection on the manifold, and
Γ = φT, then ψ is called an affine transformation (with respect to the given
affine connection Γ).

Let A(M) be the group of all affine transformations of M onto itself, and
A0(M) be the connected component of the identity in A(M). It is known [7]
that the set P(r, s) of all parallel tensor fields of type (r, s) on M is a finite
dimensional vector space over R, and that A(M) acts on P(r, s) as a group of
automorphisms. Moreover, the homomorphism p of A(M) into GLQi, R) (where
h = dim P(r, s)) defined by p(φ) ξ = φξ for any ξ 6 P(r, s) is continuous.

Let M be of dimension 2 n and has an almost product structure φ, which
induces in the tangent space TP a transformation F whose positive and negative
subspaces Tp, Tf are both assumed to be of dimension n. On M we consider
an affine connection which makes the given structure covariant constant. Let
$P be the homogeneous holonomy group of M at the point P € M. We choose
a basis of TP such that its former n vectors constitute a basis of Tp and its
latter n vectors constitute a base of TP (thus each vector of the basis is a
proper vector of F), then F has the following form relative to this basis:

En being the unit matrix of degree n. Since F is invariant under ξ)P (because
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φ is covariant constant), the matrix F commutes with any elements of ξ)P, so
that any element A of ξ>P has the form

(4 2 )

relative to the above basis. AX9 A2 being matrices of degree n. This means that
!QP is a subgroup of the direct product GL(n, R) X GL(n, R).

Let P(l, l) be the vector space spanned by all parallel tensor fields of type
(1, 1) on M and P f ( l , l), P"(l, 1), be respectively the subset of all the elements
le of P(l , 1) such that κt

aκa

h = δ«Λ or /ct

a

Kι

h = - δ,\ Then any element φ of
A(M) transforms linearly P(l, l), P+(l, l) and P"(l, l) respectively onto itself.
Assigning /e € P(l, l) to the value K of /c at P, P(l, l) is isomorphic with
the subspace of the tensor space of type (1, l) over TP consisting of all tensors
invariant under ξ)P, i. e. P(l, 1) is isomorphic with the commutator algebra ίϊ
of φP. It is obvious that P + (l , 1) and P"(l, 1) are respectively isomorphic with
the subset ffi"*" or S~ consisting of the commutator K such that K2 = £ or K2

We consider first the manifold whose group of holonomy fpP consists of the
elements (4. 2) in which AX9 A2 are both irreducible on complex field, and con-
tains a subgroup φP=^= {identity} consisting of elements of the form

(4.3)

in which A is irreducible on complex field.
Let

M K2\

Ml KJ

be any element in the commutator algebra of ξ>P, then

ι 0 \ (Kx Kt\ (Kx K2\ (Av 0A, 0 \

0 AJJ , \K3 KJ V 0 A

which gives

As ξ)P contains ξ)P, the last two formulas hold also for Ax — A2 — A, i. e.

AK2 = K2A, AK3 = K3A.
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Since in each element (4.2) of ξ)P, Ax and A2 are irreducible on complex

field, by Schur's lemma we have

,M _x /Kx K2\ (cίxEn a2En\

where av ct2, <*>$> &i are real numbers.

If ξ)P contains ξ)P as a proper subgroup, then ξ)F actually contains elements

(4. 2) in which Ax =J= A29 then from the last two formulas of (4. 4) we have

ct2 = #3 = 0. Thus in this case, any element in the commutator fi) of ξ>P can

be written as

V 0

Hence the following two elements form a basis of

Let K= aE + bF € ffi+, then we have α2 + b2 = 1, «έ = 0. It follows that

β + contains only the following four elements: ± E, ±F. Thus P + ( l , l) consists

of zh δ/λ and ± φ/1 which induce ± F in the tangent space. Since p(φ)-P+(l, l)

C P + ( l , l) for every φ € -A(M), we have p(φ)Φ = ± φ (because p(φ)Ί = ± I

for every #> € A(M)). f> being continuous, we have p(φ) φ = Φ for every 9? €
A0(M), i. e. A0(M) preserves the almost product structure φ.

If $p = &p, then in (4. 5) a2 = a3 = 0 need not hold, and the following

two elements and E, F in (4. 7) form a basis of ίΐ:

It is evident that these four elements satisfy the following relations:

(4 9)
GH= - HG = F, HF= - FH=G, GF= - FG = H.

Let ^ \ Λ:/1 be respectively the parallel tensor field deduced by parallel

displacement from G and H. Then (φ/1, ψ{

h, K/1) define on the manifold M a

structure of case III. Let K = # £ + bF + cG Λ dH, then the conditions for K

to belong to ffi+ or ft" are: a2 + £3 -f c2 - J 2 = 1 or - 1, Λδ = ac = tfd = 0.

