ON DIFFERENTIABLE MANIFOLDS WITH CERTAIN STRUĆTURES WHICH ARE CLOSELY RELATED TO ALMOST CONTACT STRUCTURE. II

Shigeo Sasaki and Yoji Hatakeyama

(Received January 10, 1961)

1. Introduction. In the previous paper I [2], one of the authors defined the notions of manifolds with (ϕ, ξ, η)-structure and of manifolds with (ϕ, ξ, η, g)-structure and studied some algebraic properties of these manifolds. By definition, a differentiable manifold $M^{2^{n+1}}$ with (ϕ, ξ, η)-structure is a manifold with three tensor fields ϕ_{j}^{i}, ξ^{i} and η_{j} defined over $M^{2 n+1}$ which satisfy the relations

$$
\begin{gather*}
\operatorname{rank}\left|\phi_{j}^{i}\right|=2 n, \tag{1.1}\\
\xi^{i} \eta_{i}=1, \tag{1.2}\\
\phi_{j}^{i} \xi^{j}=0, \tag{1.3}\\
\phi_{j}^{i} \eta_{i}=0, \tag{1.4}\\
\phi_{j}^{\prime} \phi_{k}^{i}=-\delta_{k}^{i}+\xi^{i} \eta_{k} . \tag{1.5}
\end{gather*}
$$

Every differentiable manifold with (ϕ, ξ, η)-structure has a positive definite Riemannian metric g such that

$$
\begin{gather*}
g_{i j} \xi^{j}=\eta_{i}, \tag{1.6}\\
g_{i j} \phi_{h}^{\prime} \phi_{k}^{j}=g_{h k}-\eta_{h} \eta_{k}, \tag{1.7}\\
g_{i n} \phi_{j}^{h}=-g_{j h} \phi_{i}^{h}\left(\equiv \phi_{i j}\right) . \tag{1.8}
\end{gather*}
$$

We call such metric g an associated Riemannian metric of the ($\phi, \boldsymbol{\xi}, \eta$)structure. Any manifold with (ϕ, ξ, η)-structure and its associated Riemannian metric is called a manifold with (ϕ, ξ, η, g)-structure.

In this paper, we shall study mainly about some tensor fields defined by (ϕ, ξ, η)-structures and connections which leave ϕ_{j}^{i}, ξ^{i} and η_{i} covariant constant. Notations are same as in I.
2. Some tensors on manifolds with (ϕ, ξ, η)-structure. Let $M^{2 n+1}$ be a differentiable manifold with (ϕ, ξ, η)-structure and R be a real line, and consider the product manifold $M^{2_{+1}} \times R$. We take a sufficiently fine open covering \mathfrak{u} of $M^{2^{n+1}}$ by coordinate neighborhoods. If we denote coordinates of
U in \mathfrak{U} by $x^{i}(i, j, k=1,2, \ldots \ldots, 2 n+1)$ and a cartesian coordinate of R by x^{∞}, then (x^{i}, x^{∞}) can be considered as a set of coordinates of $U \times R$ and $\left\{U^{T} \times R \mid\right.$ $U \in \mathfrak{u}\}$ constitutes an open covering of $M^{2 n+1} \times R$ by coordinate neighborhoods.

Now, suppose that $U, U^{\prime}\left(U \cap U^{\prime} \neq \phi\right)$ belong to \mathfrak{U} and $x^{i}, x^{i^{\prime}}$ are their coordinates and let

$$
\begin{equation*}
x^{t^{\prime}}=x^{i^{\prime}}\left(x^{1}, \ldots \ldots, x^{2 n+1}\right) \tag{2.1}
\end{equation*}
$$

be the coordinate transformation in $U \cap U^{\prime}$. We define the coordinate transformation between $U \times R$ and $U^{\prime} \times R$ by

$$
\left\{\begin{array}{l}
x^{i^{\prime}}=x^{i^{\prime}}\left(x^{1}, \ldots \ldots \ldots, x^{2 n+1}\right) \tag{2.2}\\
x^{\infty^{\prime}}=x^{\infty}
\end{array}\right.
$$

