NOTE ON THE *n*-DIMENSIONAL TEMPERED ULTRA-DISTRIBUTIONS

MORISUKE HASUMI

(Received July 1, 1960)

In this note, we shall describe explicitly the duality in the space of tempered ultra-distributions of J. Sebastião e Silva in the Euclidean n-space. And, as an application, we shall prove a theorem on the multiplication of tempered ultra-distributions.

I wish to express my hearty thanks to Prof. K. Yosida and Prof. J. Sebastião e Silva for reading the manuscript and giving me valuable remarks.

Notations: Let R^n (resp. C^n) be the real (resp. complex) *n*-space whose generic points are denoted by $x = (x_1, \ldots, x_n)$ (resp. $z = (z_1, \ldots, z_n)$). We shall use the notations: (i) $x + y = (x_1 + y_1, \ldots, x_n + y_n)$, $\alpha x = (\alpha x_1, \ldots, \alpha x_n)$; (ii) $x \ge 0$ means $x_1 \ge 0, \ldots, x_n \ge 0$; (iii) $x \cdot y = \sum_{j=1}^n x_j y_j$ and (iv) $|x| = \sum_{j=1}^n |x_j|$.

Let p be a system of integers ≥ 0 , (p_1, \ldots, p_n) . We shall denote by |p|the sum $\sum_{j=1}^n p_j$ and by D^p the partial differential operator $\partial^{p_1+\ldots+p_n}/\partial x_1^{p_1}\ldots$ $\ldots \partial x_n^{p_n}$. We put, for any integer $k \geq 0$, $\partial^k/\partial x^k = \partial^{nk}/\partial x_1^k\ldots \partial x_n^k$. p+q is the system of integers $(p_1 + q_1, \ldots, p_n + q_n)$. $p \geq q$ means $p_1 \geq q_1, \ldots, p_n \geq q_n$. Moreover, $x^p = x_1^{p_1}\ldots x_n^{p_n}$ and $x^k = x_1^k\ldots x_n^k$ (k an integer). For $p \geq q$, put $\binom{p}{q} = \binom{p_1}{q_1}\ldots \binom{p_n}{q_n}$ with $\binom{p_j}{q_j} = p_j!/q_j!(p_j - q_j)!$.

We shall denote once for all by σ vectors $(\sigma_1,\ldots,\sigma_n)$ whose components are 0 or 1 and adopt the following conventions: (v) $(-1)^{|\sigma|} = (-1)^{\sigma_1+\ldots+\sigma_n}$; (vi) $x^{\sigma} = ((-1)^{\sigma_1}x_1,\ldots,(-1)^{\sigma_n}x_n)$ for any vector x; (vii) $k^{\sigma} = ((-1)^{\sigma_1}k,\ldots,(-1)^{\sigma_n}k)$ for any integer k; (viii) $R_{\sigma}^n = \{x \in \mathbb{R}^n : x^{\sigma} \ge 0\}$; (ix) $C_{\sigma,\alpha}^n$ $= \{z \in \mathbb{C}^n : (-1)^{\sigma_1} \mathscr{F} z_1 > \alpha,\ldots,(-1)^{\sigma_n} \mathscr{F} z_n > \alpha\}$ with $\alpha > 0$ and (x) $\Delta_{\sigma,\alpha}$ is the path of integration $(-\infty + i(-1)^{\sigma_1}\alpha, \infty + i(-1)^{\sigma_1}\alpha) \times \ldots \times (-\infty + i(-1)^{\sigma_n}\alpha, \infty + i(-1)^{\sigma_n}\alpha)$, oriented from $-\infty$ to $+\infty$. Finally V_{α} denotes the horizontal band in \mathbb{C}^n defined by $V_{\alpha} = \{z \in \mathbb{C}^n : |\mathscr{F} z_1| \le \alpha,\ldots,|\mathscr{F} z_n| \le \alpha\}$ with $\alpha > 0$.

1. The basic spaces H and Λ_{∞} . Let H be the space of all C^{∞} -functions $\varphi(x)$ in \mathbb{R}^n such that $\exp(k|x|)D^p\varphi(x)$ is bounded in \mathbb{R}^n for any k and p. We define in H semi-norms

(1) $\|\varphi\|_{k} = \sup_{0 \leq |p| \leq k, x} \exp(k|x|) |D^{p}\varphi(x)|, \ k = 0, 1, 2, \dots$

Then H is a Hausdorff locally convex metrizable space.

Let Γ be a set of continuous functions on \mathbb{R}^n such that, for any compact subset $K \subset \mathbb{R}^n$, there exists a member $\gamma \in \Gamma$ which never vanishes on K. We say that a function $\varphi \in (\mathcal{C})$ satisfies the condition of growth defined by Γ if, for any p and for any $\gamma \in \Gamma$, the function $\gamma(x)D^p\varphi(x)$ is bounded in \mathbb{R}^n . Thus the space H consists of all functions in (\mathcal{C}) satisfying the condition of growth defined by the class $\Gamma_0 = \{\exp(k|x|): k = 0, 1, 2, \dots\}$ or equivalently by the class $\Gamma'_0 = \{\exp(k^{\sigma} \cdot x)\}$ where $k = 0, 1, 2, \dots$ and σ varies over all vectors whose components are 0 or 1.

