# COEFFICIENTS OF COBORDISM DECOMPOSITION 

Yasurô Tomonaga

(Received June 13, 1960)

Introduction. In this paper we shall generalize the Hirzebruch polynomial ([1]), representing the index of a compact orientable and differentiable $4 k$-manifold, by the simplest way and determine the coefficients of the cobordism decomposition by means of these polynomials. Moreover we shall compute the coefficients of cobordism decomposition for a submanifold. This provides us with an analogy of the Gauss-Codazzi equations in the differential geometry and hence has much to do with the problem of differentiable imbedding.

1. The Hirzebruch polynomial is defined as follows:

$$
\begin{equation*}
\sum_{i=0}^{\infty} L_{i}\left(p_{1}, \ldots \ldots, p_{i}\right) z^{i}=\prod_{i=1}^{m} \frac{\sqrt{\gamma_{i} z}}{\operatorname{tgh} \sqrt{\gamma_{i} z}} \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\sum_{i=0}^{\infty} p_{i} z^{i}=\prod_{i=1}^{m}\left(1+\gamma_{i} z\right) \tag{1.2}
\end{equation*}
$$

and $p_{i}$ denotes the $4 i$-dimensional Pontryagin class. For example we have
(1.3) $\quad L_{1}=\frac{1}{3} p_{1}, L_{2}=\frac{1}{45}\left(7 p_{2}-p_{1}^{2}\right), L_{3}=\frac{1}{3^{3} \cdot 5 \cdot 7}\left(62 p_{3}-13 p_{1} \cdot p_{2}+2 p_{1}^{3}\right)$.

Let $X^{4 k}$ be a compact orientable and differentiable $4 k$-manifold. Then $L_{k}$ $\left(p_{1}, \ldots \ldots, p_{k}\right)\left[X^{4 k}\right]$ equals to the index of $X^{4 k}$. In order to generalize $L_{i}\left(p_{1}, \ldots \ldots\right.$, $p_{i}$ ) we use a function

$$
\begin{equation*}
Q(z . y)=\frac{\sqrt{z}}{\operatorname{tgh} \sqrt{z}}\left(1+y \operatorname{tgh}^{2} \sqrt{z}\right) \tag{1.4}
\end{equation*}
$$

instead of $\sqrt{z} / \operatorname{tgh} \sqrt{z}$ and define a new multiplicative series

$$
\begin{equation*}
\sum_{i=0}^{\infty} \Gamma_{i}\left(y, p_{1}, \ldots \ldots, p_{i}\right) z^{i}=\prod_{i=1}^{m} \frac{\sqrt{\gamma_{i} z}}{\operatorname{tgh} \sqrt{\gamma_{i} z}}\left(1+y \operatorname{tgh}^{2} \sqrt{\gamma_{i} z}\right) . \tag{1.5}
\end{equation*}
$$

The first three terms are given by
(1. 6) $\Gamma_{1}\left(y, p_{1}\right)=\left(y+\frac{1}{3}\right) p_{1}, \Gamma_{2}\left(y, p_{1}, p_{2}\right)=p_{2} y^{2}+\frac{4 p_{2}-p_{1}{ }^{2}}{3} y+\frac{7 p_{2}-p_{1}{ }^{2}}{45}$.

$$
\begin{aligned}
\Gamma_{3}\left(y, p_{1}, p_{2}, p_{3}\right)=p_{3} y^{3} & +\frac{1}{3}\left(6 p_{3}-p_{1} p_{2}\right) y^{2}+\frac{1}{15}\left(17 p_{3}-8 p_{1} p_{2}+2 p_{1}^{3}\right) y \\
& +\frac{1}{3^{3} \cdot 5 \cdot 7}\left(62 p_{3}-13 p_{1} p_{2}+2 p_{1}^{3}\right)
\end{aligned}
$$

It is clear that $\Gamma_{i}\left(y, p_{1}, \ldots \ldots, p_{i}\right)$ is a polynomial of degree $i$ with respect to $y$ and its coefficients are polynomials of $p_{1}, \ldots \ldots, p_{i}$ whose weight is $i$. Let $M^{4 i}$ or $N^{4 j}$ be a compact orientable and differentiable manifold of dimension $4 i$ or $4 j$ respectively. Since $\sum_{i} \Gamma_{i}\left(y, p_{1}, \ldots \ldots, p_{i}\right)$ is multiplicative ([3] II, p. 317) we have
(1. 7) $\Gamma_{i+j}\left(y, p_{1}, \ldots \ldots, p_{i+j}\right)\left[M^{4 i} \cdot N^{4 j}\right]=\Gamma_{i}\left(y, p_{1}, \ldots \ldots, p_{i}\right)\left[M^{4 i}\right] \Gamma_{j}\left(y, p_{1}, \ldots \ldots, p_{j}\right)\left[N^{4 j}\right]$.

It follows from the definition that

$$
\begin{equation*}
\Gamma_{i}\left(0, p_{1}, \ldots \ldots, p_{i}\right)=L_{i}\left(p_{1}, \ldots \ldots, p_{i}\right) \tag{1.8}
\end{equation*}
$$

i. e.
(1. 9) $\quad \Gamma_{k}\left(0, p_{1}, \ldots \ldots, p_{k}\right)\left[X^{4^{n}}\right]=$ index of $X^{4 k}$.

Moreover it holds that

$$
\begin{equation*}
\Gamma_{k}\left(1, p_{1}, \ldots \ldots, p_{k}\right)\left[X^{4 k}\right]=2^{2 k}\left(\text { index of } X^{4 k}\right) \tag{1.10}
\end{equation*}
$$

because

$$
\begin{equation*}
\frac{\sqrt{z}}{\operatorname{tgh} \sqrt{z}}\left(1+\operatorname{tgh}^{2} \sqrt{z}\right)=\frac{2 \sqrt{z}}{\operatorname{tgh} 2 \sqrt{z}} \tag{1.11}
\end{equation*}
$$

Furthermore we have
(1. 12)

$$
\Gamma_{k}\left(-1, p_{1}, \ldots \ldots, p_{k}\right)\left[X^{4 k}\right]=A \text {-genus }([1], \text { S. 14) }
$$

because
(1. 13)

$$
\frac{\sqrt{z}}{\operatorname{tgh} \sqrt{z}}\left(1-\operatorname{tgh}^{2} \sqrt{z}\right)=\frac{2 \sqrt{z}}{\sinh 2 \sqrt{z}}
$$

In some case we can easily prove the integrality of the coefficients of the polynomials $\Gamma_{k}\left(y, p_{1}, \ldots \ldots, p_{k}\right)\left[X^{4 k}\right]$. Let $X^{4 k}$ be an almost complex split manifold. Then the Pontryagin class of $X^{4 k}$ takes the form

$$
\begin{equation*}
p=\Pi\left(1+a_{i}^{2}\right), a_{i} \in H^{2}\left(X^{4 k}, Z\right) \tag{1.14}
\end{equation*}
$$

We have
(1. 15)

$$
\prod_{i} \frac{\sqrt{\gamma_{i}}}{\operatorname{tgh} \sqrt{\gamma_{i}}}\left(1+y \operatorname{tgh}^{2} \sqrt{\gamma_{i}}\right)=\prod_{i} \frac{\sqrt{\gamma_{i}}}{\operatorname{tgh} \sqrt{\gamma_{i}}}\left(1+y \operatorname{tgh}^{2} \sqrt{\gamma_{i}}\right)
$$

$$
\begin{aligned}
& =\sum_{i} L_{i}\left(p_{1}, \ldots \ldots, p_{i}\right) \sum_{\alpha} y^{\alpha} \sum \operatorname{tgh}^{2} \sqrt{\gamma_{i_{1}}} \ldots \ldots \operatorname{tgh}^{2} \sqrt{\gamma_{i \alpha}} \\
& =\sum_{i} L_{i}\left(p_{1}, \ldots \ldots, p_{i}\right) \sum_{\alpha} y^{\alpha} \sum \operatorname{tgh}^{2} a_{i_{1}} \ldots \ldots \operatorname{tgh}^{2} a_{i \alpha}
\end{aligned}
$$

Meanwhile the index of a submanifold $X^{4 k-2 r}$ determined by $v_{1}, \ldots \ldots v_{r}\left(\in H^{2}\right.$ $\left.\left(X^{4 k}, Z\right)\right)([1], \mathrm{S} .87)$ is given by

$$
\begin{equation*}
\tau\left(X^{4 k-2 r}\right)=\kappa^{4 k}\left[\operatorname{tgh} v_{1} \ldots \ldots \operatorname{tgh} v_{r} \sum L_{i}\left(p_{1}, \ldots \ldots, p_{i}\right)\right] . \tag{1.16}
\end{equation*}
$$