Making use of the product manifold $M^{2 n+1} \times R$ and the pseudo-group of the type (2.2), we shall define four tensors $N_{j k}^{i}, N_{j}^{i}, N_{j k}$ and N_{j} over $M^{2 n_{+1}}$. We begin with the following

Lemma 1. If we put

$$
\begin{equation*}
F_{j}^{i}=\phi_{i}^{i}, F_{\infty}^{i}=\xi^{i}, F_{j}^{\infty}=-\eta_{j}, F_{\infty}^{\infty}=0 \tag{2.3}
\end{equation*}
$$

in coordinate neighborhoods $\{U \times R \mid U \in \mathfrak{U}\}$, then $F^{A_{B}}(A, B, C=1,2, \ldots$, $2 n+1, \infty)$ defines a field of mixed tensor over $M^{2 n+1} \times R$ with respect to the pseudo-group of transformations of the type (2.2), and $F^{4}{ }_{B}$ gives an almost complex structure on $M^{2 n+1} \times R$.

PROOF. As the Jacobian matrix of the coordinate transformation (2.2) is given by

$$
\left(\begin{array}{cc}
\frac{\partial x^{i^{\prime}}}{\partial x^{j}} & 0 \\
0 & 1
\end{array}\right)
$$

we get

$$
\begin{aligned}
F_{j^{\prime}}^{i^{\prime}} & =\phi_{j^{\prime}}^{\prime^{\prime}}=\phi_{j}^{i} \frac{\partial x^{i^{\prime}}}{\partial x^{i}} \frac{\partial x^{j}}{\partial x^{j^{\prime}}}=F_{j}^{i} \frac{\partial x^{i^{\prime}}}{\partial x^{i}} \frac{\partial x^{j}}{\partial x^{j^{\prime}}} \\
& =F_{B}^{A} \frac{\partial x^{i^{\prime}}}{\partial x^{4}} \frac{\partial x^{B}}{\partial x^{j^{\prime}}} \\
F_{\infty^{\prime}}^{i^{\prime}} & =\xi^{i^{\prime}}=\xi^{i} \frac{\partial x^{i^{\prime}}}{\partial x^{i}}=F_{B}^{A} \frac{\partial x^{i^{\prime}}}{\partial x^{4}} \frac{\partial x^{B}}{\partial x^{\infty^{\prime}}} \\
F_{j^{\prime}}^{\infty^{\prime}} & =-\eta_{j^{\prime}}=-\eta_{j} \frac{\partial x^{j}}{\partial x^{j^{\prime}}}=F_{B}^{A} \frac{\partial x^{\infty^{\prime}}}{\partial x^{4}} \frac{\partial x^{B}}{\partial x^{j^{\prime}}},
\end{aligned}
$$

$$
F_{\infty^{\prime}}^{\infty \prime}=F_{B}^{4} \frac{\partial x^{\infty^{\prime}}}{\partial x^{4}} \frac{\partial x^{B}}{\partial x^{\infty^{\prime}}},
$$

which shows that F_{B}^{A} defines a tensor field on the product manifold $M^{2^{n+1}} \times R$.
Making use of the properties (1.1)~(1.5), we can easily see that the tensor F_{B}^{A} satisfies

$$
\begin{equation*}
F_{B}^{A} F_{C}^{B}=-\delta_{C}^{A} . \tag{2.4}
\end{equation*}
$$

Now the Nijenhuis tensor of this almost complex structure is given by

$$
\begin{equation*}
N_{B C}^{A}=F_{C}^{E}\left(\partial_{E} F_{B}^{A}-\partial_{B} F_{E}^{A}\right)-F_{B}^{E}\left(\partial_{E} F_{C}^{A}-\partial_{C} F_{E}^{A}\right) . \tag{2.5}
\end{equation*}
$$

