A GAP SEQUENCE WITH GAPS BIGGER THAN THE HADAMARD'S

Shigeru Takahashi

(Received July 3, 1960)

1. Introduction. In the present note let $f(t)$ be a measurable function satisfying the conditions;

$$
\begin{equation*}
f(t+1)=f(t), \int_{0}^{1} f(t) d t=0 \text { and } \int_{0}^{1} f^{2}(t) d t=1 \tag{1.1}
\end{equation*}
$$

In [2] M. Kac noticed that if $f(t)$ is a function of Lip α or of bounded variation, then it is seen that

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left|\left\{t ; \frac{1}{A_{N}} \sum_{k=1}^{N} a_{k} f\left(n_{k} t\right)<\omega\right\}\right|=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\omega} e^{-u^{2} / 2} d u \tag{1.2}
\end{equation*}
$$

where $\left\{n_{k}\right\}$ is a sequence of integers such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} n_{k+1} / n_{k}=+\infty \tag{1.3}
\end{equation*}
$$

and $\left\{a_{k}\right\}$ is any sequence of real numbers satisfying the following conditions

$$
\begin{equation*}
A_{N}^{2}=\sum_{k=1}^{N} a_{k}^{2} \rightarrow+\infty \text { and } \max _{1 \leqq k \leqq N}\left|a_{k}\right|=o\left(A_{N}\right), \quad \text { as } N \rightarrow+\infty \tag{1.4}
\end{equation*}
$$

Also in [4] G. Morgenthaler proved that if $f(t)$ is bounded and $\left\{a_{k}\right\}$ satisfies (1.4), then there exists a sequence $\left\{f\left(n_{k} t\right)\right\}$ independent of $\left\{a_{k}\right\}$ and (1.2) holds.

On the other hand P. Erdös [2] showed that if $f(t)=\cos 2 \pi t+\cos 4 \pi t$, then we have

$$
\lim _{N \rightarrow \infty}\left|\left\{t ; \frac{1}{\sqrt{N}} \sum_{k=1}^{N} f\left(\left(2^{k}-1\right) t\right)<\omega\right\}\right|=\frac{1}{\sqrt{\pi}} \int_{0}^{1} d x \int_{-\infty}^{\omega|2| \cos \pi x \mid} e^{-u^{2}| |^{2}} d u
$$

From above facts we see that if (1.2) holds, the properties of n_{k+1} / n_{k} and the smoothness of $f(t)$ become subjects of considerations (cf. [3]). The purpose of this note is to prove the following

THEOREM. Let $\left\{n_{k}\right\}$ and $\left\{a_{k}\right\}$ satisfy (1.3) and (1.4) respectively and for some $\varepsilon>0$,

$$
\begin{equation*}
\left[\int_{0}^{1}\left\{f(t)-S_{n}(t)\right\}^{2} d t\right]^{1 / 2}=O\left(\frac{1}{(\log n)^{1+e}}\right), \quad \text { as } n \rightarrow+\infty \tag{1.5}
\end{equation*}
$$

where $S_{n}(t)$ denotes the n-th partial sum of the Fourier series of $f(t)$. Then we have, for any measurable set $E, E \subset[0,1]$, of positive measure,

$$
\lim _{N \rightarrow \infty} \frac{1}{|E|}\left|\left\{t ; t \in E, \frac{1}{A_{N}} \sum_{k=1}^{N} a_{k} f\left(n_{k} t\right)<\omega\right\}\right|=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\omega} e^{-u^{2} i_{2}} d u
$$

From the above theorem it is seen that under the conditions (1.3) and (1.5), $\sum a_{k}^{2}=+\infty$ implies the almost everywhere divergence of the series $\sum a_{k} f\left(n_{k} t\right)$.