Comparing (1.15) and (1.16) we find that each coefficient of $\Gamma_{k}\left(y, p_{1}, \ldots \ldots, p_{k}\right)$ is a sum of many indices of submanifolds and hence is an integer. To prove the integrality of the coefficients of $\Gamma_{k}\left(y, p_{1}, \ldots \ldots, p_{k}\right)\left[X^{4 k}\right]$ in general will be done in another chance.
2. Next we shall deal with the case where $X^{4 k}$ is the complex projective space $P_{2 k}(C)$. The Pontryagin class of $P_{2 k}(C)$ takes the form
(2. 1)

$$
\left(1+g^{2}\right)^{2 k+1}=\sum_{i=0}^{k} p_{i} \bmod g^{2 k+2} \quad([1], \mathrm{S} .73)
$$

where $g$ denotes a generator of $H^{2}\left(P_{2 k}(C), Z\right)$ and

$$
\begin{equation*}
g^{2 k}\left[P_{2 k}(C)\right]=1, \tag{2.2}
\end{equation*}
$$

i. e.

$$
\begin{equation*}
p_{i}=\binom{2 k+1}{i} g^{2 i}(i=1, \ldots \ldots, k) \tag{2.3}
\end{equation*}
$$

Then we have from (1.5) and (2.1)
(2. 4)

$$
\begin{aligned}
& \Gamma_{k}\left(y, p_{1}, \ldots \ldots, p_{k}\right)\left[P_{2 k}(C)\right] \\
& \quad=\frac{1}{2 \pi i} \int \frac{1}{z^{k+1}}\left(\frac{\sqrt{z}}{\operatorname{tgh} \sqrt{z}}\left(1+y \operatorname{tgh}^{2} \sqrt{z}\right)\right)^{2 k+1} d z
\end{aligned}
$$

where the integral should be taken around $z=0$ in the positive direction. Changing variable to

$$
\begin{equation*}
u=\operatorname{tgh} \sqrt{z} \tag{2.5}
\end{equation*}
$$

we have

$$
\begin{equation*}
\Gamma_{k}\left(y, p_{1}, \ldots \ldots, p_{k}\right)\left[P_{2 k}(C)\right]=\frac{1}{2 \pi i} \int \frac{\left(1+y u^{2}\right)^{2 k+1}}{u^{2 k+1}\left(1-u^{2}\right)} d u \tag{2.6}
\end{equation*}
$$

where the integral should be taken around $u=0$ in positive direction. We have

$$
\begin{equation*}
\Gamma_{k}\left(y, p_{1}, \ldots \ldots, p_{k}\right)\left[P_{2 k}(C)\right] \tag{2.7}
\end{equation*}
$$

$$
\begin{aligned}
& =\frac{1}{2 \pi i} \int u^{-2 k-1}\left(1+u^{2}+u^{4}+\cdots+u^{2 k}+\cdots\right)\left(1+y u^{2}\right)^{2 k+1} d u \\
& =1+\binom{2 k+1}{1} y+\binom{2 k+1}{2} y^{2}+\cdots+\binom{2 k+1}{k} y^{k} .
\end{aligned}
$$

We put as follows:
(2. 8 )

$$
\begin{aligned}
& \Gamma_{1}\left(y, p_{1}\right)\left[P_{2}(C)\right]=3 y+1=Q_{1}(y), \\
& \Gamma_{2}\left(y, p_{1}, p_{2}\right)\left[P_{4}(C)\right]=10 y^{2}+5 y+1=Q_{2}(y), \\
& \Gamma_{3}\left(y, p_{1}, p_{2}, p_{3}\right)\left[P_{6}(C)\right]=35 y^{3}+21 y^{2}+7 y+1=Q_{3}(y), \\
& : \\
& \Gamma\left(y, p_{1}, p_{1}, \cdots \cdots, p_{k}\right)\left[P_{2 k}(C)\right]=\binom{2 k+1}{k} y^{k}+\cdots+\binom{2 k+1}{1} y+1=Q_{k}(y) .
\end{aligned}
$$

It should be noted that
(2. 9) $\Gamma_{k}\left(1, p_{1}, \ldots \ldots, p_{k}\right)\left[P_{2 k}(C)\right]=1+\binom{2 k+1}{1}+\cdots \cdots+\binom{2 k+1}{k}=2^{2 k}$,
which follows from (1.10). It is clear that $\Gamma_{k}\left(y, p_{1}, \ldots \ldots p_{k}\right)\left[X^{4 k}\right]$ is a cobordism invariant. Furthermore $\Gamma_{k}\left(y, p_{1}, \ldots \ldots, p_{k}\right)\left[X^{4 k}\right]$ is multiplicative as we have seen in (1.7). Meanwhile the classes of cobordism with respect to the rational coefficients are generated by the $P_{2 i}(C)$ 's ([2]). Hence we have from (2.8)
(2. 11) $\Gamma_{k}\left(y, p_{1}, \ldots \ldots, p_{k}\right)\left[X^{4 k}\right]=\sum_{i_{1}+\ldots+i_{k}=k} A_{i_{1} \ldots \ldots i_{k}} Q_{i_{1}}(y) Q_{i_{2}}(y) \ldots \ldots Q_{i_{k}}(y)$
according as
(2. 12) $\quad X^{4 k} \approx \sum_{i_{1}++i_{k}} A_{i_{1}} \ldots \ldots i_{k} P_{2 i_{1}}(C) P_{2 i_{2}}(C) \ldots \ldots P_{2 i_{k}}(C) \bmod$ torsion,
where $A_{i_{1} \ldots \ldots i_{k}}$ 's denote some rational numbers and $\approx$ means "cobordantes" and $Q_{0}(y)=1$. For example we have
(2. 13) $\Gamma_{3}\left(y, p_{1}, p_{2}, p_{3}\right)\left[X^{12}\right]=\mathrm{A}\left(35 y^{3}+21 y^{2}+7 y+1\right)$

$$
+B\left(10 y^{2}+5 y+1\right)(3 y+1)+C(3 y+1)^{3}
$$

where $A, B$ and $C$ are some rational numbers.
3. Decomposition of $X^{8}$. Concerning the Thom algebra we shall make use of the following table ([4]):

| $k$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\Omega^{k}$ | 0 | 0 | 0 | $Z$ | $Z_{2}$ | 0 | 0 | $Z+Z$ | $Z_{2}+Z_{2}$ | $Z_{2}$ | $Z_{2}$ | $Z+Z+Z$ |

where $\Omega^{k}$ denotes the Thom algebra of dimension $k$ with rational coefficients and the generators of $\Omega^{4}, \Omega^{8}$ and $\Omega^{12}$ are given by

$$
\begin{aligned}
& \Omega^{4}: P_{2}(C), \\
& \Omega^{8}: P_{2}(C)^{2}, P_{4}(C), \\
& \Omega^{12}: P_{2}(C)^{3}, P_{2}(C) P_{4}(C), P_{6}(C) .
\end{aligned}
$$

First of all let us consider the cobordism decomposition of a $X^{8}$, i. e.
(3. 1) $\quad X^{8} \approx A P_{4}(C)+B P_{2}(C)^{2}$
where $A$ and $B$ denote some rational numbers. For this purpose we have to solve the equation
(3. 2) $\Gamma_{2}\left(y, p_{1}, p_{2}\right)\left[X^{8}\right]=A Q_{2}(y)+B Q_{1}(y)^{2}$,
which follows from (2.11) and (3.1)
(3. 3) $\quad p_{2}\left[X^{8}\right] y^{2}+\frac{1}{3}\left(4 p_{2}-p_{1}^{2}\right)\left[X^{8}\right] y+\frac{1}{45}\left(7 p_{2}-p_{1}^{2}\right)\left[X^{8}\right]$

$$
=A\left(10 y^{2}+5 y+1\right)+B(3 y+1)^{2}
$$

Comparing the coefficients of $y_{\alpha}$ 's $(\alpha=0,1,2)$ we have
(3. 4) $\left\{\begin{array}{l}10 A+9 B=p_{2}\left[X^{8}\right], \\ 5 A+6 B=\frac{1}{3}\left(4 p_{2}-p_{1}^{2}\right)\left[X^{8}\right], \\ A+B=\frac{1}{45}\left(7 p_{2}-p_{1}^{2}\right)\left[X^{8}\right] .\end{array}\right.$

The first equation is linearly dependent of two others. Solving (3.4) we have
(3. 5) $\left\{\begin{array}{l}A=\frac{1}{5}\left(-2 p_{2}+p_{1}^{2}\right)\left[X^{9}\right], \\ B=\frac{1}{9}\left(5 p_{2}-2 p_{1}^{2}\right)\left[X^{8}\right] . \\ \text { index }=A+B=\frac{1}{45}\left(7 p_{2}-p_{1}^{2}\right)\left[X^{8}\right] .\end{array}\right.$

Hence we have
(3. 6) $X^{8} \approx \frac{1}{5}\left(-2 p_{2}+p_{1}^{2}\right)\left[X^{8}\right] P_{4}(C)+\frac{1}{9}\left(5 p_{2}-2 p_{1}^{2}\right)\left[X^{8}\right] P_{2}(C)^{2}$
([2], p. 85).

