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1. Introduction. In a previous paper,υ we have defined for some odd
dimensional manifolds two kinds of structures which we have called (φ, ξ, η)
structure and (φ, ξ, η, ̂ -structure. The latter is a (φ, ζ, ^-structure with a positive
definite Riemannian metric g which stands in a notable relation with the (φ, ξ, η)
structure. These structures are remarkable in the sense that any differentiable
manifold with (φ, ξ, ^-structure is an almost contact manifold and any almost
contact manifold admits (φ, ξ, η, ^-structure.

In this paper, we shall study two kinds of structures for differentiable mani-
folds of any dimension, the first one ((φ, "ψ1)-structure) may be regarded as gene-
ralizations of almost complex structure, almost product structure and (φ, ξ, η)
structure, and the second one ((φ, ψ, </)-structure) may be regarded as generali-
zasions of almost Hermitian structure, almost product metric structure and (φ, ζ,
η, ^-structure. We shall confine ourselves only to algebraic considerations, analytic
considerations will be published in later papers.

2. (φ, ^-structures.

1°. Let Mn be a differentiable manifold of dimension n. Suppose first that
there exist over Mn two tensor fields φ] and Vό 2 > of type (1, 1) which satisfy the
following conditions:

(2-1) rank |φ}| =/,

(2.2) rank W\ = m,

(2. 3) ΦM = 0,

(2-4)

1) S.Sasaki, On di f ferent iable manifolds with certain structures which are closely related
to almost contact structure I, Tόhoku Math. Journ. 12(1960) pp. 459-476.

2) We assume, unless otherwise stated, that the indices run the fol lowing range of inte-
gers :

ί,Λ^,o,/8,7 = l,2, ...... ,w( = / + w),
a,b,c=l,2, ...... ,/,
p,qίr=l + \, ...... ,n
Λ = l,2, ...... ,/', Λ* = /'+A,
E,F=l, ...... 9ll9 H, *=/! + !, ...... ,/( = *!+*,)

M,N=l + l, ...... ,1
S,T=l+m1+l9 ...... ,n.
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(2.5) εφ]φl + ε'V&ί = si,

where /, w are non negative integers such that

(2. 6) l + m = n,

and 6, 8' are + 1 or — 1. In such case we say that the manifold Mn in consi-

deration has a (φ, ty)-structure of type (sgn £, sgn 6') or Mw is a differentiable

manifold with a (φ, ̂ -structure of type (sgn £, sgn £'). From our definition we see

that if a differentiable manifold Mn admits a (φ, ψ1)-structure of type (sgn 6, sgn

£'), then it admits also a (•— φ, ̂ -structure, a (φ, — ̂ -structure and a (— φ, — ψ)-

structure, all of type (sgn £, sgn £'). Hence, we identify all of these structures.

2°. First we shall prove the following

THEOREM 1. Suppose Mn be α differentiable manifold with a (φ, VO'

structure of type (sgn £, sgn £'). T/^TZ zrc et ery sufficiently small coordinate

neighborhood U of Mn, we can find frames (ίi, ξ$) (a = 1, , I; p = I + 1,...

...,n) such that

(2.7)
\ Φ'j
' .M -

where (rft, η*) are the inverse matrix of (£i, f {,) Λ^J λ?, K are scalars such

that

C }

I

PROOF. As the rank of |φ}| is equal to /, there exist m linearly inde-

pendent vector fields over U which are solutions of the equation

(2. 9) ψff = 0.

Let us denote any such vector fields by ft and take n vector fields ξ!

a, ξp over

U so that they are linearly independent. If we put the inverse matrix of (£«> ft)

by (ί?7, rf\ then φj can be written as

Φ'j = x?&»5.
By virtue of the construction, we have

(2. 10) φ'& = 0.

Therefore, we can easily see that λp = 0 and hence we get

(2. 11) Φl = λίfiW + λ«X.

Next, ψ * can be written also as
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*5

If we put this into (2. 3), we get

= o.
However, φ^ξl 's do not vanish for any value of a, so we get μfyrfe = 0. Hence.

we get μ% = 0. Therefore, 'ψ'j has the following form :

(2. 12) "ft = /ijfttf + /*&*?•

Thirdly, putting (2. 11) and (2. 12) into (2.4), we get

ΨiΦί = (XX + Kλ?)^ = 0.