On the other hand in [1] S. Izumi proved that under the conditions (1.5) and the Hadamard's gap condition $n_{k+1} / n_{k}>q>1, \sum a_{k}^{2}<\infty$ implies the almost everywhere convergence of the sequence $\lim _{m \rightarrow \infty} \sum_{k=1}^{m^{2}} a_{k} f\left(n_{k} t\right)$.
2. Proof of the theorem. By (1.3) and (1.4) we can take a sequence of positive integers $\left\{q_{k}\right\}$ such that

$$
\begin{equation*}
\left.n_{k+1} / n_{k} \geqq 4 q_{k} \quad \text { for } k=1: 2,3, \ldots \ldots, *\right) \tag{2.1}
\end{equation*}
$$

and
(2. 1') $\quad \max _{1 \leq k \leq N}\left|q_{k}^{1 / 2} a_{k}\right|=o\left(A_{N}\right)$ and $q_{N} \rightarrow+\infty, \quad$ as $N \rightarrow+\infty$.

We put

$$
\begin{equation*}
f(t) \sim \sum_{l=1}^{\infty} c_{l} \cos 2 \pi l t \tag{2.2}
\end{equation*}
$$

and, for $k=1,2, \ldots \ldots$,

$$
g_{k}(t) \sim \sum_{l>q_{k}} c_{l} \cos 2 \pi l t \quad \text { and } \quad R_{k}=\frac{1}{2} \sum_{l>k} c_{l .}^{2}
$$

Lemma. 1. We have

$$
\lim _{N \rightarrow \infty} \int_{0}^{1}\left\{\frac{1}{A_{N}} \sum_{k=1}^{N} a_{k} g_{k}\left(n_{k} t\right)\right\}^{2} d t=0 .
$$

Proof. We have, by Parseval's relation for $k>j$,

$$
\left|\int_{0}^{1} g_{k}\left(n_{k} t\right) g_{j}\left(n_{j} t\right) d t\right|=\left|\frac{1}{2} \sum_{l>q_{k}} c_{l} d_{l}\right| \leqq\left(\frac{1}{2} \sum_{l>q_{k}} c_{l}^{2}\right)^{1 / 2}\left(\frac{1}{2} \sum_{l>q_{k}} d_{l}^{2}\right)^{1 / 2},
$$

where

[^0]\[

d_{l}=\left\{$$
\begin{aligned}
c \frac{n_{k} l}{n_{j}}, & \text { if } n_{j} \mid n_{k} l, \\
0, & \text { if otherwise }
\end{aligned}
$$\right.
\]

By (2.1), (2.2'), (1.5) and the definition of d_{l}, we have

$$
\left(\frac{1}{2} \sum_{l>q_{k}} d_{l}^{1}\right)^{1 / 2} \leqq\left(\frac{1}{2} \sum_{l \geq 4 k-s} c_{l}^{2}\right)^{1 / 2}=O\left(\frac{1}{(k-j)^{1+\epsilon}}\right), \quad \text { as }(k-j) \rightarrow+\infty .
$$

Hence we have, by above relations

$$
\begin{aligned}
\int_{0}^{1}\left\{\frac{1}{A_{N}} \sum_{k=1}^{N} a_{k} g_{k}\left(n_{k} t\right)\right\}^{2} d t & =\frac{1}{A_{N}^{2}}\left[\sum_{k=1}^{N} a_{k}^{2} \int_{0}^{1} g_{k}^{2}(t) d t+2 \sum_{1 \leqq j<k \leqq N} a_{j} a_{k} \int_{0}^{1} g_{k}\left(n_{k} t\right) g_{j}\left(n_{j} t\right) d t\right] \\
& =\frac{1}{A_{N}^{2}} \sum_{k=1}^{N} a_{k}^{3} R_{q_{k}}+O\left(\frac{1}{A_{N}^{2}} \sum_{1 \leqq j<k \leqq N} a_{k} a_{j} R_{q_{k}}^{1 / 2} \frac{1}{(k-j)^{l+\epsilon}}\right) \\
& =\frac{1}{A_{N}^{2}} \sum_{k=1}^{N} a_{k}^{2} R_{q_{k}}+O\left(\frac{1}{A_{N}^{2}} \sum_{r=1}^{N-1} \frac{1}{r^{1+\varepsilon}} \sum_{i=1}^{N-r} R_{q_{k}}^{1 / 2} a_{i} a_{i+r}\right) \\
& =\frac{1}{A_{N}^{2}} \sum_{k=1}^{N} a_{k}^{2} R_{q_{k}}+O\left[\left(\sum_{i=1}^{N} \frac{R_{q_{i}} a_{i}^{2}}{A_{N}^{2}}\right)^{1 / 2}\right] .
\end{aligned}
$$