From these relations we conclude that β + consists of it: E and elements of the

form bF + cG + d H with £2 + c2 — d2 = 1, and that ®~ consists of the ele-

ments of the form bF + cG + dH with b2 + c3 - d2 = - 1.



STRUCTURES WHICH ARE SIMILAR TO THE QUATERNION STRUCTURE 419

Since p(φ)'P+(l, l) C P+(l, l), p(φ)φ = ± I or p(^)φ = bφ + cψ + dK with

έ2 + c2 - <i2 = 1. But as ρ(<p)(± I) = ± / for every 9? € A(M), so /o(^)φ 4=

± I. Thus we have

1 0 )
1 ^ ) ψ . = auφ + a22ψ + Λ 3 2 ^ € P f(l , 1),

similarly we have

(4.10) p{ψ)κ = α 1 3 φ + ^ 3 ^ + Λ 3 3 ^ € P"( l , 1),

where

I
^ii + a\\ — all = 1>

α j + α2

2

2 - asϊ = 1,

We identify

P(<p) =

/ # u

1 #21

\#3l

# 2 2

# 2 2

# 3 2

# 1 3

# 2 3

# 3 3

Now, we denote by P * ( l , l ) the subspace of P ( l , 1) spanned by φ, ψ and K.

Then p(^)), for every ψ € ^4(M), is an automorphism of P*(l , 1). If ^ = f xφ

+ ?2^ + £3* and ^ = ηλφ + i7 2^ + ^ 3 ^ where £1? fa, f3, ^ 1 ? η2, η3 € i?, then we
have

ζ-v=ativi+£#2 - £3*73)/+(f 2*73 -

We call f 1^1 + ξ2η2 — ξ3η3 the scalar product of ζ and η, and denote it as (1,77).

And (f2*73 — f s ^ Φ + (£3*71 — ζιV*)Ψ — (£i*72 ~ £2*7iV is called the vector product

of ξ and η, and is denoted by ξ X η. Then the above relation is written

Since />(9?) is a homomorphism, p(φ)(ζ'η) = (p(φ)'£)'(p(φ)'V) for every £> €
A(M). So we have

Thus the linear transformation p(φ) leaves invariant the inner and vector products

in P * ( l . 1), so that ρ(φ) is a Lorenz transformation. And we have

THEOREM 4. 1. Let M be an almost product manifold. Suppose that 1°

the elements of its holonomy group |)/> are represented as (4. 2) in which Al9
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A2 are n X n matrices and irreducible on the complex field and that 2° $P

contains a subgroup φpφ [identity] which consists only elements of the form
(4. 3) where A is irreducible on the complex field. Then the almost product
structure is preserved by A0(M) except for the case when M is a manifold
with a structure of case III. In this case A(M) acts on the vector space
spanned by φ, ψ, K as a group of Lorenz transformations.

4. 2. We consider next the manifold whose group of holonomy ξ>F consists
of the elements of the form (4. 2) in which A19 A2 are both irreducible on real
field but reducible on complex field. Moreover, we assume that ξ)P contains a
subgroup $P4= {identity} which consists of elements of form (4.3) in which
A is irreducible on real field but reducible on complex field. Let TF and Tp be
the rc-dimensional subspaces of the tangent space TF at P which are left in-
variant by the group of holonomy ξ>F. The complexification (TF)

r of TF is the
direct sum of the respective complexification (Tp)c, (Tp)G of Tι

P and Tp. It is
known ([7] appendix) that if we choose suitable bases in (Tp)c and (Tp)°, then
the elements of the group of holonomy restricted to (TP)° or (Tp)° are res-
pectively represented by the matrices of the form

(B Ox

Vo B)'

where B is a complex matrix of degree m{n — 2 m), and B is the conjugate
complex matrix of B. With respect to such base in (TF)° the elements of the
group of holonomy are represented as

(4. 12)

in which the complex matrices Bx and B2 are both irreducible on complex field.
Any real linear transformation of TP may be represented as

(4. 13)

fBi

0

0

[0

0

β ,

0

0

0

0

B2

0

0

0

BJ

κ2

ΰ

κ2
Kι

L2

Hi

H2

Mx

M2

H2 \

H,

M2

M, 1

The conditions for the matrix (4. 13) to commute with every element of the
group of holonomy are as follows:
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(4. 14)

K1B1 — BiKi, K.2Bχ — BιK2>

HJB2 = B1H1, H2B2 = B1H2,

L-i Bι = B2 L19 L2B1 = B2L29

MXB2 = B2M19 M2B2 = B2M2.