Hence, we see that the relation

(2. 13) μi\l + μfrl = 0

holds good.

Finally, putting (2. 11) and (2. 12) into the left hand side of (2. 5), we get

eΦiΦl + e'Vftt = fiλίλϊf i^s + ε't
Comparing this with

S l _ tί^αί
* ~ bα^fc,

we see, by virtue of (2. 5), that the relations

θλ?λδ

c + £ »? = 0

hold good.

Now, we take another frame ζl

Λ which are given by

~β _ \atί i x p f c i
ζb — Λ-b^α "Γ Afep,

(2.15)

Then, the inverse matrix rfi of £L is easily seen to be

The equation (2. 15) can be solved with respect to fL giving

^λ»δfα ^

and the equation (2. 16) can be solved with respect to η* giving
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If we put (2. 17) and (2. 18) into (2. 11) and (2. 12), we can easily see that the
relations

(2 19)( }

hold good, where λ?, /*5 are scalars over U such that

Consequently, if we change our notations and write ξl

U9 η" instead of £*, ηf, we
see that our theorem is true. Q. E. D.

We call the frame such that the tensors φj, ̂  ta^e the form (2. 7) satisfying
(2. 8) an adapted frame of the first order.

REMARK 1. The above demonstration shows that the conditions (2. 2) and
(2. 6) follow from the conditions (2. 1), (2. 3), (2. 4) and (2. 5).

REMARK 2. From (2. 8) we see that if 8 = — 1, then / is even and if

£ = — 1, m is even,

3°. Suppose that Mn be a differentiate manifold with a (φ, ̂ -structure.
Then, at every point P of Mn, the set of vectors such that

(2. 20) #? = 0

is an m-dimensional vector subspace Vm spanned by ξf

p at P. In the same way
we can see from (2. 2), that the set of vectors at P such that

(2. 21) *5K = 0

is an /-dimensional vector subspace Vt spanned by £α Hence, Vt and Vm are
disjoint and complementary. In other words, if we denote the tangent space at
P by TP, then

(2. 22) TP = Vt © ym.

The correspondence P € Mw to VL at P and the correspondence P € Mw to Vm

at P define the so-called /- and w-dimensional distributions over Mn. We call
them DI and Dm. Then we get the following

THEOREM 2. Suppose Mn be a differentiable manifold with a (φ, ̂ -stru-
cture. Then, the two distributions Dt and Dm are disjoint and complementary.
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Adapted frames of the first order in a coordinate neighborhood U are nothing

but frames whose first / vectors span the vector space Vt of DL and whose last m

vectors span the vector space Vm of Dm at every point of U.

4°. Now, we consider a transformation of adapted frames of the first order

i
fcj ^.Ίfcί

T< = K&

where a and β are non-singular matrices. Then, it induces a transformation of

η of the form

(2. 24)

where 'a and 'β are inverse matrices of a and β respectively. Putting (2. 23)
and (2. 24) into

Φί = XSϋ

we see that

(2. 25)

which shows that λf s transform like components of a mixed tensor under trans-

formations (2. 23). Hence, if 6 = — 1, we can take a so that the matrix λ takes
the form

(2. 26)
\ Ei 0 /

where E\> is a unit matrix of dimension /' = 1/2. In this case ψ} reduces to the
form

where A runs over 1,2, , /' and A* = A + ϊ. If we take β arbitrary, then

with respect to the frame (U, ξl

A*, ξlp) thus determined, φ has the following com-
ponents :

(2. 28)
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Especially, we can see that the characteristic roots of the matrix φ are equal to
0, i and — i with multiplicities m, I' and / respectively.