For example we consider the quaternion projective space
(3. 7)

$$
P_{q-1}(K)=S P(q) / S P(1) \cdot S p(q-1), q \geqq 2 \quad([3], 1, \text { p. } 517) .
$$

The Pontryagin class of $P_{q-1}(K)$ is given by

$$
\begin{equation*}
p\left(P_{q-1}(K)\right)=(1+u)^{2 q}(1+4 u)^{-1}, u \in H^{4}\left(P_{q-1}(K), Z\right) \tag{3.8}
\end{equation*}
$$

In the case $q=3$, (3.8) becomes
(3. 9)

$$
p=1+2 u+7 u^{2}
$$

i. e.
(3. 10) $p_{1}=2 u, \quad p_{2}=7 u^{2}$.

We adopt an orientation
(3. 11) $\quad u^{2}\left[P_{2}(K)\right]=1([3] \mathrm{I}, \mathrm{p} .531)$.

Hence we have from (3.6)
(3. 12) $\quad P_{2}(K) \approx-2 P_{4}(C)+3 P_{2}(C)^{2}$.

It should be noted that
(3. 13) index of $P_{2}(K)=\Gamma_{2}\left(0, p_{1}, p_{2}\right)\left[P_{2}(K)\right]=1$
and hence
(3. 14)

$$
\Gamma_{2}\left(1, p_{1}, p_{2}\right)\left[P_{2}(K)\right]=2^{4} .
$$

Another example is the complex quadric $Q_{n}=S O(n+2) / S O(2) \cdot S O(n)$ ([3] I, p. 525).

In this case the Pontryagin class is given by
(3. 15)

$$
\begin{aligned}
p\left(Q_{n}\right)= & \left(1+g^{2}\right)^{n+2} \cdot\left(1+4 g^{2}\right),,^{-1}(n>2), \\
& g \in H^{2}\left(Q_{n}, Z\right)
\end{aligned}
$$

In particular we have

$$
\left\{\begin{array}{l}
p\left(Q_{4}\right)=1+2 g^{2}+7 g^{4}  \tag{3.16}\\
p\left(Q_{6}\right)=1+4 g^{2}+12 g^{4}+8 g^{6}
\end{array}\right.
$$

Hence we have from (3.6)
(3. 17)

$$
\left\{\begin{array}{l}
Q_{4} \approx-2 \tau P_{4}(C)+3 \tau P_{2}(C)^{2}, \\
\tau=g^{4}\left[Q_{4}\right]=\text { index of } Q_{4}
\end{array}\right.
$$

4. Cobordism decomposition of $X^{12}$. Next let us consider the cobordism decomposition of $X^{12}$, i. e.

$$
X^{12} \approx A P_{6}(C)+B P_{4}(C) P_{2}(C)+C P_{2}(C)^{3}
$$

For this purpose we must solve the equation follows from (2.11):

$$
\begin{equation*}
\Gamma_{3}\left(y, p_{1}, p_{2}, p_{3}\right)\left[X^{12}\right]=A Q_{3}(Y)+B Q_{2}(y) Q_{1}(y)+C Q_{1}(y)^{3}, \tag{4.1}
\end{equation*}
$$

i. e.

$$
\begin{aligned}
p_{3}\left[X^{12}\right] y^{3} & +\frac{1}{3}\left(6 p_{3}-p_{1} p_{2}\right)\left[X^{12}\right] y^{2}+\frac{1}{15}\left(17 p_{3}-8 p_{1} p_{2}+2 p_{1}^{3}\right)\left[X^{12}\right] \\
& +\frac{1}{3^{3} \cdot 5 \cdot 7}\left(62 p_{3}-13 p_{1} p_{2}+2 p_{1}^{3}\right)\left[X^{12}\right]=A\left(35 y^{3}+21 y^{2}\right. \\
& +7 y+1)+B\left(10 y^{2}+5 y+1\right)(3 y+1)+C(3 y+1)^{3},
\end{aligned}
$$

where $A, B$ and $C$ denote some rational numbers. Comparing the coefficients of $y_{a}$ 's ( $\alpha=0,1,2,3$ ) we have
(4. 2)

$$
\begin{aligned}
& 35 A+30 B+27 C=p_{3}\left[X^{12}\right] \\
& 21 A+25 B+27 C=\frac{1}{3}\left(6 p_{3}-p_{1} p_{2}\right)\left[X^{12}\right] \\
& 7 A+8 B+9 C=\frac{1}{15}\left(17 p_{3}-8 p_{1} p_{2}+2 p_{1}^{3}\right)\left[X^{12}\right] \\
& A+B+C=\frac{1}{3^{3} \cdot 5 \cdot 7}\left(62 p_{3}-13 p_{1} p_{2}+2 p_{1}^{3}\right)\left[X^{12}\right]
\end{aligned}
$$

The first equation is linearly dependent of three others. Solving (4.2) we have
(4. 3)

$$
\left\{\begin{array}{l}
A=\frac{1}{7}\left(3 p_{3}-3 p_{1} p_{2}+p_{1}^{3}\right)\left[X^{12}\right] \\
B=\frac{1}{15}\left(-21 p_{3}+19 p_{1} p_{2}-6 p_{1}^{3}\right)\left[X^{12}\right] \\
C=\frac{1}{27}\left(28 p_{3}-23 p_{1} p_{2}+7 p_{1}^{3}\right)\left[X^{12}\right] . \\
\text { index }=A+B+C=\frac{1}{3^{3} \cdot 5 \cdot 7}\left(62 p_{3}-13 p_{1} p_{2}+2 p_{1}^{3}\right)\left[X^{12}\right] .
\end{array}\right.
$$

Hence we have
(4. 4)

$$
\begin{aligned}
X^{12} & \approx \frac{1}{7}\left(3 p_{3}-3 p_{1} p_{2}+p_{1}^{3}\right)\left[X^{12}\right] P_{6}(C)+\frac{1}{15}\left(-21 p_{3}\right. \\
& \left.+19 p_{1} p_{2}-6 p_{1}^{3}\right)\left[X^{12}\right] P_{4}(C) P_{2}(C)+\frac{1}{27}\left(28 p_{3}-23 p_{1} p_{2}\right. \\
& \left.+7 p_{1}^{3}\right)\left[X^{12}\right] P_{2}(C)^{3}
\end{aligned}
$$

For example we consider $P_{3}(K)$. In this case the Pontrygin class takes the form

$$
\begin{equation*}
p=1+4 u+12 u^{2}+8 u^{3}, u \in H^{4}\left(P_{3}(K), Z\right) \tag{4.5}
\end{equation*}
$$

i. e.
(4. 6) $p_{1}=4 u, p_{2}=12 u^{2}, p_{3}=8 u^{3}$.

Hence we have from (3.18)

$$
\begin{equation*}
P_{3}(K) \approx-8 \lambda\left\{P_{6}(C)-3 P_{4}(C) P_{2}(C)+2 P_{2}(C)^{3}\right\} \tag{4.7}
\end{equation*}
$$

where

$$
\lambda=u^{3}\left[P_{3}(K)\right] .
$$

In this case it should be noted that

$$
\begin{equation*}
\text { Index of } P_{3}(K)=\Gamma_{3}\left(0, p_{1}, p_{2}, p_{3}\right)\left[P_{3}(K)\right]=0 \tag{4.8}
\end{equation*}
$$

Another example is given by $Q_{6}=S O(8) / S O(2) \cdot S O(6)((3.15))$. From (3.16) and (4.3) we have
(4. 9) $\quad\left\{\begin{array}{l}Q_{6} \approx-8 \mu P_{6}(C)+24 \mu P_{4}(C) P_{2}(C)-16 \mu P_{2}(C)^{3}, \\ \text { index of } Q_{6}=0, \mu=g^{6}\left[Q_{6}\right] .\end{array}\right.$
5. Cobordism decomposition of $X^{16}$. Our multiplicative series $\sum_{i} \Gamma_{i}\left(y, p_{1}\right.$, $\ldots \ldots, p_{i}$ ) is not available for the cobordism decomposition of $X^{16}$, because in this case the number of independent equations such as (3.16) is less than 5 . For this reason we introduce a new multiplicative series such that

$$
\begin{equation*}
\prod_{i=1}^{m} \frac{\sqrt{\gamma_{i} z}}{\operatorname{tgh} \sqrt{\gamma_{i} z}}\left(1+y \operatorname{tgh}^{2} \sqrt{\gamma_{i} z}\right)^{-1}=\sum_{i=0}^{\infty} \Lambda_{i}\left(y, p_{1}, \ldots \ldots, p_{i}\right) z^{i}, \tag{5.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\prod_{i=1}^{m}\left(1+\gamma_{i} z\right)=\sum_{i=0}^{\infty} p_{i} z^{i} \tag{5.2}
\end{equation*}
$$