As the group tpP contains φP (B± = B2 = B) as a subgroup, we have also the

following

(4. 15)
j HJB = BH19 H2B =Jί :=: BH19 H2B = BH29

B L2.

Since B19 B2 are irreducible on the complex field, if ξ)P = ξ)P the commutator

of the group of holonomy must be of the following form [7] with respect to a

suitable base in (TP)
C:

(4. lβ)

a<>Em

~CL2Em

where /β's may be zero. If some β 4= 0, then m = 21 and JL is of the following
form:

But if $ P contains ξ)P as a proper subgroup, then ci2 = /S2 = Λ3 = /β3 = 0. Because,

as H i = <x2Em satisfies HJB2 = fiiiϊi for Bx H= 5 2 , it follows that a2 = 0.

Similarly as = 0. Now if β2 4= 0, then det H2 + 0 and we have 5 2 = Hf^BxH2

= J5χ which contradict to the assumption that <£)P is a proper subgroup of <£)P

Similarly βz = 0. Thus if ξ)P contains &P as a proper subgroup, the elements

of the commutator algebra of $P are of the form :

(4.17)

0

0

0

0

0

0

0

0

If βp contains ξ)P as a proper subgroup and both factor G19 G2 of $P =

Gx X G2 are not the subgroup of real representation of quaternionian linear

group, then the elements of the commutator algebra of $P are of the form
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Em

0

0

0

0

0

0

0

0

cttE

0

(4.18)

We can choose adequate real base in (TF)
C, such that the following items hold

(i) If ξ)P contains $P as proper subgroup and is a direct product of two
subgroups of GL(n, R), none of which is the subgroup of the real representation
of quaternionian linear group, then the commutator algebra of ξ)F is spanned by
the Kronecker products of

1/\0 1/ VO - 1>

that is, the following four elements

IEm 0 0 0

(4.19)

o E

0

0

Vo

I °

0

Vo

Em

0

0

•Em

0

0

0

0

Em

0

0

0

0

-Em

0

0

EJ

0

£ m

0/

H =

\

IEm

0

0

Vo

f o
-Em

0

f °

0

0

0

0

0

~ -Em"

0 -

0

0

-Em

0

0

0

0

) '

o\
0

0

-EJ

0

0 EL o 1
(ii) If ξ)P contains ξ)P as proper subgroup and is a direct product of two

groups which are both the subgroup of real representation of quaternionian linear
group, then the commutator algebra of $P is spanned by the Kronecker products
of (m = 2 /)

Vo J Vo-i) W l t h U £ >
0 -E 0 0 J

o λ
that is the four elements in (4.19) and the following four elements:

0 0 \

n — Λ. n n n — ,τ. n
(4. 20)

0

0

0

0

-Jt

0

0

0

0

Jt

0

o i
0

0

-JJ

/, 0

0 -J, 0 0

0 0 -J, 0

V 0 0 0 Jι I
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0

0

0

0

0

0

0

0

0

0 \

0

Ji

o /

/ 0

Jι

0

\ 0

0

0

0

0

0

0

_ J

0 ^
0

-Jι

o 1

(4. 21)

(iii) If φP = ξ)P, then the commutator algebra of ξ>P is spanned by the
Kronecker products of

1 ON /I 0\ /0 IN / 0 IN . / £ m 0 \ / 0 -EM\ /J, ON /O J Λ

o i> (o -i> Vi o> U o) w l t H o E ) U. o > (o -J> U o>
In case (ii) the eight elements in (4.19) and (4. 20) satisfy the following

relations:

E = F2 = - G2 = - H2 = - P = - J2 = - K2 = - L\

F = FE = — GH = — HG = — 7*7 = — J 7 = — KL = — -LίΓ,

G = FH = GE = HF= - IK = - JL = KI = LJ,

H = FG = GF = HE = - IL = - JK = KJ = LI,

I = FJ=GK = HL = IE = JF= - KG = - LH,

j = FI=GL = HK = IF = JE= - KH = - LG,

A. = Γ Ju — — Lri = — l i d — 1\J z=: Jrl = JS.ΣL = L/Γ 9

Let R = aE + bF + cG + dH + el + fJ + gK + hL, then the conditions
for R to belong to ®+ or ®~ are as follows:

, (α + έ)2 - (c + d)2 - (e + / ) 2 - (g + h)2 = 1 or - 1,

(a + b)(c + d) = 0, (Λ + b) (e + f) = 0, {a + b)(g + h) = 0,

ab — cd - ef— gh = 0,

ac + bd = 0, ae + bf = 0, ag + bh = 0.