If we calculate the components of this tensor by grouping their indices, in two groups ($1,2, \ldots \ldots \ldots, 2 n+1$) and ∞, we get

$$
\left\{\begin{align*}
& N_{j k}^{i}=\phi_{k}^{h}\left(\partial_{h} \phi_{j}^{i}-\partial_{j} \phi_{h}^{i}\right)-\phi_{j}^{h}\left(\partial_{h} \phi_{k}^{i}-\partial_{k} \phi_{h}^{i}\right) \tag{2.6}\\
&-\eta_{j} \partial_{k} \xi^{i}+\eta_{k} \partial_{j} \xi^{i}, \\
& N_{j k} \equiv N_{j k}^{\infty}=\phi_{k}^{h}\left(\partial_{j} \eta_{h}-\partial_{h} \eta_{j}\right)-\phi_{j}^{h}\left(\partial_{k} \eta_{h}-\partial_{h} \eta_{k}\right), \\
& N_{j}^{i} \equiv N_{j \infty}^{i}=\xi^{h}\left(\partial_{h} \phi_{j}^{i}-\partial_{j} \phi_{h}^{i}\right)-\phi_{j}^{h} \partial_{h} \xi^{i}, \\
& N_{j} \equiv N_{\infty j}^{\infty}=\xi^{i}\left(\partial_{i} \eta_{j}-\partial_{j} \eta_{i}\right) .
\end{align*}\right.
$$

Now we suppose that an affine connection $\Gamma_{j k}^{i}$ is given on the manifold $M^{2 n+1}$. We denote the torsion tensor of the connection by

$$
\begin{equation*}
S_{j k}^{i}=\frac{1}{2}\left(\Gamma_{j k}^{t}-\Gamma_{k j}^{i}\right), \tag{2.7}
\end{equation*}
$$

and denote the covariant differentiation by a comma, then we can easily see that the four sets of components $N_{j k}^{i}, N_{j}^{i}, N_{j k}$ and N_{j} can be written as follows:

$$
\begin{align*}
& N_{j k}^{t}=\phi_{k}^{k}\left(\phi_{j, h}^{i}-\phi_{l, j}^{i}\right)-\phi_{j}^{h}\left(\phi_{k, h}^{i}-\phi_{h, k}^{i}\right)+\xi_{, j}^{i} \eta_{k}-\xi_{, k}^{i} \eta_{j} \\
& -2 S_{m h}^{i} \phi_{j}^{m} \phi_{k}^{h}+2 \phi_{m}^{i}\left(S_{j h}^{m} \phi_{k}^{h}-S_{k l l}^{m} \phi_{j}^{h}\right)+2 S_{j k}^{2}, \\
& N_{j}^{i}=\xi^{h}\left(\phi_{j, h}^{i}-\phi_{h, j}^{i}\right)-\phi_{j}^{h} \xi_{, k}^{i} \\
& +2 S_{j / L}^{m} \phi_{m}^{i} \xi^{n}-2 S_{m h}^{i} \phi_{j}^{m} \xi^{h}, \tag{2.8}\\
& N_{j k}=\phi_{k}^{n}\left(\eta_{h, j}-\eta_{j, k}\right)-\phi_{j}^{\prime \prime}\left(\eta_{h, k}-\eta_{k, h}\right) \\
& +2 \eta_{m}\left(S_{h j}^{m} \phi_{k}^{h}-S_{n k}^{m} \phi_{j}^{n}\right), \\
& N_{j}=\xi^{i}\left(\eta_{j, i}-\eta_{i, j}\right)-2 S_{i j}^{h} \xi^{i} \eta_{h} .
\end{align*}
$$

Hence, we get the following
THEOREM 1. If $M^{2 n+1}$ is a manifold with (ϕ, ξ, η)-structure, then the four sets of components $N_{j k}^{i}, N_{j}^{i}, N_{i k}$ and N_{j} of the Nijenhuis tensor of the almost complex structure on $M^{2 n+1} \times R$ give four tensors on the manifold
$M^{2 n+1}$ which are uniquely determined by the (ϕ, ξ, η)-structure.
Especially, when the connection $\Gamma_{j k}^{j}$ is symmetric, (2.8) can be simplified as follows:

$$
\left\{\begin{array}{l}
N_{j k}^{i}=\phi_{k}^{n}\left(\phi_{,, h}^{i}-\phi_{h, j}^{i}\right)-\phi_{j}^{h}\left(\phi_{k, h}^{i}-\phi_{h, k}^{i}\right)+\xi_{, j}^{i} \eta_{k}-\xi_{, k}^{i} \eta_{j}, \tag{2.9}\\
N_{j}^{i}=\xi^{h}\left(\phi_{, h}^{i}-\phi_{h, j}^{i}\right)-\phi_{j}^{h} \xi_{, h,}^{i} \\
N_{j k}=\phi_{k}^{h}\left(\eta_{h, j}-\eta_{j, h}\right)-\phi_{j}^{h}\left(\eta_{h, k}-\eta_{k, h}\right), \\
N_{j}=\xi^{(}\left(\eta_{j, i}-\eta_{i, j}\right) .
\end{array}\right.
$$