The first three terms of (5.1) are given by
(5. 3)

$$
\begin{aligned}
& \Lambda_{0}=1 \\
& \Lambda_{1}=\left(\frac{1}{3}-y\right) p_{1} \\
& \Lambda_{2}=\left(p_{1}^{2}-p_{2}\right) y^{2}+\frac{1}{3}\left(p_{1}^{2}-4 p_{2}\right) y+\frac{1}{45}\left(7 p_{2}-p_{1}^{2}\right) \\
& \Lambda_{3}=-\left(p_{3}-2 p_{1} p_{2}+p_{1}^{3}\right) y^{3}+\left(-2 p_{3}+3 p_{1} p_{2}-p_{1}^{3}\right) y^{2}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{15}\left(-17 p_{3}+8 p_{1} p_{2}-2 p_{1}^{3}\right) y+\frac{1}{3^{3} \cdot 5 \cdot 7}\left(62 p_{3}-13 p_{1} p_{2}+2 p_{1}^{3}\right) \\
\Lambda_{4} & =\left(-p_{4}+2 p_{1} p_{3}+p_{2}^{2}-3 p_{1}^{2} p_{2}+p_{1}^{4}\right) y^{4} \\
& +\frac{1}{3}\left(-8 p_{4}+13 p_{1} p_{3}+8 p_{2}^{2}-18 p_{1}^{2} p_{2}+5 p_{1}^{4}\right) y^{3} \\
& +\frac{1}{15}\left(-36 p_{4}+43 p_{1} p_{3}+29 p_{2}^{2}-47 p_{1}^{2} p_{2}+11 p_{1}^{4}\right) y^{2} \\
& +\frac{1}{3^{3} \cdot 5 \cdot 7}\left(-744 p_{4}+325 p_{1} p_{3}+176 p_{2}^{2}-248 p_{1}^{2} p_{2}+51 p_{1}^{4}\right) y \\
& +\frac{1}{3^{4} \cdot 5 \cdot 7}\left(381 p_{4}-71 p_{1} p_{3}-19 p_{2}^{2}+22 p_{1}^{2} p_{2}-3 p_{1}^{4}\right)
\end{aligned}
$$

It is clear that $\Lambda_{i}\left(y, p_{1}, \ldots \ldots, p_{i}\right)$ is a polynomial of degree $i$ of $y$ and each coefficient has weight $i$ with regard to $\left(p_{1}, \ldots \ldots, p_{i}\right)$. Of course $\Lambda_{i}\left(0, p_{1}, \ldots \ldots, p_{i}\right)$ coincides with the Hirzebruch polynomial $L_{i}\left(p_{1}, \ldots \ldots, p_{i}\right)$, i. e. $\Lambda_{i}\left(0, p_{1}, \ldots \ldots, p_{i}\right)$ [ $\left.X^{4 i}\right]$ equals the index of $X^{4 i}$. It holds that

$$
\begin{align*}
\frac{1}{2 \pi i} \int \frac{1}{z^{k+1}}\left\{\frac{\sqrt{z}}{\operatorname{tgh} \sqrt{z}}(1\right. & \left.\left.+y \operatorname{tgh}^{2} \sqrt{z}\right)^{-1}\right\}^{2 k+1} d z  \tag{5,4}\\
& =\Lambda_{k}\left(y, p_{1}, \ldots \ldots, p_{k}\right)\left[P_{2 k}(C)\right]
\end{align*}
$$

where the integral should be taken around $z=0$ in positive direction. Changing variable to

$$
\begin{equation*}
u=\operatorname{tgh} \sqrt{z} \tag{5.5}
\end{equation*}
$$

we have

$$
\begin{equation*}
\Lambda_{k}\left(y, p_{1}, \ldots \ldots, p_{k}\right)\left[P_{2 k}(C)\right]=\frac{1}{2 \pi i} \int \frac{\left(1+y u^{2}\right)^{-2 k-1}}{u^{2 k+1}\left(1-u^{2}\right)} d u \tag{5.6}
\end{equation*}
$$

where the integral should be taken around $u=0$ in positive direction. We have from (4.6)

$$
\begin{align*}
& R_{k}(y) \equiv \Lambda_{k}\left(y, p_{1}, \cdots \cdots, p_{k}\right)\left[P_{2 k}(C)\right]=1-(2 k+1) y  \tag{5.7}\\
& \quad+\frac{(2 k+1)(2 k+2)}{2} y^{2}-\cdots+(-1)^{k} \frac{(2 k+1)(2 k+2) \cdots(3 k)}{k!} y^{k} .
\end{align*}
$$

Especially we have
(5. 8)

$$
\left\{\begin{array}{l}
R_{1}(y) \equiv \Lambda_{1}\left(y, p_{1}\right)\left[P_{2}(C)\right]=1-3 y \\
R_{2}(y) \equiv \Lambda_{2}\left(y, p_{1}, p_{2}\right)\left[P_{4}(C)\right]=1-5 y+15 y^{2}, \\
R_{3}(y) \equiv \Lambda_{3}\left(y, p_{1}, p_{2}, p_{3}\right)\left[P_{6}(C)\right]=1-7 y+28 y^{2}-84 y^{3}, \\
R_{4}(y) \equiv \Lambda_{4}\left(y, p_{1}, p_{2}, p_{3} \cdot p_{4}\right)\left[P_{8}(C)\right]=1-9 y+45 y^{2}-165 y^{3}+495 y^{4} .
\end{array}\right.
$$

Suppose that
(5. 9) $\quad X^{16} \approx A P_{8}(C)+B P_{6}(C) P_{2}(C)+C P_{4}(C)^{2}+D P_{2}(C)^{2} P_{4}(C)+E P_{2}(C)^{4}$ $\bmod$ torsion, where $A, B, C, D$ and $E$ denote some rational numbers. Since $\sum_{i} \Lambda_{i}$ is multiplicative we have
(5. 10)

$$
\begin{aligned}
\Lambda_{4}\left(y, p_{1}, \ldots \ldots, p_{4}\right)\left[X^{16}\right]=A R_{4}(y) & +B R_{3}(y) R_{1}(y)+C R_{2}(y)^{2} \\
& +D R_{2}(y) R_{1}(y)^{2}+E R_{1}(y)^{4}
\end{aligned}
$$

Comparing the coefficients of $y^{\alpha}$ 's $(\alpha=0,1,2,3,4)$ we have from (5.8) and (5.3)

$$
\begin{aligned}
& \text { (i) } 495 A+252 B+225 C+135 D+81 E \\
& =\left(-p_{4}+2 p_{3} p_{1}+p_{2}^{2}-3 p_{1}^{2} p_{2}+p_{1}^{4}\right)\left[X^{16}\right], \\
& \text { (ii) }-165 A-168 B-150 C-135 D-108 E \\
& \begin{array}{l}
=\frac{1}{3}\left(-8 p_{4}+13 p_{3} p_{1}+8 p_{2}^{2}-18 \mathrm{p}_{1}^{2} p_{2}+5 p_{1}^{4}\right)\left[X^{16}\right], \\
A+49 B+55 C+54 D+54 E \\
=\frac{1}{15}\left(-36 p_{4}+43 p_{3} p_{1}+29 p_{2}^{2}-47 p_{1}^{2} p_{2}+11 p_{1}^{4}\right)\left[X^{16}\right],
\end{array}
\end{aligned}
$$

(iv) $-9 A-10 B-10 C-11 D-12 E$

$$
=\frac{1}{3^{3} \cdot 5 \cdot 7}\left(-744 p_{4}+325 p_{3} p_{1}+176 p_{2}^{2}-248 p_{1}^{2} p_{2}+51 p_{1}^{4}\right)\left[X^{16}\right],
$$

(v) $A+B+C+D+E$

$$
=\frac{1}{3^{4} \cdot 5^{2} \cdot 7}\left(381 p_{4}-71 p_{3} p_{1}-19 p_{2}^{2}+22 p_{1}^{2} p_{2}-3 p_{1}^{4}\right)\left[X^{16}\right] .
$$