PROPOSITION 1. The space H is a Fréchet nuclear space and therefore completely reflexive.

PROOF. The mappings $\Phi_{k\sigma}(k = 0, 1, 2, ..., and any \sigma)$, defined by $\Phi_{k\sigma}(\varphi)$ = $\exp(k^{\sigma} \cdot x)\varphi(x)$, are continuous linear mappings of H into (§). In fact, if $\varphi_{\nu} \to 0$ in H, then $\exp((k+1)|x|)D^{p}\varphi_{\nu}(x) \to 0$ uniformly in \mathbb{R}^{n} . Thus, for any polynomial P(x), $P(x)\exp(k^{\sigma} \cdot x)D^{p}\varphi_{\nu}(x) \to 0$ uniformly in \mathbb{R}^{n} and therefore $P(x) \to D^{p}[\exp(k^{\sigma} \cdot x)\varphi_{\nu}(x)] \to 0$ uniformly in \mathbb{R}^{n} . As p is arbitrary, $\Phi_{k\sigma}(\varphi_{\nu}) \to 0$ in (§).

Now, suppose that $\Phi_{k\sigma}(\varphi_{\nu}) \to 0$ in (\mathscr{S}) for any $k = 0, 1, 2, \ldots$ and any σ . Then it is easy to show that $\exp(k^{\sigma} \cdot x)D^{p}\varphi_{\nu}(x) \to 0$ uniformly in \mathbb{R}^{n} . Thus $\varphi_{\nu} \to 0$ in H.

Moreover, if $\varphi \in (\mathcal{C})$ and $\Phi_{k\sigma}(\varphi) \in (\mathcal{S})$ for any $k = 0, 1, 2, \dots$ and any σ , then $\varphi \in H$. Hence H is the projective limit of (\mathcal{S}) with respect to the mappings $\Phi_{k\sigma}$. Since (\mathcal{S}) is nuclear, H is also nuclear by [1; Chap. II, Cor. 1 to Th. 9] or [4; Exposé 18, Cor. 1 to Prop. 7].

Let φ_{ν} be any Cauchy sequence in H. Then the sequence $\varphi_{\nu} = \Phi_0(\varphi_{\nu})$ converges to some $\varphi(x) \in (\mathcal{S})$ under the topology of (\mathcal{S}) . It is then easy to see that $\varphi \in H$ and $\varphi_{\nu} \to \varphi$ in H. Hence H is complete.

In any Fréchet nuclear space, a bounded set B is contained in the closed circular convex envelope of a convergent sequence and therefore relatively compact. Thus the space H is completely reflexive. q. e. d.

PROPOSITION 2. The space H is of type $\not\models^{\infty}$ in the sense of Schwartz [4], i. e., it satisfies the following conditions:

(H₁) H is the space of $\varphi \in (\mathcal{Z})$ satisfying the condition of growth defined by Γ_0 .

 (H_2) H is a Hausdorff complete locally convex space and the injections $(\mathcal{Z}) \rightarrow H \rightarrow (\mathcal{Z})$ are continuous.

(H₃) A subset $B \subset H$ is bounded if and only if, for any $\gamma \in \Gamma_0$ and p, the set of numbers $\gamma(x)D^p\varphi(x)$, $\varphi \in B$, $x \in \mathbb{R}^n$, is bounded.

 (H_4) On any bounded set $B \subset H$, the topology induced by H coincides with the one induced by (\mathcal{E}).

PROOF. (H_1) and (H_3) are obvious from the definition of H. The injections $(\mathscr{D}) \to H \to (\mathscr{C})$ are clearly continuous. Thus, in view of Prop. 1, (H_2) is satisfied. If B is bounded and closed in H, then it is compact and therefore compact with respect to the topology induced by (\mathscr{C}) . Hence the two topologies coincide and (H_4) is fulfilled. q. e. d.

PROPOSITION 3. The dual of H is the space Λ_{∞} of all distributions T of exponential type such that

(2)
$$T = (\partial^k / \partial x^k) [\exp(k |x|) f(x)],$$

where k is an integer ≥ 0 and f(x) is a bounded continuous function. Λ_{∞} is a nuclear space of type $\mathcal{H}_{c}^{\prime \infty}$ in the sense of Schwartz [4] under the strong topology.