Since $R_{q_{\mathrm{t}}} \rightarrow 0$ as $i \rightarrow+\infty$, by (1.4) we can prove the lemma.

Lemma 2. We have

$$
\begin{equation*}
\max _{1 \leqq k \leqq N}\left|a_{k} S_{q_{k}}\left(n_{k} t\right)\right|=o\left(A_{N}\right) \tag{2.3}
\end{equation*}
$$

and

$$
\int_{0}^{1}\left|\frac{1}{A_{N}^{2}} \sum_{k=1}^{N} a_{k}^{2} S_{a_{k}}^{2}\left(n_{k} t\right)-1\right|^{2} d t=o(1), \text { as } N \rightarrow+\infty
$$

Proof. By (2. 1'), it follows that

$$
\max _{1 \leqq k \leqq N}\left|a_{k} S_{q_{k}}\left(n_{k} t\right)\right| \leqq \max _{1 \leqq k \leqq N}\left|a_{k}\right| \sum_{l=1}^{q_{k}}\left|c_{l}\right| \leqq \max _{1 \leqq k \leqq N} 2\left|a_{k}\right| q_{k}^{1 / 2}=o\left(A_{N}\right),
$$

$$
\text { as } N \rightarrow+\infty .
$$

Further we have, by (1.4) and (2.2'),

$$
\begin{aligned}
& \left|\frac{1}{A_{N}^{2}} \sum_{k=1}^{N} a_{k}^{2} S_{q_{i}}^{2}\left(n_{k} t\right)-1\right| \\
\leqq & \frac{1}{A_{N}^{2}} \sum_{k=1}^{N} a_{k}^{2} R_{q_{k}}+\frac{1}{A_{N}^{2}}\left|\sum_{k=1}^{N} a_{k}^{2} \sum_{l=1}^{2 q_{k}} \cos 2 \pi n_{k} l t \sum_{\substack{i=j=l \\
i+j=l}} c_{i} c_{j}\right| .
\end{aligned}
$$

By (2.1) if $k \neq k^{\prime}$, then for any $l, l^{\prime}\left(1 \leqq l \leqq 2 q_{k}\right.$ and $\left.1 \leqq l^{\prime} \leqq 2 q_{k^{\prime}}\right)$,

$$
\int_{0}^{1} \cos 2 \pi n_{k} l t \cos 2 \pi n_{k^{\prime}} l^{\prime} t d t=0
$$

and

$$
\frac{1}{A_{N}^{2}} \sum_{k=1}^{N} a_{k}^{2} R_{q_{k}} \rightarrow 0, \quad \text { as } N \rightarrow+\infty
$$

Hence for the proof of $\left(2.3^{\prime}\right)$, it is sufficient to show that

$$
I_{N}=\frac{1}{A_{N}^{4}} \sum_{k=1}^{N} a_{k}^{4} \sum_{l=1}^{2 q_{k}}\left(\sum_{\substack{i-j=l \\ i+j=l}} c_{i} c_{j}\right)^{2}=o(1), \quad \text { as } N \rightarrow+\infty
$$

On the other hand, by (2.1') and (1.4), we have

$$
I_{N}=O\left(\max _{1 \leq k \leq N} \frac{a_{k}^{2} q_{k}}{A_{N}^{2}}\right)=o(1), \quad \text { as } N \rightarrow+\infty
$$