Solving (5.11) we have
(5. 12)

$$
\left\{\begin{array}{l}
A=\frac{1}{9}\left(-4 p_{4}+4 p_{3} p_{1}+2 p_{2}^{2}-4 p_{1}^{2} p_{2}+p_{1}^{4}\right)\left[X^{16}\right], \\
B=\frac{1}{21}\left(36 p_{4}-33 p_{3} p_{1}-18 p_{2}^{2}+33 p_{1}^{2} p_{2}-8 p_{1}^{4}\right)\left[X^{16}\right], \\
C=\frac{1}{25}\left(18 p_{4}-18 p_{3} p_{1}-7 p_{2}^{2}+16 p_{1}^{2} p^{2}-4 p_{1}^{4}\right)\left[X^{18}\right],
\end{array}\right.
$$

$$
\begin{aligned}
& D=\frac{1}{45}\left(-180 p_{4}+159 p_{3} p_{1}+80 p_{2}^{2}-150 p_{1}^{2} p_{2}+36 p_{1}^{4}\right)\left[X^{16}\right] \\
& E=\frac{1}{81}\left(165 p_{4}-137 p_{3} p_{1}-70 p_{2}^{2}+127 p_{1}^{2} p_{2}-30 p_{1}^{4}\right)\left[X^{16}\right]
\end{aligned}
$$

In the case of the quaternion projective space $P_{4}(K)$ it is known from (3.8) that
(5. 13) $p_{1}=6 u, p_{2}=21 u^{2}, p_{3}=36 u^{3}, p_{4}=66 u^{4}, u \in H^{4}\left(P_{4}(K), Z\right)$.

We put

$$
\begin{equation*}
u^{4}\left[P_{4}(K)\right]=\lambda . \tag{5.14}
\end{equation*}
$$

Then we have from (5.12)

$$
\begin{equation*}
A=-\frac{82}{3} \lambda, B=90 \lambda, C=45 \lambda, D=-200 \lambda, E=\frac{280}{3} \lambda \tag{5.15}
\end{equation*}
$$

Hence we have
(5. 16) $3 P_{4}(K) \approx-82 \lambda P_{8}(C)+270 \lambda P_{6}(C) P_{2}(C)+135 \lambda P_{4}(C)^{2}$

$$
-600 \lambda P_{4}(C) P_{2}(C)^{2}+280 \lambda P_{2}(C)^{4} \quad \bmod \text { torsion. }
$$

In this case $\lambda$ equals to the index of $P_{4}(K)$, i. e.

$$
\begin{equation*}
\lambda=\Lambda_{4}\left(0, p_{1}, p_{2}, p_{3}, p_{4}\right)\left[P_{4}(K)\right] \tag{5.17}
\end{equation*}
$$

by virtue of (5.3).
Another example is found in the manifold $W=F_{4} / \operatorname{Spin}(9)$ ([3] I, p. 534).
The Pontryagin class of $W$ is given by
(5. 18) $p_{1}=p_{3}=0, p_{2}=6 u, p_{4}=39 u^{2}, u^{2}[W]=1, u \in H^{8}(W, Z)$.

We have from (5.12)
(5. 19)

$$
A=-\frac{28}{3}, B=36, C=18, D=-92, E=\frac{145}{3}
$$

Hence we have

$$
\text { (5. 20) } \begin{aligned}
3 W \approx & -28 P_{8}(C)+108 P_{6}(C) P_{2}(C)+54 P_{4}(C)^{2} \\
& -276 P_{4}(C) P_{2}(C)^{2}+145 P(C) \quad \bmod \text { torsion. }
\end{aligned}
$$

The index of $W$ equals to 1 .
Of course our multiplicative series $\sum_{i} \Lambda_{i}$ is applicable for the cobordism decomposition of $X^{8}$ and $X^{12}$. The results coincide with those of $\S 3$.
6. Genus of submanifold. Let $V^{4 k}$ be any submanifold of $V^{4 k+2}$. We
assume that both manifolds are compact orientable and differentiable. Let $v \in H^{2}$ $\left(V^{4 k+2}, Z\right)$ be the cohomology class representing $V^{4 k}$. The Pontryagin class of the normal bundle of $V^{4 k}$ is given by $j^{*}\left(1+v^{2}\right)$, where $j$ denotes the injection $j$ : $V^{4 k} \rightarrow V^{4 k+2}$. Then the Pontryagin class of $V^{4 k}$ is given by
(6. 1) $1+p_{1}\left(V^{4 k}\right)+p_{2}\left(V^{4 k}\right)+\cdots \cdots=j^{*}\left[\left(1+p_{1}\left(V^{4 k+2}\right)+\cdots \cdots\right)\left(1+v^{2}\right)^{-1}\right]$
([1], S.86). Since $\sum_{i=0}^{\infty} \Gamma_{i}\left(y, p_{1}, \ldots \ldots, p_{i}\right) z^{i}$ is generated by $\frac{\sqrt{z}}{\operatorname{tgh} \sqrt{z}}\left(1+y \operatorname{tgh}^{2} \sqrt{z}\right)$ we have
(6. 2) $\sum_{i=0}^{\infty} \Gamma_{i}\left(y, p_{1}, \ldots \ldots, p_{i}\right)=j^{*}\left[\frac{\operatorname{tgh} v}{v\left(1+y \operatorname{tgh}^{2} v\right)} \sum_{i=0}^{\infty} \Gamma_{i}\left(y, p_{1}, \ldots \ldots, p_{i}\right)\right]$.

In general we have
(6. 3)

$$
j^{*}(X)\left[V^{4 k}\right]=v X\left[V^{4 k+2}\right],
$$

where $X$ denotes any $4 k$-cohomology class, i. e. $X \in H^{4 k}\left(V^{4 k+2}\right) .{ }^{1)}$ Hence we have from (3.2)
(6. 4) $\Gamma_{k}\left(y, p_{1}, \ldots \ldots, p_{k}\right)\left[V^{4 k}\right]^{2)}=\left[\kappa^{4 k+2}\left\{\frac{\operatorname{tgh} v}{1+y \operatorname{tgh}^{2} v} \sum_{i=0}^{\infty} \Gamma_{i}\left(y, p_{1}, \ldots \ldots, p_{i}\right)\right\}\right] \cdot\left[V^{4 k+2}\right]$

$$
\begin{aligned}
& =\left[\kappa ^ { 4 k + 2 } \left\{v-\left(y+\frac{1}{3}\right) v^{3}+\left(y^{2}+y+\frac{2}{15}\right) v^{5}\right.\right. \\
& -\left(\frac{17}{3^{2} \cdot 5 \cdot 7}+\frac{2}{15} y+\frac{3 y^{2}+2 y}{9}+\frac{45 y^{3}+60 y^{2}+17 y}{45}\right) v^{7} \\
& \left.+\cdots \cdots \cdot\} \sum_{i=0}^{\infty} \Gamma_{i}\left(y, p_{1}, \cdots \cdots, p_{i}\right)\right]\left[V^{4 k+2}\right] .
\end{aligned}
$$

For example we have
(6. 5) $\Gamma_{1}\left(y, p_{1}\right)\left[V^{4}\right]=\left\{\left(v p_{2}-v^{3}\right) y+\frac{1}{3}\left(v p_{1}-v^{3}\right)\right\}\left[V^{6}\right]$,
(6. 6) $\Gamma_{2}\left(y, p_{1}, p_{2}\right)\left[V^{8}\right]=\left[\left(v^{5}-v^{3} p_{1}+v p_{2}\right) y^{2}+\frac{1}{3}\left\{3 v^{5}-2 v^{3} p_{1}\right.\right.$

$$
\left.\left.+v\left(4 p_{2}-p_{1}^{2}\right)\right\} y+\frac{1}{45}\left\{6 v^{5}-5 v^{3} p_{1}+v\left(7 p_{2}-p_{1}^{2}\right)\right\}\right]\left[V^{10}\right]
$$

(6. 7) $\Gamma_{3}\left(y, p_{1}, p_{2}, p_{3}\right)\left[V^{12}\right]=\left[\left(-v^{7}+v^{5} p_{1}-v^{3} p_{2}+v p_{3}\right) y^{3}+\frac{1}{3}\left\{-5 v^{7}+4 v^{5} p_{1}\right.\right.$

[^0]\[

$$
\begin{aligned}
& \left.+\left(p_{1}^{2}-5 p_{2}\right) v^{3}+\left(6 p_{3}-p_{1} p_{2}\right) v\right\} y^{2}+\frac{1}{15}\left\{-11 v^{7}+7 v^{5} p_{1}\right. \\
& \left.+\left(2 p_{1}^{2}-9 p_{2}\right) v^{3}+\left(17 p_{3}-8 p_{1} p_{2}+2 p_{1}^{3}\right) v\right\} y+\frac{1}{3^{3} \cdot 5 \cdot 7}\left\{-51 v^{7}+42 v^{5} p_{1}\right. \\
& \left.\left.+7\left(p_{1}^{2}-7 p_{2}\right) v^{3}+\left(62 p_{3}-13 p_{1} p_{2}+2 p_{1}^{3}\right) v\right\}\right]\left[V^{14}\right] .
\end{aligned}
$$
\]