On the other hand, if £ = -f 1, then the characteristic roots of the matix λ
are equal to — 1 or 4- 1. If multiplicities of the roots — 1 and 4- 1 are lτ and

12 (Ii + 12 = I) respectively, then we can take a so that the matrix λ takes the
form

(2. 29)
0

where Eii and E^ are unit matrices of dimensions /x and /2 In this case φ takes
the form

(2. 30) Φ/ = - ~ξ!Eηf + Ffl^f

Even if we take β arbitrary, with respect to the frame (|#, ξ'κ, ξp) thus determined,
φ has the following components:

0

(2.31) ΦH o

0

o

0

Similar facts hold good for
the following

too. Hence, summarizing the above results, we get

THEOREM 3. Suppose Mn be a differentiable manifold with a (Φ, ^-stru-
cture of type (sgn £, sgn £ ). Then we can take frames over every coordinate
neighborhood U so that φ and ψ take the following forms :

Φi = - ξLAηf + ξ**ηf, f o r S = - l

= - Άηf + Άηf, for £ = + 1
(2. 32)

YJ

= - βtff + ξsvf. for £' = + 1

REMARK. If MM, is a differentiable manifold with a (φ, ̂ -structure of type
( —, 4-) such that rank of \Y}\ is equal to 1, then with respect to adapted frames
of the first order in a coordinate neighborhood U of Mn, ψ^ may take the form
ξ^j as (φ, ̂ -structure is identical with (φ, — ^-structure. Hence, the conditions
(2. 1) to (2. 6) reduce in this case to

(2.33)

rank \φ]\ =2Ϊ, n = 21' + 1
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and trivial equations. These combined with f*^ = 1 are nothing but the defining

equations of the (φ, ζ, ^-structure for M2i'+1. However, contrary to the case of

(Φ, £> ^-structure, our vector fields ξl and ηό are defined locally. They do not in

general constitute a vector field over M2l'+1. Hence, the set of differentiate ma-

nifolds with (φ, ̂ -structures of type ( — , + ) such that the rank of | Ψ] is equal

to 1 is somewhat wider than the set of differentiable manifolds with (φ, ξ, η)-
structures.

Formulas in (2. 32) are canonical forms of the tensors φ and ψ. We call any

frame with respect to which φ and ψ take such canonical forms an adapted frame

of the second order of the given (φ, ψ)-structure.

5°. Now, the tensor fields φ and ψ define linear maps of tangent vectors at

every point of M n by v — > φ v and v -» ψ* v.

THEOREM 4. Suppose Mn be a differentiable manifold with a (φ, ^-stru-

cture and Vl9 Vm are associated vector spaces at any point P of Mn. Then

(i) φφ v = 8 vy ' for v € Vt,

(ϋ) ψ ψ1 v = $ v> for v € Vm,

(iiΐ) φψ v = 0, ψφ v = 0, for v € TP.

PROOF. If v €L Vh then ψ1 v = 0 and the converse is also true. In this case

we see easily that

φφv = ε(8 -

Hence (i) is proved. In the same way we can prove (ii). (iii) follows immediately

from (2. 3) and (2. 4).

THEOREM 5. The linear maps v -> (φ + ψ)v and v -> (φ — φ)v of tangent

spaces are non-singular.

PROOF. By virtue of (2. 3), (2. 4) and (2. 5), we can verify that

(Φ + Ϋ) (€φ + £» = £ ΦΦ + S'Ή0 = δ.

Hence, φ + ty and 6φ + S'ty are non-singular and inverse to each other. Simi-

larly, φ — 'ψ* is non-singular.

3. Associated Riemannian metric g.

6°. In this section we study if we can associate a positive definite Riemann-

ian metric g to any differentiable manifold Mn with a (φ, ̂ )-structure or not.

We begin with a lemma.
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LEMMA 1. Suppose Mn be a dίfferentίable manifold such that there exist

two distributions DL and Dm of dimensions I and m which are disjoint and

complementary. Then there exists a positive definite Riemannian metric h with

respect to which the vector spaces Vt and Vm of the distributions at every

point of Mn are orthogonal to each other.

PROOF. First we introduce an arbitrary positive definite Riemannian metric

/ over Mn. Suppose \Ua\ be a sufficiently fine open covering of Mn by coor-

dinate neighborgoods.