PROOF. It is clear that a distribution T of the form (2) defines a continuous linear functional on H. Conversely, let T be any distribution defining a continuous linear functional on H. Then the set of distributions $\{\exp(-k'|u|) \cdot \tau_u(T_x): u \in \mathbb{R}^n\}$ is bounded in (\mathscr{Z}') for some k' > 0. To see this, we notice firstly that the set of semi-norms (1) is equivalent to the system of semi-norms

(1') $\|\varphi\|'_{k} = \sup_{0 \le |p| \le k, x, \sigma} |D^{p}[\exp(k^{\sigma} \cdot x)\varphi(x)]|, \ k = 0, 1, 2, \dots$

Since T is continuous in H, there exists an integer k' > 0 and an $\varepsilon > 0$ such that $\|\varphi\|'_{l} \leq \varepsilon$ for $l = 0, 1, \dots, k'$, imply $|T(\varphi)| \leq 1$. For any $\varphi \in (\mathscr{D})$, we have $[\exp(-k'|u|)\tau_{u}(T_{x})]\varphi(x) = \exp(-k'|u|)T_{x}(\varphi(x+u))$. On the other hand,

$$\begin{split} \|\varphi(x+u)\|'_{l} &= \sup_{0 \leq |p| \leq l, x, \sigma} |D^{p}[\exp(l^{\sigma} \cdot x)\varphi(x+u)]| \\ &= \sup \exp(-l^{\sigma} \cdot u) |D^{p}[\exp(l^{\sigma} \cdot (x+u))\varphi(x+u)]| \\ &\leq \exp(l|u|) \sup |D^{p}[\exp(l^{\sigma} \cdot x)\varphi(x)]| \\ &= \exp(l|u|) \|\varphi\|'_{l} \leq \exp(k'|u|) \|\varphi\|'_{l} \,. \end{split}$$

Thus we have

$$\begin{split} |[\exp(-k'|u|)\tau_u(T_x)]\varphi(x)| &= \exp(-k'|u|)|T_x\varphi(x+u)|\\ &\leq \exp(-k'|u|) \max_{0\leq l\leq k'} \{\mathcal{E}^{-1} \exp(k'|u|) \|\varphi\|_l'\}\\ &\leq \mathcal{E}^{-1} \max_{0\leq l\leq k'} \{\|\varphi\|_l'\}. \end{split}$$

As φ is arbitrary, this shows that $\{\exp(-k'|u|)\tau_u(T_x): u \in \mathbb{R}^n\}$ is bounded in (\mathscr{D}') . By a theorem of Schwartz [2; Chap. VI, Th. XXII], there exist an integer $m \ge 0$ and a sufficiently small compact neighborhood K of the origin of R^n such that, for any $\varphi \in (\mathscr{D}_k^m)$, $\{\exp(-k'|u|)\tau_u(T*\varphi): u \in R^n\}$ forms a family of bounded continuous functions on some relatively compact open set Ω . Therefore, $\exp(-k'|x|)(T*\varphi)(x)$ is continuous and bounded in R^n . We know that the elementary solution E for the iterated Laplace equation $\Delta^N E = \delta$ is *m*-times continuously differentiable for large N. Then, for any $\gamma(x) \in (\mathscr{D}_K)$, γE belongs to (\mathscr{D}_K^m) and $\delta = \Delta^N(\gamma E) - \zeta$ where $\zeta \in (\mathscr{D})$. Hence $T = \Delta^N(\gamma E*T) - \zeta*T$ and therefore T is a (finite) sum of distributions of the form $D^p[\exp(k''|x|)f(x)]$, f(x) being bounded and continuous. Now it is easy to show that T can be reduced to the form (2).

Since H is a Fréchet nuclear space, bounded sets and relatively compact sets are the same in H and thus the strong topology τ_b and the topology τ_c of compactconvergence coincide in $H' = \Lambda_{\infty}$. Thus Λ_{∞} is of type $\not\vdash_c^{\infty}$. As the dual of a Fréchet nuclear space H, the space Λ_{∞} is also nuclear. q. e. d.

Let B be a bounded set $\subset \Lambda_{\infty}$. Then B is equicontinuous and therefore there exists an integer $k' \geq 0$ such that $\|\varphi\|'_{l} \leq \varepsilon$ $(l=0,1,\ldots,k')$ imply $|T(\varphi)| \leq 1$ for any $T \in B$. Then, by the argument used above, we have the following

COROLLARY. A set $B \subset \Lambda_{\infty}$ is bounded if and only if there exist an integer $k \geq 0$ and a number M > 0 such that B is contained in the set of distributions $T = (\partial^k / \partial x^k) [\exp(k|x|)g(x)]$ with g(x) bounded and continuous satisfying $\sup_{x \in \mathbb{R}^n} |g(x)| \leq M$.