3. Some properties of the tensor fields $N_{j k}^{i}, N_{j}^{i}, N_{j k}$ and N_{j}. In this section we study some properties of the tensors defined in $\S 2$. If we calculate the Lie derivatives of $\boldsymbol{\eta}_{j}$ and ϕ_{j}^{\prime} with respect to the infinitesimal transformation ξ^{i}, we get

$$
\begin{aligned}
(\mathcal{L}(\xi) \eta)_{j} & =\xi^{k} \partial_{k} \eta_{j}+\eta_{k} \partial_{j} \xi^{k} \\
& =\xi^{k} \partial_{k} \eta_{j}-\xi^{k} \partial_{j} \eta_{k}=N_{j}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(£^{(\xi) \phi}\right)_{j}^{i} & =\xi^{k} \partial_{k} \phi_{j}^{\prime}-\phi_{j}^{k} \partial_{k} \xi^{t}+\phi_{k}^{i} \partial_{j} \xi^{k} \\
& =\xi^{k} \partial_{k} \phi_{j}^{k}-\phi_{j}^{k} \partial_{k} \xi^{k}-\xi^{k} \partial_{j} \phi_{k}^{i} \\
& =N_{j}^{i} .
\end{aligned}
$$

Therefore we have the following
THEOREM 2.

$$
\text { (3. 1) } \quad N_{j}^{i}=(\mathcal{L}(\xi) \phi)_{j}^{i},
$$

$$
\text { (3.2) } \quad N_{j}=(\mathcal{L}(\xi) \cdot \eta)_{j} .
$$

COROLLARY 1. $N_{j}=0$ if and only if η_{j} is invariant under the transformations generated by the infinitesimal transformation ξ^{i}.

COROLLARY 2. $N_{j}^{i}=0$ if and only if ϕ_{j}^{i} is invariant under the transformations generated by the infinitesimal transformation ξ^{i}.

We know that the Nijenhuis tensor $N_{B C}^{A}$ is hybrid with respect to the indices A and C and pure with respect to the indices B and C. The condition of hybrid is, by definition, given by

$$
\begin{equation*}
N_{B E}^{A} F_{C}^{E}=-N_{B C}^{E} F_{E}^{A} . \tag{3.3}
\end{equation*}
$$

If we write down the components of both sides of the last equation by grouping their indices in two groups $(1,2, \ldots \ldots \ldots, 2 n+1)$ and ∞, we get the following eight relations

$$
\left\lvert\, \begin{aligned}
& \phi_{h}^{i} N_{i k}^{h}+N_{j h}^{i} \phi_{k}^{h}+\xi^{i} N_{j k}-N_{j}^{i} \eta_{k}=0, \\
& N_{j n}^{i} \xi^{k}+\phi_{h}^{\prime} N_{j}^{h}-\xi^{i} N_{j}=0,
\end{aligned}\right.
$$

$$
\begin{align*}
& \eta_{h} N_{j h}^{h}-N_{j h} \phi_{k}^{h}-N_{j} \eta_{k}=0, \tag{3.4}\\
& \phi_{h}^{h} N_{j}^{h}+N_{h}^{\prime} \phi_{j}^{h}-\xi^{\prime} N_{j}=0, \\
& N_{h}^{i} \xi^{h}=0, \\
& \eta_{h} N_{j}^{h}-N_{j k} \xi^{h}=0, \\
& \eta_{h} N_{j}^{h}+N_{h} \phi^{h}{ }_{j}=0, \\
& N_{h} \xi^{h}=0,
\end{align*}
$$