By Lemma 2, we know that if we put

$$
\begin{equation*}
E_{N}=\left\{t ;\left|\frac{1}{A_{N}^{2}} \sum_{k=1}^{N} a_{k}^{2} S_{q_{k}}^{2}\left(n_{k} t\right)-1\right|<1\right\} \tag{2.4}
\end{equation*}
$$

then we have

$$
\lim _{N \rightarrow \infty}\left|E_{N}\right|=1
$$

For the proof of the theorem it is sufficient, by Lemma 1 and the theorem of Glivenko, for any fixed λ and any interval I, to show that

$$
\Phi_{N}(\lambda, I)=\frac{1}{|I|} \int_{I} \exp \left\{\frac{i \lambda}{A_{N}} \sum_{k=1}^{N} a_{k} S_{q_{k}}\left(n_{k} t\right)\right\} d t \rightarrow e^{-\frac{\lambda^{2}}{2}}, \quad \text { as } N \rightarrow+\infty .
$$

By (2.3), (2.4), (2.4') and the fact that $\exp z=(1+z) \exp \left(\frac{z^{2}}{2}+O\left(|z|^{3}\right)\right)$, as $|z| \rightarrow 0$, we have, as $N \rightarrow+\infty$,

$$
\Phi_{N}(\lambda, I)=\frac{e^{o(1)}}{|I|} \int_{I \cap E_{N}} \prod_{1}^{N}\left(1+\frac{i \lambda a_{k} S_{q_{k}}\left(n_{k} t\right)}{A_{N}}\right) \exp \left(-\frac{\lambda^{2}}{2 A_{N}^{2}} \sum_{k=1}^{N} a_{k}^{2} S_{\mathbf{q}_{k}}^{2}\left(n_{k} t\right)\right) d t
$$

By Lemma 2, (2.4), and the fact that $\left|e^{x}-1\right| \leqq|x| e^{|x|}$, we have

$$
\begin{aligned}
& \left|\int_{I \cap E_{N}} \prod_{1}^{N}\left(1+\frac{i \lambda a_{k} S_{q_{k}}\left(n_{k} t\right)}{A_{N}}\right)\left\{\exp \left(-\frac{\lambda^{2}}{2 A_{N}^{2}} \sum_{k=1}^{N} a_{k}^{2} S_{q_{k}}^{2}\left(n_{k} t\right)\right)-\exp \left(-\frac{\lambda^{2}}{2}\right)\right\} d t\right| \\
& \leqq \int_{I \cap E_{N}}\left\{\exp \left(\lambda^{2}\right)\right\}\left|-\frac{\lambda^{2}}{2 A_{N}^{2}} \sum_{k=1}^{N} a_{k}^{2} S_{q_{k}}^{2}\left(n_{k} t\right)+\frac{\lambda^{2}}{2}\right| d t \rightarrow 0, \quad \text { as } N \rightarrow+\infty
\end{aligned}
$$

Hence for the proof of the theorem it is sufficient to show that

$$
\begin{equation*}
\frac{1}{|I|} \int_{I \cap E_{N}} \prod_{1}^{N}\left(1+\frac{i \lambda a_{k} S_{a_{k}}\left(n_{k} t\right)}{A_{N}}\right) d t \rightarrow 1, \quad \text { as } N \rightarrow+\infty \tag{2.5}
\end{equation*}
$$

Lemma 3. We have, for all N,

$$
\int_{0}^{1}\left|\prod_{i}^{N}\left(1+\frac{i \lambda a_{k} S_{q_{k}}\left(n_{k} t\right)}{A_{N}}\right)\right|^{2} d t \leqq M
$$