Solving these equations,we get for case (ii) the following results : β<+ consists
of ± E and db F. ft" consists of cG i- dH + el + fJ + gK + hL with α* +
ef+gh = 0 and c2 + J 3 + e2 + / 2 + ^2 + h2 = 1. Then it follows that in such
a manifold the almost product structure φ (which induces F on the tangent
space) is left invariant by A0(M), but none of the almost complex structures is
left invariant.

Let S = aE + bF + cG + dH, then the conditions for S to belong to B+

or ffi" are as follows:

(a + b)2 - (c + d)2 = 1 or - 1,

{a + b){c + d) = 0, ab - cd = 0, ad + be = 0.

(4. 22)

(4. 23)
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Solving these equations we get for case (i) the following results:
β + consists of ± E, ± F. fir consists of ± G, ± H. It follows that in this

case the manifold has a structure of case II and all the structures φ, ψ, K are
left invariant by A0(M). Thus we have

THEOREM 4. 2. Assume that the group of holonomy ξ)P of the manifold
is the direct product of two subgroups of GL(n, R), each of which is irre-
ducible on real field but reducible on complex field. Moreover we assume
that ξ)P contains a subgroup ξ>P whose elements are all of the form (4. 3) in
which A is inreducible in real field but reducible in complex field. Then if
none of the factors of the direct product is the subgroup of real representation
of quaternionian linear group, the manifold has a structure (φ{

h, ψt\ κt

h) of case
II and all of φ, ψ and /c are preserved by A0(M). If both of the factors of
the direct product are subgroups of real representation of quaternionian linear
group, then the manifold has a structure defined by seven tensor fields deduced
from elements in (4. 21) by parallel displacement. In such a manifold the
almost product structure φ {deduced from F) is left invariant, but almost
complex structures are not.

4. 3. Finally we consider the manifold whose group of holonomy is the
direct product of four subgroups of GL(m, R\ each of which is irreducible on
complex field. Then the elements of the group of holonomy ξ)P can be repre-
sented as

(4. 24)

where A, B, C, D are matrices of degree m. Moreover, we assume that φP

contains a subgroup ξ>P=4= fidentity] whose elements are all of the form:

A 0 0 0

0 A 0

0 0 A

0 0 0

The condition for the matrix :

/Λ Qx
Rτ Sτ

IA

0

0

\0

0

B

0

0

0

0

C

0

0

0

0

D

(4. 25) (A : irreducible on complex field).

(4. 26)
Ps

\Rs s3 sj



(4. 27)
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to be a commutator of the group ξ>P are as follows:

APτ = PXA, AQτ = Q A AP2 = P2C, AQ2 = Q2D,

ij/vj — 2vχ/i, x5Oj — OiJD, x5Xv2 — xv2L^, JDkJ2 — iJ2LJ9

CP3 - P3A, CQ3 - Q3J5, CF4 - P4C, CQ4 = Q,D,

DR3 = Λ3A, DS3 = S3B, DR, = i?4C, D54 = 54D.

As «jpp contains ^ P as subgroup, the above relations also hold good when we put
A = £ = C = D in them. Since each factor of the direct product of £)P is
irreducible on complex field we conclude that the commutators of ξ>P = ξ)P are
of the following form:

' OL\Hdχ(i /O^Jlίjfi CL2 *-JΪΛ M2 m

, N JiEm δ-iEm, 72£«ι S2Em

(4. 28)

\ y3Em S3Em

If the group tpP contains merely the elements of the following form (in this

case we denote ξ>P = $P):

IA 0 0 0 \

0 B 0 0

0 0 A 0

\ 0 0 0 B I

then the commutators of ξ)P = ξ)P can be represented as

(4. 29) (A, B: irreducible on complex field),

(4.30)

CtiEm

0

a3Em

0

0

δi£»

0

B3En

cc2Em

0

a,Em

0

1,

δ2

Bt

0

£ »

0

If $P actually contains elements of the form (4. 24) in which any two of A, B,
C, D are distinct from each other, then the commutators of $P are of the follow-
ing form:

(4.31)
0

0

0

0

BiE.