Now we take / (resp. m) orthonormal vector fields ξl

a (resp. ζ'p) over UΛ with

respect to / so that they span the vector space VL (resp. Vm) of the distribution

DI (resp. Dm) at every point of Ua. Of course, ξl

a and ξ j, are not orthogonal to

each other in general. We define

(s. i) AM(t/.) = Σ, ftft + Σ ?&

On the other hand, let Uβ bs another coordinate neighborhood which belongs

to \U<χ} such that UΛ Π Uβ is not empty and ξl

a, ξp are vector fields over Uβ

defined in the same way as above. Then, it is evident that

bp == / j Upqζq

9

hold good over UΛ Π Uβ, where (uab) and (upq) are orthogonal matrices. We can
easily verify that

holds good over Ua Π Up. This shows that the set of tensor fields htj(Ua\ UΛ

ζ [ U a ] , constitutes a global tensor field over Mn. The inverse Λo of the tensor

field hl}, then determine s a positive definite Riemannian metric over Mn. We can

easily verify that, with respect to h =. (hi3\ the two vector spaces Vt and Vm are

orthogonal at every point of Mn. Q. E. D.

LEMMA 2. With respect to the metric h over Mn defined in the proof

of Lemma 1, the relation

(3. 2) ht&ψί - 0

hoi ds good.

PROOF. Let U be an arbitrary coordinate neighborhood of Mn. We take

frames over U so that orthonormal vectors ζl

a (resp. ξl

p) with respect to the metric

h span the vector space V, (resp. VOT).
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On the other hand, as (£«, ξp) are adapted frames of the first order, we

have

Hence, making use of the fact

hijξa&p — 0,

we can easily verify that our Lemma is true.

7°. Now let us prove one of our main theorems.

THEOREM 6. Suppose Mn be a differentiate manifold with a (φ, ^-stru-

cture of type (sgn £, sgn £'). Then, there exists a positive definite Riemannίan

metric g over Mn such that the relations

" " =0,

a*M =
(3.3)

hold good.

PROOF. We put

(3. 4) <7

Then, first by virtue of (2. 3\ (2. 4) and (3. 2), (3. 3\ is easily seen to be true.
Secondly, we see by virtue of (2. 4) and (2. 5) that

In the same way, (3. 3)3 can be proved.
Thirdly, we see by virtue of (3.3\3 and (2.5) that

+
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Hence, (3. 3)4 is proved. Q. E. D.

We shall call the Riemannian metric g whose existence is insured by Theorem
6 the associated Riemannian metric of the (</>, ^-structure in consideration. And
the differentiable manifold with the (φ, ̂ -structure and its associated metric g

is called a manifold with a (φ,^, g)- structure. It is an analogue of the almost
Hermitian manifold for almost complex structure.

THEOREM 7. Suppose Mn be a differentiable manifold with a (Φ,ψ,g)-
structure. Then, tensor equations

( gtS& +

1 ί*X#-
hold good.

PROOF. By virtue of (2. 3), (2. 4) and (3. 3)4, we can easily see that

In the same way (3. 5)2 can be proved.

THEOREM 8. Suppose Mn be a differentiable manifold with a (φ, -ψ , g)-
structure, then the two distributions Dt and Dm are orthogonal with respect
to the metric g at every point of Mn.

PROOF. Take a point P of Mn and ξl

a are vectors which span the vector

space Vι of DL at P and ξl

p are vectors which span the vector space Vm of Dm at
P. Then, by virtue of (3. 3)4,

= 0,

which shows that VL and Vm at P are orthogonal to each other. Q. E. D.

4. Associated tensor fields.

8°. Suppose Mn be a differentiable manifold with a (φ, ψ1, ̂ -structure. If we
put

(4. 1) Φn = glhφj,

then, by virtue of (3. 3)1? we get

(4. 2) Φu = 6ΦH.

Such a tensor will be called as ^-symmetric with respect to its indices. Of course,

£- symmetry means symmetry if £ = -f 1 and skew- symmetry if 8 = — 1. In the
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same way, if we put

(4- 3) ψ« = gtM,

then, by virtue of (3. 3)2, "ψy is θ'-symmetric, i. e.

(4. 4) *« = fi>jt.

We can solve (4. 1) and (4. 3) with respect to φ] and ψ1) getting

(45)

Now, we put

(4.6) 4fi

then

(4.7) ••• Φίj = εφj\

So, φu is an ^-symmetric contravariant tensor fields. In the same way, if we put

then we get

(4. 9) tyl* = S'ty*1.

We call four tensor fields φίj? 'ψ^ , φ°, ̂  the associated tensor fields of the

(Φ, ψ1, gr)-structure in consideration.