2. Fourier transform of H and Λ_{∞} . The spaces \mathfrak{H} and \mathcal{U} . We shall construct the Fourier transform of H. Let $\varphi \in H$ and put

$$f(z) \equiv (\Im \varphi)(z) = (2 \pi)^{-n/2} \int \dots \int_{\mathbb{R}^n} \exp(-iz \cdot x) \varphi(x) dx,$$

for any $z \in C^n$. Since φ satisfies the condition of growth defined by Γ_0 , the integral converges uniformly in any horizontal bands V_k , $k = 1, 2, \ldots,$ and therefore f(z) is an entire function. We have

$$z^{m}f(z) = (2 \pi)^{-n/2} \int \dots \int_{\mathbb{R}^{n}} i^{mn}(\partial^{m}/\partial x^{m}) \left[\exp(-iz \cdot x)\right] \varphi(x) dx$$
$$= (2 \pi)^{-n/2} (-i)^{mn} \int \dots \int_{\mathbb{R}^{n}} \exp(-iz \cdot x) (\partial^{m}/\partial x^{m}) \varphi(x) dx$$

which converges uniformly in any bands V_k (k = 1, 2,) and

(3)
$$|z^{m}f(z)| \leq (2\pi)^{-n/2} \int \dots \int_{\mathbb{R}^{n}} \exp(+\mathscr{F}z \cdot x) |(\partial^{m}/\partial x^{m})\varphi(x)| dx$$
$$\leq (2\pi)^{-n/2} \int \dots \int_{\mathbb{R}^{n}} \exp(k|x|) |(\partial^{m}/\partial x^{m})\varphi(x)| dx$$

$$\leq (2 \pi)^{-n/2} \int \dots \int_{\mathbb{R}^n} \exp(k |x|) \exp(-m' |x|) ||\varphi||_{m'n} dx$$

$$\leq 2^n (2 \pi)^{-n/2} (m' - k)^{-n} ||\varphi||_{m'n}$$

for $z \in V_k$, where $m' > \max(m, k)$. As m is arbitrary, f(z) is rapidly decreasing in any horizontal bands.

Conversely, suppose that f(z) is an entire function decreasing rapidly in any horizontal bands V_k and put

$$\varphi(x) \equiv (\overline{\exists} f)(x) = (2 \pi)^{-n/2} \int \dots \int_{\mathbb{R}^n} \exp(ix \cdot u) f(u) du.$$

Then, for any p, we have

$$D^{p}\varphi(x) = (2\pi)^{-n/2}D^{p}\int \dots \int_{\mathbb{R}^{n}} \exp(ix \cdot u)f(u)du$$

$$= (2\pi)^{-n/2}\int \dots \int_{\mathbb{R}^{n}} \exp(ix \cdot u) (iu)^{p}f(u)du$$

$$= (2\pi)^{-n/2}\int_{-\infty+iv_{1}}^{\infty+iv_{1}} \dots \int_{-\infty+iv_{n}}^{\infty+iv_{n}} \exp(ix \cdot \zeta) (i\zeta)^{p}f(\zeta)d\zeta$$

$$(4) = (2\pi)^{-n/2}D_{x}^{p}\int \dots \int_{\mathbb{R}^{n}} \exp(ix \cdot (u + iv))f(u + iv)du$$

$$= (2\pi)^{-n/2}D_{x}^{p}\Big[\exp(-v \cdot x)\int \dots \int_{\mathbb{R}^{n}} \exp(ix \cdot u)f(u + iv)du\Big]$$

$$= (2\pi)^{-n/2}\sum_{0 \le q \le p} {p \choose q}D_{x}^{p-q}\exp(-v \cdot x)D_{x}^{q}\int \dots \int_{\mathbb{R}^{n}} \exp(ix \cdot u)f(u + iv)du$$

$$= \exp(-v \cdot x)\Big[(2\pi)^{-n/2}\sum_{0 \le q \le p} {p \choose q}(-v)^{p-q}\int \dots \int_{\mathbb{R}^{n}} \exp(ix \cdot u)(iu)^{q}f(u + iv)du\Big].$$

Since the function in the bracket is continuous and bounded in \mathbb{R}^n , we know, by setting $v = (k_1, \ldots, k_n), k_j = \pm 1, \pm 2, \ldots$, that φ satisfies the condition of growth defined by Γ_0 , i. e., $\varphi \in H$. Thus we have the first part of

PROPOSITION 4. The Fourier transform of the space H is the space S of entire functions rapidly decreasing in any horizontal bands. The algebraic isomorphism becomes topogical if we define a topology in S by semi-norms

(5)
$$p_k(f) = \sup_{z \in V_k} |z^k f(z)|, \quad k = 0, 1, 2, \dots$$

PROOF OF THE SECOND PART. Suppose that $\varphi_{\nu} \to 0$ in *H*. Then $\|\varphi_{\nu}\|_{m} \to 0$ for any $m \ge 0$. Setting m = k and $f(z) = f_{\nu}(z) = (\Im \varphi_{\nu})(z)$ in (3), we have

