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1. Introduction. In the present note let f(t) be a measurable function

satisfying the conditions

(1. 1) f(t + 1) =/(0, tf(f)dt = 0 and Cf(t}dt = 1.
•* o *^o

In [2] M. Kac noticed that if f(t) is a function of Lip a or of bounded varia-

tion, then it is seen that

(1.2) lim
Λβl

where \nk] is a sequence of integers such that

(1. 3) lim nk+1/nk = + °o
fc->co

and [ak\ is any sequence of real numbers satisfying the following conditions

N

(1.4) ΛZN = Σ,al-> + °° and max \ak\ — o(AN\ as JV-> +

Also in [4] G. Morgenthaler proved that if f(t) is bounded and \ak] satisfies

(1.4), then there exists a sequence \f(nkt)\ independent of {ak} and (1. 2) holds.

On the other hand P. Erdδs [2] showed that if f(t) = cos 2 Trt 4- cos 4 τrί?

then we have

^ω/SlcoSΛ a l

lim

From above facts we see that if (1.2) holds, the properties of nk^l/nk and

the smoothness of f(t) become subjects of considerations (cf. [3]). The purpose of

this note is to prove the following

THEOREM. Let \nk} and \ak\ satisfy (1.3) and (1.4) respectively and

for some € > 0,

11/2 / T \

as n -> 4- oo,



106 S.TAKAHASHI

where Sn(t) denotes the n-th partial sum of the Fourier series of f(t). Then
we have, for any measurable set E, E d [0, 1], of positive measure,

(t t^E, -J-ΣMXί) <«4 = -7!= f e-^du.\ **N fc=1 V Z T T J-oo™ \E\

From the above theorem it is seen that under the conditions (1.3) and

(1.5), ]>Z d£ = -f co implies the almost everywhere divergence of the series

Σ akf(nkt\

On the other hand in [1] S. Izumi proved that under the conditions (1. 5) and

the Hadamard's gap condition nk+1/nk > q > 1, ̂  άi < °° implies the almost

everywhere convergence of the sequence lira ^akf(nkt\

2. Proof of the theorem. By (1. 3) and (1. 4) we can take a sequence

of positive integers {qk\ such that

(2-1)

and

(2. l') max \qk"ak\ = o(ΛN) and QN-> -h °°, as

;zΛ+1/^>4^ for A = 12,3, , *}

max \qH2ak\ = o(A^) and g^ -> + oo,

We put

(2.2)

and, for k =• 1,2,.

(2.2')

LEMMA. 1. We have

~ ^ cos

and

PROOF. We have, by ParsevaΓs relation for k > j,

9k(nkt)gό(njt)dt
1/2 1/2

where

*) The condition (2.1) need not hold for small k, but without loss of generality we may
assume that (2.1) holds for all k.
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ί c^£-, if n5\nkl,

{ 0, if otherwise.

By (2. 1), (2. 2'), (1. 5) and the definition of dh we have

Hence we have, by above relations

Γ1 ί 1 N ) 2 1 Γ N Γ1

\~-Λ-Σ,^gk(nkt)\ dt = -Λϊ-\Σal
Λ) I -"•* fc.i J ^N Lfc . i J0

+ 2

as (k — j) -» -f °°.

Γ1 Ί
gjji&gfji&dt

J0 J

42
^

2
X) βjfc^ + O

Σ

42 " i + β

^^ Λ ί-l

Since RQt -> 0 as ί -» 4- oo, by (l. 4) we can prove the lemma.

LEMMA 2. We have

(2.3) max |akSQk(nki)\ = o(A^)

(2.3') f
Jn fc = l

PROOF. By (2. l'), it follows that

max I akSqk(nk t) \ ̂  max | ak \ X max 21 ak \ qH2 = o(A^),

as N-* +

Further we have, by (1. 4) and (2. 2'),

1
I
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By (2. 1) if * 4s *', then for any /, ΐ(l ^l^2qk and 1 ̂  /'

Γ1

/ cos 2 TΓT/A /ί cos 2 ττnk>l tdt = 0,
Jo

and

Hence for the proof of (2. 3 ), it is sufficient to show that

2_ c>
, + j~^l

On the other hand, by (2. l') and (1. 4), we have

7 /~\ I ^"fc^/A* \ / -i \N=O[ max—£££_ =o(l),

as

as

as ΛΓ-H* -f

By Lemma 2, we know that if we put

(2.4)

then we have

(2.4')

alSlk(nkt) -

lim \Eιr\ = 1.

For the proof of the theorem it is sufficient, by Lemma 1 and the theorem
of Glivenko, for any fixed λ and any interval 7, to show that

'/)=~πτίexp -T—Σ
"

)[Λ as N -* 4- oo.

By (2.3), (2.4), (2.4') and the fact that expz = (l + z) exp(^- +

as |z| -»• 0, we have, as ΛΓ-> + °o,

/• N /

ί,,Iί(1

By Lemma 2, (2.4), and the fact that \ex — 1| ̂  ^:|^|ίc|, we have

^ 9 -V

{exp(λ2)l Jί -> 0, as
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Hence for the proof of the theorem it is sufficient to show that

(2.5) -1— Γ ]j(l -f *λ^*(̂ ) \dt-+\, as N-> -f
l / l Jif\Ejy i ^ AN '

LEMMA 3. We have, for all N,

r 'π(
JQ 1 N

+
PROOF. We have

Π o .2 A^r

? λ) is the sum of terms of the following form

s

(2. 6) (constant) X JJ cos
ί=l

where

(2.6') 1^*! < A, < ...... <*s^

(2. 6) can be expressed as the sum of the following terms

(2. 7) (constant) X cos 2 ττ(^./5 ± ...... ± n^l

On the other hand by (2. 1) and (2. 6'), we have

2 2

Hence we have

Λ1

= 0.Γ ψ ί̂,
•Ό

This completes the proof.

By Lemma 3, and (2. 4') we have
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(2.8)

Γ f
LJ0

+ oo.

LEMMA 4. We

= \ I \ .

PROOF. If we put ]j(l + **"&*(»*) ) = 1 + ̂ , λ), then (̂ί, λ)
1 ^ ΛJY '

consists of the terms

(2. 9) Π l^^cos 2 «• «*// 1 = Π
^=1 v AΛΓ / ,/«ι

where ^ denotes the summation over all possible combinations of ±. and

1 Ŝ kι < k* < < ks <^ N and 1 < 1Λ <Ξ qkj.

In the same way as that of Lemma 3, we have

•̂  2(2.10) ntt.lt ± ttfc.-Λ-i -*..
o

Using (2. 9), (2. 10) and the fact that f or a > 0 and any interval I,

2cos atdt
a

If we put

f j j
J/ i

then we have, by (2. l) and (2. l') for JV > ΛΓ0,

. v>
+Σ
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I W*"! ^ 2* m Λ7 ,
<; max - j^ — 2_~7*~ — °(1Λ as JV-» + °°.

This completes the proof.

By (2. 5), (2. 8) and Lemma 4, we can prove the theorem.
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