THEOREM 9. Let φυ, ψij9 φ°, ψίj be associated tensor fields of a dif-

ferentίable manifold with a (φ, ψ*? g)-structure. Then, the relations

f»i/shj? = o,
yhφhί = o

hold good.

PROOF. By virtue of (4. 6)2, (4. 3) and (2. 3), we see that

Hence (4. 10)ι is proved. In the same way, we can prove (4.10)2
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9°. In the next place, we shall study the converse problem. We assume that
M n be a differentiable manifold with a £-symmetric tensor field φυ and £'-sym-
metric tensor field ψίj such that

{ rank | φtj \ = I,

rank \ψίj\ = m, (I + m = n)

VhΦhί = 0

hold good. And we shall study if we can find a positive definite Riemannian
metric g such that the tensor field

Φj = Λ, tj - *'Vw

and g define a (0, Ψ, ^-structure over Mw of type (sgn £, sgn £) or not.

First, we introduce an arbitrary positive definite Riemannian metric h over
Mn. Then, φίhh

hlcφkj is a symmetric tensor field over Mn. Hence all roots of the
characteristic equation

(4.12) l*«*Aw*y + f > A u l = 0

are real. As \φu\ is of rank /, 0 is a root with multiplicity m. It is easily seen
that all other roots have the opposite sign to £.

Now, we denote all distinct non-zero roots by pί9 p2, ...... , ρr, their multi-
plicities by μl9 μz, ...... 9μr and the characteristic spaces corresponding to the roots

0 and pl9 ...... ,pr by V0> VΊ, ...... 9Vr respectively. Then, we see that

dim Vo = m, dim VA = μ^9 (λ = 1, ...... , r)

PΊ + /"2 + ...... + μr = /•

As is well known, all different characteristic spaces are orthogonal to each other
with respect to the metric h.

In the same way, we take up the symmetric tensor field ̂ h^^ and consider
the characteristic equation

(4.13) l^ίΛAΛfc^ + ̂ ί j |=0.

Then, it has 0 as a root of multiplicity /. Other roots are all real and they have
the opposite sign to £ . We shall denote all distinct non-zero roots by <r1? σ2,...
...,<rs, their multiplicities by vl9 v2> ...... , va and the characteristic spaces of
characteristic covectors corresponding to the roots 0 and <r1? cr2, ...... , σs by Wζ9

Wΐ, ...... , Wf. Then we see that

dim Wo* = /, dim WX = vλ, (λ = 1,2, ...... ,5)

vl -f v2 + ...... 4- vs = m
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and W*9 ...... , Wf are orthogonal to each other.

10°. Now, we consider a linear map of the tangent space TV at a point P
of Mn to its dual space T* defined by

(4. 14) h : X1 - *• htίX
J.

Then, we get the following

LEMMA 3. Let hV\ (λ = 1, ...... , r) be the image of the vector space Vλ

under the map h, then

(4.15) WS = hV,® ...... ®hVr.

PROOF. Suppose that X € Vκ (λ = 1, 2, ...... ,r fixed), then

φίhh
hJcφkjX

j = - pJiuX*.

By virtue of the last equation and (2. 4) we see that

Vhhhl&
kj(- P,hjmXm)

= ^hh^JΦj3th
aβφβyX

y = 0.

As ρλ 4*0, this shows that hX € Wj, hence ΛFλ d M70*. Therefore, Λ^φ
•••φ AV r = W* However, taking account of the dimensions of W* and λl/Ίφ

" ®hVr> we see that the equality sign holds good. Q. E. D.

LEMMA 4. 77^ tangent space TP at any point P of Mn decomposes into
the form

(4.16) TP=V,® ...... ®Vr®hΓ*WΪ® ...... @h-*WΪ,

and any two of these component spaces are orthogonal to each other.

PROOF. Quite analogously to Lemma 3, we can prove that

As Wΐ, ...... , Wf are orthogonal to each other, f Γ l W f , ...... , h~lWf are orthogonal
to each other too. On the other hand, VQ φ V\ φ ...... φ Vr is a decomposition
of the tangent space at any point of Mn. So our assertion is true. Q. E. D.