98

$$p_{k}(f_{\nu}) = \sup_{z \in V_{k}} |z^{k} f_{\nu}(z)| \leq 2^{n} (2\pi)^{-n/2} (m'-k)^{-n} ||\varphi_{\nu}||_{m'n} \to 0$$

where m' > k. Thus, $p_k(f_\nu) \to 0$ for any $k = 0, 1, 2, \dots$ and therefore $f_\nu \to 0$ in \mathfrak{H} . Now, for any $k = 1, 2, \dots$ and any index p with $p_i \leq k$, we have

$$\begin{split} \left| \int \dots \int_{\mathbb{R}^n} \exp(ix \cdot u) \left(iu \right)^p f(u + ik^{\sigma}) du \right| &\leq \int \dots \int_{\mathbb{R}^n} |u^p| \left| f(u + ik^{\sigma}) \right| du \\ &\leq \int \dots \int_{\mathbb{R}^n} |(u + ik^{\sigma})^p| \left| f(u + ik^{\sigma}) \right| du \\ &= \int \dots \int_{\mathbb{R}^n} |(u + ik^{\sigma})^{-2}| \left| (u + ik^{\sigma})^{p+2} \right| \left| f(u + ik^{\sigma}) \right| du \\ &\leq \int \dots \int_{\mathbb{R}^n} \prod_{j=1}^n (u_j^2 + k^2)^{-1} du \cdot p_{k+2}(f) = \pi^n k^{-n} p_{k+2}(f) \end{split}$$

where $p + 2 = (p_1 + 2, p_2 + 2, ..., p_n + 2)$. Thus it follows from (4) that

$$\begin{split} |\exp(k^{\sigma} \cdot x)D^{p}\varphi(x)| \\ &\leq (2\pi)^{-n/2} \bigg| \sum_{0 \leq q \leq p} {p \choose q} (-k^{\sigma})^{p-q} \int \dots \int_{\mathbb{R}^{n}} \exp(ix \cdot u) (iu)^{q} f(u+ik^{\sigma}) du \bigg| \\ &\leq (2\pi)^{-n/2} \pi^{n} k^{-n} \bigg[\sum_{0 \leq q \leq p} {p \choose q} k^{|p-q|} \bigg] p_{k+2}(f). \end{split}$$

Therefore, for $k = 1, 2, \ldots,$

$$\| \boldsymbol{\varphi} \|_k = \sup_{0 \leq |\boldsymbol{p}| \leq k, x} |\exp(k |x|) D^p \boldsymbol{\varphi}(x)| \leq c_k p_{k+2}(f),$$

where c_k is a constant depending only on k and the dimension n. This proves that, if $f_{\nu} \to 0$ in \mathcal{D} , then $\varphi_{\nu} \to 0$ in H. Hence the proposition is proved.

Now we shall describe explicitly the dual \mathfrak{H}' of \mathfrak{H} . Decompose $T \in \Lambda_{\infty}$ as follows:

(6)
$$T = \sum_{\sigma} (-1)^{|\sigma|} T^{\sigma},$$

where $T^{\sigma} \in \Lambda_{\infty}$ and the carrier of T^{σ} is contained in \mathbb{R}^{n}_{σ} . For example, if $T = D^{p}[\exp(k'|x|)g(x)]$, g(x) being bounded and continuous, then we may put $T^{\sigma} = (-1)^{|\sigma|}D^{p}[\exp(k'|x|)g(x)Y(x^{\sigma})]$ where Y(x) is the *n*-dimensional Heaviside's function. For any such decomposition, we set

(7)
$$F^{\sigma}(z) = [\overline{\exists} T^{\sigma}](z) = (2 \pi)^{-n/2} < \exp(iz \cdot x), \ T^{\sigma}_{x} > .$$

Then there exists a number k > 0 such that each $F^{\sigma}(z)$ is analytic in $C^{n}_{\sigma,k}$ and $F^{\sigma}(z)/z^{k}$ is bounded and continuous in $\overline{C^{n}_{\sigma,k}}$.

Conversely, for such a function $F(z) = \sum_{\sigma} F^{\sigma}(z)$, define distributions T^{σ} by

(8)
$$T_{y}^{\sigma} = (\partial^{k+2}/\partial y^{k+2}) \Big[(2\pi)^{-n/2} \int \dots \int_{\Delta_{\sigma,k}} \exp(-iy \cdot \zeta) F^{\sigma}(\zeta) (-i\zeta)^{-(k+2)} d\zeta \cdot Y(y^{\sigma}) \Big]$$

and a distribution T by the formula (6). Then $T \in \Lambda_{\infty}$ and the functions $G^{\sigma}(z)$ which are associated, by (7), with this decomposition are nothing but the given functions $F^{\sigma}(z)$. In fact, for $z \in C^{n}_{\sigma,k}$,

$$\begin{split} G^{\sigma}(z) &\equiv \langle (2 \pi)^{-n/2} \exp(iz \cdot y), \ T^{\sigma}_{y} \rangle \\ &= (-iz)^{k+2} \Big[(2 \pi)^{-n} \int \dots \int_{\Delta_{\sigma,k}} F^{\sigma}(\zeta) (-i\zeta)^{-(k+2)} d\zeta \Big[\int \dots \int_{\mathbb{R}^{n}} \exp(-iy \cdot (z-\zeta)) dy \Big] \Big] \\ &= (-iz)^{k+2} \Big[(2 \pi i)^{-n} \int \dots \int_{\Delta_{\sigma,k}} F^{\sigma}(\zeta) (-i\zeta)^{-(k+2)} (-1)^{|\sigma|} (\zeta-z)^{-1} d\zeta \Big] \\ &= (-iz)^{k+2} [F^{\sigma}(z) (-iz)^{-(k+2)}] = F^{\sigma}(z). \end{split}$$