Next we consider the case where $V^{4 k}$ is a submanifold of a $V^{4 k+2 r}$ and both manifolds are compact orientable and differentiable. We assume that $V^{4 k}$ is determined by a sequence of cohomology classes $v_{1}, \ldots \ldots, v_{r} \in H^{2}\left(V^{4 k+2 r}, Z\right)([1] \mathrm{S} .87)$. In this case we have

$$
\begin{equation*}
j^{*}(X)\left[V_{4 k}\right]=v_{1} \ldots \ldots v_{r} X\left[V^{4 k+2 r}\right], \tag{6.8}
\end{equation*}
$$

where $X \in H^{4 k}\left(V^{4 k+2 r}\right)$ and $j$ denotes the injection $j: V^{4 k} \rightarrow V^{4 k+2 r}$. Applying (6. 4) many times we have
(6. 9) $\quad \Gamma_{k}\left(y, p_{1}, \ldots \ldots, p_{k}\right)\left[V^{4 k}\right]=\left[\kappa^{4 k+2 r}\left\{\left(\frac{\operatorname{tgh} v_{1}}{1+y \operatorname{tgh}^{2} v_{1}}\right) \cdots \cdots\left(\frac{\operatorname{tgh} v_{r}}{1+y \operatorname{tgh}^{2} v_{r}}\right)\right.\right.$

$$
\left.\left.\sum \Gamma_{i}\left(y, p_{1}, \ldots \ldots, p_{i}\right)\right\}\right]\left[V^{4 k+2 r}\right] .
$$

For example we have
(6. 10) $\Gamma_{1}\left(y, p_{1}\right)\left[V^{4}\right]=\left[\left(y+\frac{1}{3}\right)\left\{v_{1} v_{2} p_{1}-\left(v_{1} v_{2}^{3}+v_{2} v_{1}^{3}\right)\right\}\right]\left[V^{8}\right]$,
(6. 11)

$$
\begin{aligned}
& \Gamma_{2}\left(y, p_{1}, p_{2}\right)\left[V^{8}\right]=\left[\left\{v_{1}^{5} v_{2}+v_{2}^{5} v_{1}+v_{1}^{3} v_{2}^{3}-\left(v_{1} v_{2}^{3}+v_{2} v_{1}^{3}\right) p_{1}+v_{1} v_{2} p_{2}\right\} y^{2}\right. \\
& \quad+\left\{v_{1}^{5} v_{2}+v_{2}^{5} v_{1}+\frac{2}{3} v_{1}^{3} v_{2}^{3}-\frac{2}{3}\left(v_{1} v_{2}^{3}+v_{2} v_{1}^{3}\right) p_{1}\right. \\
& \left.\quad+\frac{1}{3} v_{1} v_{2}\left(4 p_{2}-p_{1}^{2}\right)\right\} y+\left\{\frac{2}{15}\left(v_{1}^{5} v_{2}+v_{2}^{5} v_{1}\right)\right. \\
& \left.\left.\quad+\frac{1}{9} v_{1}^{3} v_{2}^{3}-\frac{1}{9}\left(v_{1} v_{2}^{3}+v_{2} v_{1}^{3}\right) p_{1}+\frac{1}{45} v_{1} v_{2}\left(7 p_{2}-p_{1}^{2}\right)\right\}\right]\left[V^{12}\right]
\end{aligned}
$$

7. Cobordism decomposition of $X^{4 k} \subset X^{4 k+2}$. In this paragraph we shall study the cobordism decomposition of a $4 k$-manifold which is a submanifold of a $(4 k+2)$-manifold. First of all let us consider a $X^{8}$ imbedded in a $X^{10}$ where we assume that both manifolds are compact orientable and differentiable. Let $v \in H^{2}\left(X^{10}, Z\right)$ be a cohomology class corresponding to $X^{8}$ ([1] S. 87).
Suppose that

$$
\begin{equation*}
X^{8} \approx A P_{4}(C)+B P_{2}(C)^{2} \tag{7.1}
\end{equation*}
$$

Then we have from (6.6) and (3.2)

$$
\begin{align*}
A\left(10 y^{2}\right. & +5 y+1)+B(3 y+1)^{2}=\left[\left(v^{5}-v^{3} p_{1}+v p_{2}\right) y^{2}\right.  \tag{7.2}\\
& +\frac{1}{3}\left\{3 v^{5}-2 v^{3} p_{1}+v\left(4 p_{2}-p_{1}^{2}\right)\right\} y \\
& \left.+\frac{1}{45}\left\{6 v^{5}-5 v^{3} p_{1}+v\left(7 p_{2}-p_{1}^{2}\right)\right\}\right]\left[X^{10}\right] .
\end{align*}
$$

Comparing the coefficients of $y^{n}$ 's $(\alpha=0,1,2)$ we have
(7. 3) $\left\{\begin{array}{l}10 A+9 B=\left(v^{5}-v^{3} p_{1}+v p_{2}\right)\left[X^{10}\right], \\ 5 A+6 B=\frac{1}{3}\left\{3 v^{5}-2 v^{3} p_{1}+v\left(4 p_{2}-p_{1}^{2}\right)\right\}\left[X^{10}\right], \\ A+B=\frac{1}{45}\left\{6 v^{5}-5 v^{3} p_{1}+v\left(7 p_{2}-p_{1}^{2}\right)\right\}\left[X^{10}\right] .\end{array}\right.$

The first equation follows from two others. Solving (7.3) we have

$$
\left\{\begin{array}{l}
A=\frac{1}{5}\left(-v^{5}-2 v p_{2}+v p_{1}^{2}\right)\left[X^{10}\right]  \tag{7.4}\\
B=\frac{1}{9}\left(3 v^{5}-v^{3} p_{1}+5 v p_{2}-2 v p_{1}^{2}\right)\left[X^{10}\right] \\
\text { index }=A+B=\frac{1}{45}\left\{\left(6 v^{5}-5 v^{3} p_{1}+v\left(7 p_{2}-p_{1}^{2}\right)\right\}\left[X^{10}\right] .\right.
\end{array}\right.
$$

Thus the cobordism components of $a X^{8}$ are vniquely determined by $v$ and the Pontryagin classes of $X^{10}$.

Let us consider the case where $X^{10}=P_{5}(C)$. In this case the Pontryagin class takes the form

$$
\begin{equation*}
p=\left(1+g^{2}\right)^{6}=1+6 g^{2}+15 g^{4}+20 g^{6}, g \in H^{2}\left(P_{5}(C), Z\right) \tag{7.5}
\end{equation*}
$$

Hence we have

$$
\left\{\begin{array}{l}
A=\frac{1}{5}\left(-v^{5}+6 v g^{4}\right)\left[P_{5}(C)\right]  \tag{7.6}\\
B=\frac{1}{3}\left(v^{5}-2 v^{3} g+v g^{4}\right)\left[P_{5}(C)\right] \\
\text { index }=A+B=\frac{1}{15}\left(2 v^{5}-10 v^{3} g+23 v g^{4}\right)\left[P_{5}(C)\right]
\end{array}\right.
$$

Putting $v=\lambda g$ ( $\lambda$ : integer) we have

$$
\begin{equation*}
A=\frac{1}{5}\left(6 \lambda-\lambda^{5}\right), B=\frac{1}{3}\left(\lambda^{5}-2 \lambda^{3}+\lambda\right) \tag{7.7}
\end{equation*}
$$

$$
\text { and index }=\frac{1}{15}\left(2 \lambda^{5}-10 \lambda^{3}+23 \lambda\right) .
$$

It is easy to show that $A$ and $B$ are integers for every $\lambda$ and they change sign with $\lambda$. The actual values $A$ and $B$ in the simple cases are given by the following table:

|  | $v=g$ | $v=2 g$ | $v=3 g$ |
| :---: | :---: | ---: | ---: |
| $A$ | 1 | -4 | -45 |
| $B$ | 0 | 6 | 64 |
| index <br> $=A+B$ | 1 | 2 | 19 |
| ( 1 ) |  |  |  |

The rule (7.7) restricts the kind of differentiable 8 -dimensional orientable submanifold of $P_{5}(C)$.
The relation
(3. 12) $\quad P_{2}(K) \approx-2 P_{4}(C)+3 P_{2}(C)^{2}$
shows that $P_{2}(K)$ cannot be "cobordantes" with any differentiable 8-dimensional submanifold of $P_{5}(C)$. Concerning $Q_{4}=S O(6) / S O(2) \cdot S O(4)$ we see from (3.17) and (7.7) that $Q_{4}$ cannot be "cobordantes" with any differentiable 8 -dimensional submanifold of $P_{5}(C)$ other than those which are determined by $v= \pm 2 g$.