Now, suppose {Ua\ be an open covering of Mw. We take frames ξτ ....... , ξ n

over Ua such that

ίi, ...... ,f/*! span VΊ,

span
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&+ι, ,fc+yι span Λ^WΪ,

145

span

As the terminology which is used only in this section, we call such frame an
adapted frame. Then, with respect to adapted frames, the components of the
tensor field h have the form :

(4.17) h = hr

\ 0

° \

I
hrλsl

where hl9 ...... , hr, hr+lί ...... ,hr+s are matrices of order μl9 ...... ,μ randiΊ, ...... , vs

respectively.

11°. To find the form of components of φi} with respect to adapted frames,

we consider the linear map X -> X of the tangent space defined by

(4. 18) X1 = trΦuX*.

LEMMA 5. If X € Vκ (λ = 1, ...... , r), then X € FA

PROOF. By virtue of

(4- 19) ΦiΛh
MφuX} = - phuX',

we can easily verify that

= Φ^Ά\~ PJιkmXm) +

= 0.

LEMMA 6. If X € Fλ (λ = 1, ...... , r), then

(4. 20) X1 = - pλX
J.

PROOF. By virtue of (4. 19), we see that

X* = h»φhl(hilφlmXm)

= hl\- p,hΛmXm)

Q. E. D.

Q. E. D.
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Now, we put components of the tensor φ with respect to adapted frames in

the form

Φll ............... Φlr+

............... Φr+s r + s

where φuυ(u,v = 1, ...... , r) is a (μu) μ^-matήx, Φr+Ut9(u = 1, ...... , s, v = 1,...

...,r) is a OM, /v)-matrix, Φ«>r+β(« = 1> ...... > r> ̂  = 1> ...... > •*) is a (X, ^-matrix,
and φr+u^r+v(u,v = 1, ...... , s) is a (z>w, z/J-matrix. Then, we see that

kr+sΦr + si ......... hr+sΦr + sr+s

If we assume that X € V\, then its components with respect to adapted
frames are of the form (X19 0, ...... , 0), where X1 is a vector with μt components.

So, in this case the vector X = A"1 φX has components (hΓlΦnXιy h^ΦziX^-"

•--, hr+sΦr-^ siXi)- However, as X € F1? we see that

h-tφuXi = 0, (λ = 2, ...... , r + 5).

Since Xl is an arbitrary vector of V19 we get

021 = Φsi = ...... = Φr + sl = 0.

In the same way, by considering vectors of Vz, ...... , Vr, we get

Φuv = 0 (u=t=v; u, v = 1, ...... ,r),

Φr+u,v = 0 (u = 1, ...... ,5, V = 1, ...... , r).

LEMMA 7. // r € A-^O, = l, ...... ,s\ then

(4. 21) φwy' = 0.

PROOF. By assumption Y* = AF € W?, so

By virtue of this and (4. 11)3, we see that

- <r*Φ»YJ = Φ^hαβ^Π} = 0,

which is to be proved. Q. E. D.

Now, suppose Y € h~lW? φ ...... φA'1^*, then the components of Y with

respect to an adapted frame have the form (0, ...... , 0, Yr+τ, ...... , Yr+s\ where

Yr+u(u = lί ...... ?^) are vectors with vu components. Hence, (4.21) shows us that
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Φu r+« = 0, φr+υ r+v = 0,

where u = 1, , r, and v = 1, ,5. Consequently, we see that φ has the
form

(4.22)

o

Φr

0 o /
with respect to adapted frames, where <£λ(λ = 1, , r) is a £-symmetric /*λ

matrix.

To find components of -ψ1 with respect to adapted frames, we consider the
linear map

(4. 23) Yf = *V,Y?

Then, we can easily prove lemmas analogous to Lemmas 5,6 and 7. Making use

of these facts, we can similarly prove that the components of ψ with respect to

adapted frames have the following form :

0 0 \

(4. 24)

o *•

where ψ Xλ = 1, ,s) is a δ'-symmetric v/,-matrix.

12°. Now, making use of the decomposition of the tangent spaces stated in

Lemma 4, let us introduce a new Riemannian metric g over M" by

(4. 25)

where we have put

(4. 26)

\ 0 ffr+t

(v = 1, ...... ,5).
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As characteristic roots and characteristic spaces are independent upon the choice
of coordinate neighborhoods, the Riemannian metrics defined thus for every coor-
dinate neighborhood of the covering \U»\ constitute a single globally defined
Riemannian metric over Mn.