PROOF. We have

$$
\begin{gathered}
\int_{0}^{1}\left|\prod_{1}^{N}\left(1+\frac{i \lambda a_{k} S_{Q_{k}}\left(n_{k} t\right)}{A_{N}}\right)\right|^{2}=\prod_{1}^{N}\left(1+\frac{\lambda^{2} a_{k}^{2} \sum_{l=1}^{q_{k}} c_{l}^{2}}{2 A_{N}^{2}}+\frac{\lambda^{2} a_{k}^{2} T_{k}\left(n_{k} t\right)}{2 A_{N}^{2}}\right) \\
=\prod_{1}^{N}\left(1+\frac{\lambda^{2} a_{k}^{2} \sum_{l=1}^{q_{k}} c_{l}^{2}}{2 A_{N}^{2}}\right)+\Psi_{N}(t, \lambda) \leqq e^{\lambda^{2}}+\Psi_{N}(t, \lambda) .
\end{gathered}
$$

$\Psi_{N}(t, \lambda)$ is the sum of terms of the following form

$$
\begin{equation*}
\text { (constant) } \times \prod_{i=1}^{s} \cos 2 \pi n_{k_{t}} l_{i} t \tag{2.6}
\end{equation*}
$$

where
(2. $\left.6^{\prime}\right) \quad 1 \leqq k_{1}<k_{2}<\ldots \ldots .<k_{s} \leqq N$ and $1 \leqq l_{i} \leqq 2 q_{k_{i}}$.
(2.6) can be expressed as the sum of the following terms
(2.7) (constant) $\times \cos 2 \pi\left(n_{k_{l}} l_{s} \pm \ldots \ldots \pm n_{k_{1}} l_{1}\right)$.

On the other hand by (2.1) and (2.6), we have

$$
\begin{gathered}
n_{k_{s}} l_{s}-n_{k_{s}-1} l_{s-1}-\cdots \cdots-n_{k_{1}} l_{1} \geqq n_{k_{s}}\left(1-\frac{2}{4}-\frac{2}{4^{2}}-\cdots \cdots\right) \\
\geqq n_{k_{s}}\left(1-\frac{2 / 4}{1-1 / 4}\right) \geqq n_{k_{s}} / 3>0 .
\end{gathered}
$$

Hence we have

$$
\int_{0}^{1} \Psi_{N}(t, \lambda) d t=0
$$

This completes the proof.
By Lemma 3, and (2.4') we have

$$
\begin{array}{r}
\left.\mid \int_{I}-\int_{I \cap E_{N}}\right) \prod_{1}^{N}\left(1+\frac{i \lambda a_{k} S_{q_{k}}\left(n_{k} t\right)}{A_{N}}\right) d t\left|\leqq\left|E_{N}^{G}\right|^{1 / 2}\left[\int_{0}^{1} \left\lvert\, \prod_{1}^{N}\left(1+\frac{i \lambda a_{k} S_{q_{k}}\left(n_{k} t\right)}{A_{N}}\right)^{2} d t\right.\right]^{1 / 2} \rightarrow 0\right. \tag{2.8}\\
\text { as } N \rightarrow+\infty .
\end{array}
$$

Lemma 4. We have

$$
\lim _{N \rightarrow \infty} \int_{I} \prod_{i}^{N}\left(1+\frac{i \lambda a_{k} S_{q_{k}}\left(n_{k} t\right)}{A_{N}}\right) d t=|I|
$$

PROOF. If we put $\prod_{1}^{N}\left(1+\frac{i \lambda a_{k} S_{q_{k}}\left(n_{k} t\right)}{A_{N}}\right)=1+\theta_{N}(t, \lambda)$, then $\theta_{N}(t, \lambda)$ consists of the terms

$$
\begin{align*}
\prod_{j=1}^{s}\left\{\frac{i \lambda a_{k}, c_{j}}{A_{N}} \cos 2 \pi n_{k}, l_{j} t\right\}=\prod_{j=1}^{s}\left(\frac{i \lambda a_{k}, c_{j}}{2 A_{N}}\right) \sum \cos 2 & \pi\left(n_{k_{k}} l_{s}\right. \tag{2.9}\\
& \left. \pm \ldots \ldots \pm n_{k 1} l_{1}\right)
\end{align*}
$$

where \sum denotes the summation over all possible combinations of \pm and

$$
1 \leqq k_{1}<k_{2}<\ldots \ldots<k_{s} \leqq N \text { and } 1 \leqq l_{j} \leqq q_{k_{s}} .
$$