The case $X^{12} \subset X^{14}$. Let $X^{12}$ and $X^{14}$ be compact orientable and differentiable manifolds and the former be a submanifold of the latter. We denote the cohomology class corresponds to $X^{12}$ by $v \in H^{2}\left(X^{14}, Z\right)$. Suppose that

$$
X^{12} \approx A P_{6}(C)+B P_{4}(C) P_{2}(C)+C P_{2}(C)^{3}
$$

From (6.7) and (4.1) we have
(7. 10) $A\left(35 y^{3}+21 y^{2}+7 y+1\right)+B\left(10 y^{2}+5 y+1\right)(3 y+1)+C(3 y+1)^{3}$

$$
\begin{aligned}
& =\left[\left(-v^{7}+v^{5} p_{1}-v^{3} p_{2}+v p_{3}\right) y^{3}+\frac{1}{3}\left\{-5 v^{7}+4 v^{5} p_{1}\right.\right. \\
& \left.+v^{3}\left(p_{1}^{2}-5 p_{2}\right)+v\left(6 p_{3}-p_{1} p_{2}\right)\right\} y^{2}+\frac{1}{15}\left\{-11 v^{7}+7 v^{5} p_{1}\right. \\
& \left.+v^{3}\left(2 p_{1}^{2}-9 p_{2}\right)+v\left(17 p_{3}-8 p_{1} p_{2}+2 p_{1}^{3}\right)\right\} y+\frac{1}{3^{3} \cdot 5 \cdot 7}\left\{-51 v^{7}\right. \\
& \left.\left.+42 v^{5} p_{1}+7 v^{3}\left(p_{1}^{2}-7 p_{2}\right)+v\left(62 p_{3}-13 p_{1} p_{2}+2 p_{1}^{3}\right)\right\}\right]\left[X^{14}\right] .
\end{aligned}
$$

Comparing the coefficients of $y^{\alpha}$ 's $(\alpha=0,1,2,3)$ we have

$$
\left\{\begin{array}{c}
35 A+30 B+27 C=\left(-v^{7}+v^{5} p_{1}-v^{3} p_{2}+v p_{3}\right)\left[X^{14}\right]  \tag{7.11}\\
21 A+25 B+27 C=\frac{1}{3}\left\{-5 v^{7}+4 v^{5} p_{1}+v^{3}\left(p_{1}^{2}-5 p_{2}\right)\right. \\
\\
\left.+v\left(6 p_{3}-p_{1} p_{2}\right)\right\}\left[X^{14}\right]
\end{array}\right.
$$

$$
\begin{aligned}
7 A+8 B+9 C=\frac{1}{15}\{- & 11 v^{7}+7 v^{5} p_{1}+v^{3}\left(2 p_{1}^{2}-9 p_{2}\right) \\
& \left.+v\left(17 p_{3}-8 p_{1} p_{2}+2 p_{1}^{3}\right)\right\}\left[X^{14}\right] \\
A+B+C=\frac{1}{3^{3} \cdot 5 \cdot 7}\{- & 51 v^{7}+42 v^{5} p_{1}+7\left(p_{1}^{2}-7 p_{2}\right) v^{3} \\
& \left.+\left(62 p_{3}-13 p_{1} p_{2}+2 p_{1}^{3}\right) v\right\}\left[X^{14}\right] .
\end{aligned}
$$

The first equation follows from three others. Solving (7.11) we have
(7. 12)

$$
\left\{\begin{array}{l}
A=\frac{1}{7}\left\{-v^{7}+\left(3 p_{3}-3 p_{1} p_{2}+p_{1}^{3}\right) v\right\}\left[X^{14}\right] \\
B=\frac{1}{15}\left\{8 v^{7}-v^{5} p_{1}+\left(2 p_{2}-p_{1}^{2}\right) v^{3}+\left(-21 p_{3}+19 p_{1} p_{2}-6 p_{1}^{3}\right) v\right\}\left[X^{14}\right] \\
C=\frac{1}{27}\left\{-12 v^{7}+3 v^{5} p_{1}+\left(2 p_{1}^{2}-5 p_{2}\right) v^{3}\right. \\
\left.\quad+\left(28 p_{3}-23 p_{1} p_{2}+7 p_{1}^{3}\right) v\right\}\left[X^{14}\right] \\
\text { index }=A+B+C=\frac{1}{3^{3} \cdot 5 \cdot 7}\left\{-51 v^{7}+42 v^{5} p_{1}+7\left(p_{1}^{2}-7 p_{2}\right) v^{3}\right. \\
\\
\left.\quad+\left(62 p_{3}-13 p_{1} p_{2}+2 p_{1}^{3}\right) v\right\}\left[X^{14}\right] .
\end{array}\right.
$$

Thus the cobordism components of $X^{12}$ are uniquely determined by $v$ and the Pontryagin classes of $X^{14}$. When $X^{14}$ is $P_{7}(C)$ the Pontryagin class taks the form
(7. 13)

$$
\begin{aligned}
& p=\left(1+g^{2}\right)^{8}, \quad g \in H^{2}\left(P_{7}(C), Z\right), \\
& p_{1}=8 g^{2}, p_{2}=28 g^{4}, p_{3}=56 g^{6}, \quad g^{7}\left[P_{7}(C)\right]=1 .
\end{aligned}
$$

Hence we have from (6. 12)
(7. 14)

$$
\left\{\begin{aligned}
A & =\frac{1}{7}\left(-v^{7}+8 v g^{6}\right)\left[P_{7}(C)\right] \\
B & =\frac{8}{15}\left(v^{7}-v^{5} g^{2}-v^{3} g^{4}+v g^{8}\right)\left[P_{7}(C)\right] \\
C & =\frac{1}{9}\left(-4 v^{7}+8 v^{5} g^{2}-4 v^{3} g^{4}\right)\left[P_{7}(C)\right]
\end{aligned}\right.
$$

Putting $v=\lambda g$ ( $\lambda$ : integer) we have

$$
\begin{gather*}
A=\frac{1}{7}\left(8 \lambda-\lambda^{7}\right), B=\frac{8}{15}\left(\lambda^{7}-\lambda^{5}-\lambda^{3}+\lambda\right),  \tag{7.15}\\
C=\frac{1}{9}\left(-4 \lambda^{7}+8 \lambda^{5}-4 \lambda^{3}\right),
\end{gather*}
$$

$$
\text { index }=A+B+C=\frac{1}{3^{2} .5 .7}\left(-17 \lambda^{7}+112 \lambda^{5}-308 \lambda^{3}+528 \lambda\right)
$$

Changing $v$ over $g, 2 g$, and $3 g$ we have the following table:

|  | $v=g$ | $v=2 g$ | $v=3 g$ |
| :---: | :---: | :---: | :---: |
| $A$ | 1 | -16 | -309 |
| $B$ | 0 | 48 | 1024 |
| $C$ | 0 | -32 | -768 |
| index $=$ |  |  |  |
| $A+B+C$ | 1 | 0 | -53 |
| (2) |  |  |  |

It is easy to show that $A, B$ and $C$ are integers for every $\lambda$. We have seen

$$
\begin{gather*}
P_{3}(K) \approx-8 \lambda\left\{P_{6}(C)-\right.  \tag{4.7}\\
\left.3 P_{4}(C) P_{2}(C)+2 P_{2}(C)^{3}\right\}, \\
\lambda=u^{3}\left[P_{3}(K)\right], \\
u \in H^{4}\left(P_{3}(K), Z\right) .
\end{gather*}
$$