We put

(4. 27) $ = g^j.

Then, φj is a globally defined tensor field over Mn too. By virtue of (4. 22) and
(4. 25), we see that φ] has components of the form

(4. 28)

0

0 \

0

with respact to adapted frames. We now define a modified linear map of (4. 18)

by

(4. 29) X* = g^ΦuX*.

If we assume X € VΊ, then with respect to adapted frames, we see that

1 vu

Hence, we have

This shows that

X" =

Similar formtilas hold good for matrices g^φfa = 1, ,r) too. Hence, we see
that

(4. 30)

0 \

o I

Finally, we put
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(4. 31) ψ j = 1^gu,

then, •ψ'1, is a globally defined tensor field over Mn. And, in the same way as

above, we can prove that (̂  j) and (ψjψί) have the forms

(4. 32)

/ 0 0 \

0

and

(4. 33) j K) =

/ °

0

\

ε'

0

0 \

0

• β

ε' ι

with respect to adapted frames.

Combining (4. 30) and (4. 33), we see that

(4. 34) εφjφί + £'V3Ψί = δί

holds good with respect to adapted frames. However, as (4. 34) is a tensor equa-
tion, it does hold for any frame, especially for natural frames. We can easily

prove, by virtue of (4. 28) and (4. 32) that

(4. 35) Φffik = 0, ψjφί = 0.

As the ranks of \φj\9 | V r 5 l are ^ an(l m respectively, we see that our φ] and ψj
give a (φ, ̂ -structure of type (sgn £, sgn 6') to Mn.

We can easily prove that

(4.36) ^ = rf=*rf

and

= o.

Finally, as we have shown in the proof of Theorem 6, the relation

gvφϊiφί + gvΫW* = g™

follows from (4. 35) and (4. 36). Consequently, we get the following

THEOREM 10. Suppose Mn be a differentiable manifold and there exist

^'symmetric tensor field Φ^ and ε' -symmetric tensor field ^i} such that



150 S. SASAKί

rank \φiΛ\ = /, rank | ψίj\ = m, I + m = n

and

VΛΦΛ) = o
hold good. Then, we can find a positive definite Riemannian metric g such
that the tensor fields

<K = 9ιnΦ*}, tj = ̂ V,
and g define a (φ, ψ, g)-structure over Mn of type (sgn 8, sgn £').

COROLLARY. Suppose Mn be a differentiate manifold and there exists
B- symmetric tensor field φtj over Mn such that

rank \φtί\ = I, I <^n.

Then we can find a symmetric tensor field ψί} such that

rank [ ̂ ίj r | = m, m = n — I

and a positive definite Riemannian metric g so that

Φl = giJlΦM, iΉVΛ^
and g define a (φ, ψ, g)- structure of type (sgn £, + ).

PROOF. By assumption, at any point P of Mn, the set of vectors such that

φti? = o
span an m-dimensional vector subspace Vm(P) of the tangent space TP at P.
Now, suppose h be a positive definite Riemannian metric h over Mn and take
m orthonormal vectors |j, with respect to the metric h and put

When P moves over M n, it is evident that ^u's constitute a globally defined
symmetric tensor field over Mn. We can easily verify that

rank | ̂  \ = m,

VhΦv = 0.

Hence, by virtue of Theorem 10, we can conclude that our assertion is true.
Q. E. D.

5. The structure groups of the tangent bundles of manifolds with
(Φ, ̂  ^-structures.

13°. The structure group of the tangent bundle T(MW) of a differentiate
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manifold Mn is in general the general linear group GL(ri). However, we can
prove the following

THEOREM ll. Suppose Mn be a differentiate manifold with (Φ9^,g}
structure of type (sgn 8, sgn £'). Then, the structure group of the tangent
bundle T(Mn) is reducible to the following one:

(i) C7(//2) X U(m/2) if 8 = fi' = - 1,

(ii) C7(//2) x O(mτ) X O(m2) if £ = - 1, £' = + 1,

(iii) O(/l) X O(/2) X O(7?O X O(w2) if £ = £ ' = + 1,

•where /ι(/2) ώ £/*£ number of negative (positive) roots of the characteristic
equation of φj and mv(m^) is that of ψ).