If we denote by \mathcal{Z}_{ω} the space of all functions F(z) such that (i) F(z) is analytic in $\{z \in C^n : |\mathscr{F}z_1| > k, \dots, |\mathscr{F}z_n| > k\}$ and (ii) $F(z)/z^k$ is bounded continuous in $\{z \in C^n : |\mathscr{F}z_1| \ge k, \dots, |\mathscr{F}z_n| \ge k\}$, k depending on F(z), then we have shown that the mapping $\mathfrak{F}: F(z) \to T$, defined by the formulae (8) and (6), is a mapping of \mathscr{Z}_{ω} onto Λ_{∞} .

Let $F \in \mathcal{Z}_{\omega}$ and $T = \Im F$. Then there exists a decomposition (6) such that $F(z) = \sum_{\sigma} F^{\sigma}(z)$ with $F^{\sigma}(z) = [\overline{\Im} T^{\sigma}](z)$ for $z \in C_{\sigma,k}^{n}$ where k is any integer > 0 having the properties (i) and (ii) above. We may write $T_{y}^{\sigma} = (\partial^{k}/\partial y^{k}) \cdot [\exp(k|y|)h^{\sigma}(y)]$ where $h^{\sigma}(y)$ is bounded, continuous in R_{σ}^{n} and vanishes outside of R_{σ}^{n} . Then, for any $f \in \mathfrak{H}$,

$$\begin{split} <\overline{\exists} f, T^{\sigma} > &= \langle (2 \pi)^{-n/2} \int \dots \int_{\mathbb{R}^{n}} \exp(iy \cdot x) f(x) dx, T^{\sigma}_{y} > \\ &= (2 \pi)^{-n/2} \Big\langle \int \dots \int_{\Delta_{\sigma, k+1}} \exp(iy \cdot \zeta) f(\zeta) d\zeta, (\partial^{k} / \partial y^{k}) [\exp(k|y|) h^{\sigma}(y)] \Big\rangle \\ &= (2 \pi)^{-n/2} \int \dots \int_{\mathbb{R}^{n}_{\sigma}} \left[\int \dots \int_{\Delta_{\sigma, k+1}} (-i\zeta)^{k} \exp(iy \cdot \zeta) f(\zeta) d\zeta \right] \exp(k|y|) h^{\sigma}(y) dy \\ &= \int \dots \int_{\Delta_{\sigma, k+1}} f(\zeta) \Big[(2 \pi)^{-n/2} (-i\zeta)^{k} \int \dots \int_{\mathbb{R}^{n}_{\sigma}} \exp(k|y| + i\zeta \cdot y) h^{\sigma}(y) dy \Big] d\zeta \\ &= \int \dots \int_{\Delta_{\sigma, k}} f(\zeta) F^{\sigma}(\zeta) d\zeta, \end{split}$$

100

from which follows

$$< f, F > = < f, \overline{\exists} T > = < \overline{\exists} f, T > = \sum_{\sigma} (-1)^{|\sigma|} < \overline{\exists} f, T^{\sigma} >$$

$$= \sum_{\sigma} (-1)^{|\sigma|} \int \dots \int_{\Delta_{\sigma,k}} f(\zeta) F(\zeta) d\zeta$$

$$= \int \dots \int_{L_k} f(\zeta) F(\zeta) d\zeta$$

$$\xrightarrow{\mathcal{Y} z_j}$$

$$L_{kj} \xrightarrow{q} \qquad 0$$

$$\xrightarrow{ik} \mathcal{R} z_j$$

where L_k is the product of pathes L_{kj} (j = 1, 2, ..., n) defined by Fig. 1.