0

0

0

. 0

CtiEm

0

0

0

0

Bd

Then the commutator algebra of ξjP is spanned by the Kronecker products of
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/I 0\ /I 0\

Vθ 1/ M) - 1 /

that is, the following four elements:

C.J.HSϋ

Em

E =

(4.32)

G =

IE*
0

0

^ 0

\Em

0

0

10

0

Em

0

0

0

-Em

0

0

0

0

Em

0

0

0

EM

0

0 1
0

0

EJ

0

0

-EJ

0

a.
o
o

o
o

o
o

-Em

0 -EJ

0

0

0

In case when φP contains merely the elements of the form (4. 29), i. e.
when $P = φp> then the commutator algebra of ξ)P is spanned by the Kronecker
products of

(1 0\ /I 0\ /0 1\ /0 - 1 \ . _ /Em 0 \ /J5» 0 \

(o i)' (o-i)' d o)' d o) W l ώ (o J ' (o - J
that is, the four elements in (4. 23) and the following elements:

(4. 33)

G =

i o
0

ô

Ό
0

Em

\0

0

0

0

Em

0

0

0

-Em

Em

0

0

0

Em

0

0

0

o\
Em

]

0

0 /

0 \

0

0 /

=

/ 0
0

Em

\o
/ 0

0

Em

\ o

0
0

0

Em

0

0

0

-Em

-Em

0

0

0

-Em

0

0

0

0 \
-EJ

0

o^
o^
Em

0

oy
If ξ)P = ξjp> then the commutator algebra of φP is spanned by the Kronecker
products of

/ I 0\ / I 0\ /0 1\ /0 - 1 \ ./EM0\(Em 0 \ / 0 £ » \ / 0 JSm\

io i>(o-i>Vi oXi o)w l t hL J J U -&.>U. o>L& o>
The eight elements in (4. 23) and (4.33) satisfy the following relations:

E = F* = G2 = H1 = Έ3 = - F 2 = G2 = - H\

F = FE = GH = HG = EF = - FE = GH = - HG,
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G = FH = GE = HF = EG = - FH = GE = - HF,

H = FG = GF= HE = EH = - FG = GF = - HE,

E = - FF= GG= - HH = EE = FF = GG = HH,

F = - FE = GH= - HG = EF = FE = GH = HG,

G = - FH=GE= - HF = FG = FH=GE = HF,

H= - FG = GF= - HE = EH=FG = GF = HE.

Let R = aE + bF + cG + dH + 7E + bΊΓ+ C G " + dH, then the conditions for
R to belong to ®+ or β" are as follows:

(4.35)

(a + c)2 + (b + d)2 + {a + cf - (b + d)2 = 1 or - 1,

{a + c)(b + d) = 0, (α + c) (a + 7) = 0, (a + c)(b +d) = 0,

αc + bd + a c — bd = 0,
v ab + cd = 0, αα + cc = 0, αδ + cd = 0.

By solving these equations we have the following results:

££+ consists of db E, ± G, έ F + dH + ZΈ + cCf + έ F + J H with (b + c)2

+ όΓ + 7)2 - ( ? + J)2 = 1, ω + α7-£Γ=0 and ±—Ezb^G + 2(F ± H)

+ a(E± G) + KF ± H) with b2 Z2 -ΐ2^ —.
4

" consists of bF + dH

αίf+ 7^+ &F+ 5 H with {b + j)3 + (ί + 7)3 - (? + 2)2 - - l, ω + Z7-
bd = 0. It follows that if tpF = |>P the manifold has seven structures deduced
from (4. 34) by parallel displacements, but none of the almost product structures
or almost complex structures is preserved by A0(M) except the one induced by
G.

Let S = aE 4- bF + cG + dH, then the conditions for S to belong to ®+

are as follows:

(4. 36)
( (a + c)2 + (* + J) 2 = 1, (α + c) (b + d) = 0,

I ac + bd = 0, α£ + C(i = 0.

By solving these equations we conclude that ®+ consists oί ±E, ±:F, ±: G,

± H, ±—(E + G)± — (F - H) and ± - ^ ( F + H) ± — ( £ - G ) . Thus if £ P

actually contains elements of the form (4. 24) in which any two of A, B, C, D
are distinct from each other, then the manifold has a structure of case IV
defined by φ, ψ, K (induces respectively F, G, H in TF) and all of these
structures are left invariant by A0(M). Thus we have



428 c.j. Hsu

THEOREM 4. 3. Assume that the group of holonomy ξ>P of the manifold
is the direct product of four subgroups of GL(m, R) each of which is irre-
ducible on complex field. Moreover we assume that ξ)P contains a subgroup
$P whose elements are all of the form (4. 25). If ξ)P contains elements of
the form (4. 24) in which any two of A, B, C, D are distinct from each
other, then the manifold has a structure of case IV and all of φ, ψ and K

are left invariant by A0(M). If $F'-= &P, then the manifold has seven stru-
ctures which induce in TP the transformations in (4.34), but none of the
structures is left invariant by A0(M) except K.

In concluding, I wish to express my profound gratitude to Prof. S. Sasaki
for his kind guidance and suggestions.
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