In the same way as that of Lemma 3, we have

$$
\begin{equation*}
n_{k_{k}} l_{s} \pm n_{k_{t-1}} l_{s-1} \pm \ldots \ldots \pm n_{k_{1}} l_{1} \geqq \frac{2}{3} n_{k_{s}} . \tag{2.10}
\end{equation*}
$$

Using (2.9), (2.10) and the fact that for $\alpha>0$ and any interval I,

$$
\begin{gathered}
\left|\int_{I} \cos \alpha t d t\right| \leqq \frac{2}{\alpha}, \\
\left\lvert\, \int_{I} \prod_{j=1}^{s}\left\{\left(\frac{\lambda a_{k}, c_{j}}{A_{N}}\right) \cos 2 \pi n_{k}, l_{j} t\right\} d t \leqq \prod_{j=1}^{s} \frac{\left|\lambda a_{k_{k}}, c_{j}\right|}{A_{N}} / n_{k_{i}} .\right.
\end{gathered}
$$

If we put

$$
\int_{I} \prod_{1}^{N}\left(1+\frac{i \lambda a_{k} S_{q_{k}}\left(n_{k} t\right)}{A_{N}}\right) d t=|I|+\Omega_{N}(\lambda, I)
$$

then we have, by (2.1) and (2.1') for $N>N_{0}$,

$$
\begin{aligned}
\left|\Omega_{N}(\lambda, I)\right| & \leqq \sum_{k=2}^{N}\left(\frac{\left|\lambda a_{k}\right|}{n_{k} A_{N}} \sum_{l=1}^{q_{k}}\left|c_{l}\right|\right) \prod_{s=1}^{k-1}\left(1+\sum_{l=1}^{q_{s}} \frac{\left|\lambda a_{s} c_{l}\right|}{A_{N}}\right)+\sum_{l=1}^{q_{l}} \frac{\left|\lambda a_{1} c_{l}\right|}{A_{N} n_{1}} \\
& \leqq \max _{1 \leqq k \leqq N} \frac{\left|2 \lambda a_{k} q_{k}^{1 / 2}\right|}{A_{N}} \sum_{k=2}^{N} \frac{1}{n_{k}} \prod_{s=1}^{k-1}\left(1+\frac{2\left|\lambda a_{s} q_{s}^{1 / 2}\right|}{A_{N}}\right)+\frac{2\left|\lambda a_{1} q_{1}^{1 / 2}\right|}{A_{N} n_{1}}
\end{aligned}
$$

$$
\leqq \max _{1 \leqq k \leqq N} \frac{\left|\lambda a_{k} q_{k}^{1 / 2}\right|}{A_{N}} \sum_{k=1}^{N} \frac{2^{k}}{4^{k}}=o(1), \text { as } N \rightarrow+\infty
$$

This completes the proof.
By (2.5), (2.8) and Lemma 4, we can prove the theorem.

REFERENCES

[1] S. IzUMI, Notes on Fourier Analysis (XLI) ; On the strong law of large numbers and gap series, Tôhoku Math. J., 3(1951), 89-103.
[2] M. Kac, Probability method in analysis and number theory, Bull. Amer. Math. Soc., 55(1949), 641-665.
[3] M. KAC, On the distribution of values of sums of the type $\Sigma f\left(2^{k} t\right)$, Ann. of Math., 47 (1946), 33-49.
[4] G. W. MORGENTHALER, A central limit theorem for uniformly bounded orthonormal systems, Trans. Amer. Math. Soc., 79(1955), 281-311.

Department of Mathematics, Kanazawa University.

[^0]: *) The condition (2.1) need not hold for small k, but without loss of generality we may assume that (2.1) holds for all k.