It is now clear that $\langle f, F \rangle = 0$ for all $f \in \mathfrak{F}$ if and only if F belongs to the kernel of the mapping $\mathfrak{F}: \mathfrak{a}_{\omega} \to \Lambda_{\infty}$. Let Π be the kernel of \mathfrak{F} . Obviously, any element in \mathfrak{a}_{ω} , which is a polynomial in one of the variables z_1, \ldots, z_n that is,

$$\sum_{s} z_{j}^{s} G_{s}(z_{1},\ldots,z_{j-1},z_{j+1},\ldots,z_{n})$$

where G_s are functions in \mathcal{A}_{ω} with respect to $(z_1, \ldots, z_{j-1}, z_{j+1}, \ldots, z_n)$, belongs to Π . Conversely, we can prove readily that Π is the subspace of \mathcal{A}_{ω} generated by all such polynomials. Thus, summing up these considerations, we obtain

PROPOSITION 5. The dual \mathfrak{H}' of \mathfrak{H} is algebraically isomorphic with the space \mathfrak{U} which is the quotient space of \mathfrak{A}_{ω} by Π . If F(z) is any representative of an element $u \in \mathfrak{U}$ and k is determined by (i) and (ii), then the duality between \mathfrak{U} and \mathfrak{H} is given by

$$\langle f, u \rangle = \int \dots \int_{L_k} f(\zeta) F(\zeta) d\zeta \text{ for } f \in \mathfrak{H}.$$

The distribution $T = \exists u \in \Lambda_{\infty}$ corresponding to u is then expressed by (8) and (6).

Any element in \mathcal{U} is called a *tempered ultra-distribution* in the *n*-dimensional space. In view of Cor. to Prop. 3, we have

M. HASUMÍ

PROPOSITION 6. A set $B \subset \mathcal{U}$ is bounded if and only if there exist an integer $k \geq 0$ and a number M > 0 such that each element $u \in B$ has a representative F(z) satisfying (i) F(z) is analytic in $\{z \in C^n : |\mathcal{F}z_1| > k, \dots, |\mathcal{F}z_n| > k\}$, continuous in $\{z \in C^n : |\mathcal{F}z_1| \geq k, \dots, |\mathcal{F}z_n| \geq k\}$ and (ii) $|F(z)/z^k| \leq M$ in the latter set.

Since the strong dual \mathcal{U} of \mathfrak{H} is bornological, a convex circular subset of \mathcal{U} is a neighborhood of the origin if and only if it absorbs all bounded subsets of \mathcal{U} . Thus we get an explicit description of the strong topology for \mathcal{U} . Denoting by B_k the subset of \mathcal{U} , each element of which has a representative F(z) satisfying (i) and (ii) of Prop. 6 with M = 1, a basis of neighborhoods of zero in \mathcal{U} , then consists of $\Gamma_{k=1}^{\infty}(\mathcal{E}_k B_k)$ where \mathcal{E}_k is any sequence of positive numbers $\Gamma_{k=1}^{\infty}$ denotes the convex circular envelope of $\mathcal{E}_k B_k$'s. In other words, we may say

PROPOSITION 7. The strong dual \mathcal{U} is the inductive limit of Banach spaces \mathcal{U}_{B_k} , which are the subspace of \mathcal{U} generated by B_k with the unit ball B_k .

REMARK. It is clear that the topological and algebraical structure of \mathcal{U} , stated in Prop. 7, is the same as that of Sebastião e Silva [3] when n = 1.

An extension of ultra-distributions of exponential type to n-dimensional space is possible, which was also observed by Prof. Sebastião e Silva in a letter to the author.

3. An application. The multiplication in \mathcal{U} . Since Λ_{∞} contains the space (\mathscr{S}') of Schwartz's tempered distributions and \mathcal{F} is an automorphism of (\mathscr{S}') , we may regard (\mathscr{S}') as a subspace of \mathcal{U} , the characterization of which was obtained by Sebastião e Silva [3; Prop. 12. 1]. We can obtain a similar characterization for arbitrary *n*. It is well known that $\alpha \in (\mathscr{O}_M)$ defines a continuous mapping $[\alpha]: S \to \alpha S$ of (\mathscr{S}') into itself. For the mutiplication-operation in \mathcal{U} , we have the following

PROPOSITION 8. The mapping $[\alpha]$ ($\alpha \in (\mathcal{O}_M)$), defined in $(\beta') \subset \mathcal{U}$, is continuously extendable to a continuous linear mapping of \mathcal{U} into itself, if and only if $\alpha(x)$ is extendable over \mathbb{C}^n as an entire function slowly increasing in any horizontal bands.

PROOF. The "if"-part was obtained by Sebastião e Silva [3; Prop. 15. 1]. Indeed, if $\alpha \in (\mathcal{O}_M)$ can be extended to an entire function $\tilde{\alpha}$ satisfying the condition, then it is easy to see that $f \to \tilde{\alpha} f(f \in \mathfrak{H})$ defines a continuous operation in \mathfrak{H} so that $\tilde{\alpha}$ provides a continuous multiplication in $\mathfrak{H}' = \mathcal{U}$.