From (7.15) we see that $P_{3}(K)$
cannot be "ocbordantes" with any 12-dimensional differentiable submanifold of $P_{7}(C)$ other than those which are determined by $v= \pm 2 g$. The same thing holds for $Q_{6}((4.9))$.
8. Next we consider the case $X^{8} \subset X^{12}$. We impose the same conditions upon $X^{8}$ and $X^{12}$ as before. Let $X^{8}$ be determined by $v_{1}, v_{2} \in H^{2}\left(X^{12}, Z\right)$ ([1] S.87). We have proved that
(6. 11) $\Gamma_{2}\left(y, p_{1}, p_{2}\right)\left[X^{8}\right]=\left[\left\{v_{1}^{5} v_{2}+v_{2}^{5} v_{1}+v_{1}^{3} v_{2}^{3}-\left(v_{1} v_{2}^{3}+v_{2} v_{1}^{3}\right) p_{1}+v_{1} v_{2} p_{2}\right\} y^{2}\right.$

$$
\begin{aligned}
& +\left\{v_{1}^{5} v_{2}+v_{2}^{5} v_{1}+\frac{2}{3} v_{1}^{3} v_{2}^{3}-\frac{2}{3}\left(v_{1} v_{2}^{3}+v_{2} v_{1}^{3}\right) p_{1}\right. \\
& \left.+\frac{1}{3} v_{1} v_{2}\left(4 p_{2}-p_{1}^{2}\right)\right\} y+\left\{\frac{2}{15}\left(v_{1}^{5} v_{2}+v_{2}^{5} v_{1}\right)+\frac{1}{9} v_{1}^{3} v_{2}^{3}\right. \\
& \left.\left.-\frac{1}{9}\left(v_{1} v_{2}^{3}+v_{2} v_{1}^{3}\right) p_{1}+\frac{1}{45} v_{1} v_{2}\left(7 p_{2}-p_{1}^{2}\right)\right\}\right]\left[X^{12}\right] .
\end{aligned}
$$

Suppose that

$$
\begin{equation*}
X^{8} \approx A P_{4}(C)+B P_{2}(C)^{2} \tag{8.2}
\end{equation*}
$$

Then we have from (6.11)

$$
\begin{equation*}
A\left(10 y^{2}+5 y+1\right)+B(3 y+1)^{2}=\left[\left\{v_{1}^{5} v_{2}+v_{2}^{5} v_{1}+\cdots \cdots\right]\left[X^{12}\right] .\right. \tag{8.3}
\end{equation*}
$$

Comparing the coefficients of $y^{\alpha}$ s $(\alpha=0,1,2)$ we have

$$
\left\{\begin{aligned}
10 A+9 B & =\left\{v_{1}^{5} v_{2}+v_{2}^{5} v_{1}+v_{1}^{3} v_{2}^{3}-\left(v_{1} v_{2}^{3}+v_{2} v_{1}^{3}\right) p_{1}+v_{1} v_{2} p_{2}\right\}\left[X^{12}\right] \\
5 A+6 B & =\left\{v_{1}^{5} v_{2}+v_{2}^{5} v_{1}+\frac{2}{3} v_{1}^{3} v_{2}^{3}-\frac{2}{3}\left(v_{1} v_{2}^{3}+v_{2} v_{1}^{3}\right) p_{1}\right.
\end{aligned}\right.
$$

$$
\text { (8. 4) }\left\{\begin{array}{c}
\left.\quad+\frac{1}{3} v_{1} v_{2}\left(4 p_{2}-p_{1}^{2}\right)\right\}\left[X^{12}\right] \\
A+B=\left\{\frac{2}{15}\left(v_{1}^{5} v_{2}+v_{2}^{5} v_{1}\right)+\frac{1}{9} v_{1}^{3} v_{2}^{3}-\frac{1}{9}\left(v_{1} v_{2}^{3}+v_{2} v_{1}^{3}\right) p_{1}\right. \\
\\
\\
\left.+\frac{1}{45} v_{1} v_{2}\left(7 p_{2}-p_{1}^{2}\right)\right\}\left[X^{12}\right] .
\end{array}\right.
$$

The first equation follows from two others. Solving (8.4) we have
(8. 5)

$$
\begin{aligned}
& A=\left\{-\frac{1}{5}\left(v_{1}^{5} v_{2}+v_{2}^{5} v_{1}\right)+\frac{1}{5}\left(P_{1}^{2}-2 P_{2}\right) v_{1} v_{2}\right\}\left[X^{12}\right] \\
& B=\left\{\frac{1}{3}\left(v_{1}^{5} v_{2}+v_{2}^{5} v_{1}\right)+\frac{1}{9} v_{1}^{3} v_{2}^{3}-\frac{1}{9}\left(v_{1} v_{2}^{3}+v_{2} v_{1}^{3}\right) p_{1}\right. \\
& \\
& \left.+\frac{1}{9}\left(5 p_{2}-2 p_{1}^{2}\right) v_{1} v_{2}\right\}\left[X^{12}\right]
\end{aligned} \begin{aligned}
\text { index }=A+B & =\left\{\frac{2}{15}\left(v_{1}^{5} v_{2}+v_{2}^{5} v_{1}\right)+\frac{1}{9} v_{1}^{3} v_{2}^{3}-\frac{1}{9}\left(v_{1} v_{2}^{3}\right.\right. \\
& \left.\left.+v_{2} v_{1}^{3}\right) p_{1}+\frac{1}{45}\left(7 p_{2}-p_{1}^{2}\right) v_{1} v_{2}\right\}\left[X^{12}\right] .
\end{aligned}
$$

Thus the coefficients of cobordism decomposition of $\mathrm{X}^{8}$ are uniquely determined by $v_{1}, v_{2}$ and the Pontryagin class of $X^{12}$.

When $X^{12}=P_{6}(C)$, the Pontryagin class takes the form
(8. 6) $\left\{\begin{array}{l}p=\left(1+g^{2}\right)^{7}=1+7 g^{2}+21 g^{4}+35 g^{8}, g \in H^{2}\left(P_{6}(C), Z\right), \\ g^{6}\left[P_{6}(C)\right]=1 .\end{array}\right.$

Hence we have
(8. 7)

$$
\left\{\begin{array}{l}
A=\left\{-\frac{1}{5}\left(v_{1}^{5} v_{2}+v_{2}^{5} v_{1}\right)+\frac{7}{5} v_{1} v_{2} g^{4}\right\}\left[P_{6}(C)\right] \\
B=\left\{\frac{1}{3}\left(v_{1}^{5} v_{2}+v_{2}^{5} v_{1}\right)+\frac{1}{9} v_{1}^{3} v_{2}^{3}-\frac{7}{9}\left(v_{1} v_{2}^{3}+v_{2} v_{1}^{3}\right) g^{2}\right. \\
\\
\left.\quad+\frac{7}{9} v_{1} v_{2} g^{4}\right\}\left[P_{6}(C)\right] .
\end{array}\right.
$$

Putting
(8. 8)

$$
v_{1}=\lambda g, v_{2}=\mu g(\lambda, \mu: \text { integers })
$$

we have
(8. 9)

$$
\left\{\begin{array}{l}
A=-\frac{1}{5}\left(\lambda^{5} \mu+\mu^{5} \lambda\right)+\frac{7}{5} \lambda \mu, \\
B=\frac{1}{3}\left(\lambda^{5} \mu+\mu^{5} \lambda\right)+\frac{1}{9} \lambda^{3} \mu^{3}-\frac{7}{9}\left(\lambda \mu^{3}+\mu^{3} \lambda\right)+\frac{7}{9} \lambda \mu, \\
\text { index }=A+B=\frac{2}{15}\left(\lambda^{5} \mu+\mu^{5} \lambda\right)+\frac{1}{9} \lambda^{3} \mu^{3} \\
\quad-\frac{7}{9}\left(\lambda \mu^{3}+\mu \lambda^{3}\right)+\frac{98}{45} \lambda \mu .
\end{array}\right.
$$

For example $A$ and $B$ take the following values:

|  | $\lambda=\mu=1$ | $\lambda=2$, <br> $\mu=1$ | $\lambda=\mu=2$ |
| :---: | :---: | :---: | ---: |
| $A$ | 1 | -4 | -20 |
| $B$ | 0 | 6 | 28 |
| index <br> $=A+B$ | 1 | 2 | 8 |
| ( 3 ) |  |  |  |

determined by $\lambda=2, \mu=1$.

It is easy to show that $A$ and $B$ are integers for every $\lambda$ and $\mu$. $P_{2}(K)$ cannot be cobordantes with any differentiable 8-dimensional submanifold of $P_{6}(C)$ determined by any two cohomology classes $v_{1}, v_{2} \in H^{2}\left(P_{6}(C), Z\right)$. The $Q_{4}$ has some possibility because of the existence of the submanifold

## REFERENCES

[1] F. HIRZEBRUCH, Neue topologische Methoden in der algebraischen Geometrie, 1956.
[2] R. THOM, Quelques propriétés globales des variétés différentiables, Comm. Math. Helvet., 28(1954), 17-86.
[3] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, II, Amer. Journ. of Math., 80 (1958), 458-538, 81(1959), 315-382.
[4] M. AdActi, On the group of cobordism $\Omega^{k}$, Nagoya Math. Journ., 13(1958), 135-156.

UTsunomiya University, Japan.


[^0]:    1) Precisely speaking $x \in H^{4 k}\left(V^{4 k+2 r}, A\right) \otimes B$ ( $A, B$ additive groups).
    2) $\kappa^{n}$ denotes the $n$-component of a cohomology ring.