PROOF. We shall prove only the case (ii). The other cases can be proved
quite analogously.

We take sufficiently fine open covering {UΛ \ of Mn and determine in every
UΛ suitable frames. To do so, we take first a unit vector field ξ[ over UΛ con-
tained in DI and put

(5.1) & = $& !* = /' + !, r = //2.

Then, we can easily see that fί* is a unit vector field orthogonal to ξ[ and con-
tained in DL. Secondly, if we take a unit vector field ξ( orthogonal to ξ[ and fί
and contained in Dl9 then

(5.2) &. = $&, 2* = /' + 2

is a unit vector field orthogonal to ff, ί̂  fί» and contained in Z}. Continuing
this process, we can find orthonormal vector fields ξ((\ = 1, , /') and

(5.3) ft. = *jίί, λ* = /' + λ

so that they span Dt in Ua By virtue of (2. 5) we can solve (5. 3) as follows.

(5- 4) ft = - φilί .

Next, we consider the characteristic equation

(5.5) IΨJ + σδi -0.

Then, the characteristic roots are 0, — 1 or 4-1. The characteristic space cor-
responding to 0 is the vector space VL of the distribution DL. We denote the
multiplicities of the roots — 1 and -i- 1 by ml and ra2 and the characteristic
spaces corresponding to — 1 and 4- 1 by W_ and W+. Then, as is easily seen,
Vι, W- and W+ are orthogonal to each other.

Now, we take orthonormal frames (11, fU fir, ft) over £7Λ so that f^, fλ.
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are related by (5.3) and span Vt, ζ'ιr(M = I + 1, ,1 + OTI) span W_ and
(5 = I + OT! + 1, , n) span W+ Then, we can easily see that g, φ and
have the following forms with respect to such frames:

Ev
0

(5.6)

(5.7)

(5.8)

0

0

Ev

-Ei

0

0

Em.2

0

0

0
0

Suppose UΛ 0 Uβ is not empty and ξ(9 ξl

λ 9 ξ1^, ξs be vector fields over Uβ defined
in the same way as above, then over U<* Π Uβ we get

where (? 7) and (UN) and (C7?) are orthogonal matrices. However, by virtue of

(5. 3), we can easily see that d = a, c = — b. Hence, the structure group of
T(Mn) in consideration is reducible to [/(/') x O(m^ X O(m2\

14. Converse to Theorem 11, we can prove the following

THEOREM 12. Suppose Mn be a differentiable manifold such that the
structure group of the tangent bundle T(Mn) is reducible to

(i) C7(O X U(m\ 2(1' + w') = ny or

(ii) U(ΐ) X O(mτ) X O(m2\ 2 /' + m^ + m2 = ra, or

(iii) OC/0 x O(/2) x OCmO x 0(^2), Λ + /, + mx + m2 = Λ.

Then9 we can introduce (φ, -ψ1, g)- structure over Mn of type ( — ,—), (~>+)
or ( + , + ) according as the structure group is of type (i), (ii) or (iii).

PROOF. We shall prove only the case (ii). The other cases can be proved
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quite analogously. Let {£/*} be sufficiently fine open covering of Mn by coor-
dinate neighborhoods. Then, in every UΛ, we can take frames H, fl*(λ = 1,...
...,/', λ* = /' + λ), βr(M=/ + 1, ...... ,/ + mτ\ S£S = l + m1 + 1, ...... ,Λ)
so that the transformation of frames of Ua and of Uβ over non-empty UΛ Π Z7/s
is given by an orthogonal transformation of the form

ft. = -

We denote the inverse matrix of (f«) by (ηf) and define over every U« tensor
fields by

+
then all ^/s, all φ/s and all ψ j's corresponding to [7α's constitute global tensor
fields g, φ and ψ1 respectively. This can be easily proved by virtue of the relations

As gr, φ, ψ* have components of the form (5. 5), (5. 6) and (5. 7) with respect to
our frames in consideration, we can easily verify that (2. 3), (2. 5), (3. 3) (θ = — 1,
£' = 1) hold good. However, these equations are all tensor equations. Hence,
they all hold good for any frames, especially for natural frames. Consequently,
our Theorem is proved. Q. E. D.
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