In order to verify the "only if"-part, we notice firstly that $[\alpha]$ is continuously extendable to \mathcal{U} if and only if the convolution operation $T \to A * T (A = \Im \alpha \in$

 (\mathscr{O}'_{c})), defined in $(\mathscr{S}') \subset \Lambda_{\infty}$, is continuously extendable to a continuous linear mapping of Λ_{∞} into itself. Since Λ_{∞} is of type $\mathcal{H}'_{c}^{\infty}$ by Prop. 3, we may apply a theorem of Schwartz which we state as

LEMMA 1 ([4 ; Exposé 11, Theorem 1]). Let E be a space of distributions, i. e., $E \subset (\mathscr{Z}')$ and the injection of E into (\mathscr{Z}') is continuous. Let $\not\models$ be a space of type $\not\models^{\infty}$ and $\mathscr{O}_{c}(\not\models_{c}: E)$ the space of continuous linear mappings of $\not\models_{c}'$ into E which are convolution operations on $(\mathscr{Z}') \subset \not\models_{c}'$. Then a distribution A belongs to $\mathscr{O}_{c}(\not\models_{c}': E)$ if and only if the function $\vec{A}: y \to \tau_{y}(A_{x}), y \in \mathbb{R}^{n}$, belongs to $\not\models_{c}(E)$, the space of indefinitely differentiable functions $\vec{\varphi}$ with values in E such that $\langle \vec{\varphi}, e' \rangle \in \not\models$ for any $e' \in E'$.

Now, suppose that $[\alpha]$ is continuously extendable to \mathcal{U} into itself and therefore that the convolution operation defined by $A = \Im \alpha$ is continuously extendable to Λ_{∞} , i. e., $A \in \mathscr{O}_{c}(\Lambda_{\infty} \colon \Lambda_{\infty})$. Thus, by Lemma 1, the function $\vec{A} \colon y \to \tau_{y}A_{t}$ must belong to $\widecheck{\mathcal{H}}(\Lambda_{\infty})$ where $\nvdash = H$. This means that, for any $k \ge 0$ and p, the set $\{\exp(k|y|)D_{y}^{\overrightarrow{\mathcal{H}}}(y) \colon y \in \mathbb{R}^{n}\}$ is bounded in Λ_{∞} by [4; Exposé 10, Prop. 4]. Especially for p = 0, the set of distributions $\{\exp(k|y|)\tau_{y}(A_{t}) \colon y \in \mathbb{R}^{n}\}$ is bounded in Λ_{∞} and à fortiori bounded in (\varnothing') . Then, by an argument similar to that used in the proof of Prop. 3, we see that there exist continuous bounded functions $g_{1}(t), g_{2}(t)$ and an integer N > 0, all depending on A and k, such that

$$A_t = \Delta^{N} [\exp(-k|t|)g_1(t)] + \exp(-k|t|)g_2(t).$$

It follows that $<(2\pi)^{-n/2}\exp(iz\cdot t)$, $A_t>$ has a meaning for any $z\in V_k$ and

$$egin{aligned} \widetilde{lpha}(z) &\equiv <(2\,\pi)^{-n/2} \mathrm{exp}(iz{\cdot}t), A_t > \ &= (2\,\pi)^{-n/2} \Big\{ [-(z_1^2 + \ldots + z_n^2)]^N \int \ldots \int_{R^n} \mathrm{exp}(iz{\cdot}t - k\,|\,t\,|\,)g_1(t) dt \ &+ \int \ldots \int_{R^n} \mathrm{exp}(iz{\cdot}t - k\,|\,t\,|\,)g_2(t) dt \Big\} \,. \end{aligned}$$

Since the integrals in the last expression represent analytic functions bounded in $V_{k-\epsilon}(\varepsilon > 0)$, the function $\tilde{\alpha}(z)$ is analytic and slowly increasing in the bands $V_{k-\epsilon}(\varepsilon > 0)$. As k is arbitrary, we have shown that $\tilde{\alpha}(z)$ is an entire function slowly increasing in any horizontal bands. Clearly $\tilde{\alpha}(x) = \alpha(x)$ for $x \in \mathbb{R}^n$ and this completes the proof.

In the course of the proof of Prop. 8, we have obtained

PROPOSITION 9. A distribution T belongs to $\mathscr{O}'_{c}(\Lambda_{\infty}: \Lambda_{\infty})$ if and only if, for any integer k > 0, there exists a finite number of bounded continuous functions $g_{j}(x)$ such that T is a (finite) sum of distribution-derivatives of $\exp(-k|x|)g_{i}(x)$.

ADDED IN PROOF. Recently, the following paper has appeared: K. Yoshinaga, "On spaces of distributions of exponential growth," Bulletin of the Kyushu Institute of Technology (Math. & Nat. Sci.), No. 6, 1960. This paper treats, independently of ours, a problem related to the one discussed here, especially to the section 3.

REFERENCES

- [1] A. GROTHENDIECK, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., No. 16, New York, 1955.
- [2] L. SCHWARTZ, Théorie des distributions, II, Paris, 1951.
- [3] J. SEBASTIÃO E SILVA, Les fonctions analytiques comme ultra-distributions dans le calcul opérationnel, Math. Ann., 136(1958), 58-96.
- [4] Séminaire Schwartz, 1953-54, Paris, 1954.

DEPARTMENT OF MATHEMATICS, IBARAKI UNIVERSITY.