The condition of purity is, by definition, given by

$$
\begin{equation*}
N_{B E}^{A} F_{C}^{E}=N_{E C}^{A} F_{B .}^{E} . \tag{3.5}
\end{equation*}
$$

Although, this is an immediate consequence of (3.3), we shall write down the components of both sides as (3.4) for later use, omitting equations which appear in (3.4) too ${ }^{1)}$.

$$
\begin{align*}
& N_{j h}^{i} \phi_{k}^{h}-N_{h k}^{i} \phi_{j}^{h}-N_{j}^{i} \eta_{k}-N_{k}^{1} \eta_{j}=0, \\
& N_{j h}^{i} \xi^{h}-N_{h}^{i} \phi_{j}^{h}=0, \tag{3.6}\\
& N_{j h} \phi_{k}^{h}-N_{h k} \phi_{j}^{h}+N_{j} \eta_{k}-N_{k} \eta_{j}=0, \\
& N_{j h} \xi^{h}+N_{l} \phi_{j}^{h}=0 .
\end{align*}
$$

THEOREM 3. For any manifold with (ϕ, ξ, η)-structure, the relations

$$
\begin{align*}
& N_{j}=N_{h k} \phi_{j}^{h} \xi^{c}, \\
& N_{j}=\eta_{h} N_{l}^{h} \phi_{j}^{l}, \\
& N_{j}=N_{j h}^{i} \xi^{h} \eta_{i}, \tag{3.7}\\
& N_{j k}=-\eta_{i} N_{j h}^{i} \phi_{k}^{h}+N_{j}^{i} \eta_{i} \eta_{k}, \\
& N_{j}^{t}=\phi_{h}^{i} N_{j k}^{h} \xi^{k}+\xi^{i} N_{j k} \xi^{c}
\end{align*}
$$

hold good.
Proof. We can easily verify that (3.7) follows from (3.6) $)_{4}$ and (3.4) ${ }_{8}$, $(3.7)_{2}$ follows from (3.4) and (3.4) $)_{8}$, (3.7) $)_{3}$ follows from (3.4) ${ }_{2}$, and (3.7) ${ }_{4}$, (3.7) 5 follow from (3.4).

From (3.7) we can easily see that the following Theorem is true.
THEOREM 4. If any one of $N_{j k}, N_{j}^{t}$ and $N_{j k}^{i}$ vanishes, then N_{j} vanishes. If N_{j}^{i} and $N_{j k}^{i}$ vanish, then $N_{j k}$ vanishes. If $N_{j k}$ and $N_{j k}^{i}$ vanish, then N_{j}^{i} vanishes.

Now, we put

$$
\begin{equation*}
a_{j k}=\partial_{j} \eta_{k}-\partial_{k} \eta_{j}, \tag{38}
\end{equation*}
$$

[^0]then $\frac{1}{2} a_{j k} d x^{j} \wedge d x^{k}$ is the exterior derivative of $\eta=\eta_{j} d x^{j}$ and we have the following

THEOREM 5. $N_{j k}=0$, if and only if

$$
\begin{equation*}
a_{j k} \phi_{l}^{\prime} \phi_{m}^{k}=a_{l m}, \tag{3.9}
\end{equation*}
$$

i.e., if and only if $d \eta$ is invariant under ϕ_{j}^{i}.

Proof. Necessity. Since $N_{j k}=0$, we have

$$
\phi_{k}^{h} a_{j n}=\phi_{j}^{h} a_{k n} .
$$

If we multiply with the last equation by ϕ_{l}^{\prime} and sum for j, we get

$$
\begin{aligned}
a_{j h} \phi_{k}^{h} \phi_{l}^{j} & =\left(-\delta_{l}^{h}+\xi^{h} \eta_{l}\right) a_{k h} \\
& =-a_{k l}+a_{k h} \xi^{h} \eta_{l} .
\end{aligned}
$$

On the other hand, by virtue of the definition of N_{j} and Theorem 3, we have

$$
a_{k h} \xi^{h}=-N_{k}=0
$$

Therefore

$$
a_{j k} \phi_{i}^{i} \phi_{m}^{k}=a_{l m} .
$$

Sufficiency. From

$$
a_{j k} \phi_{i}^{j} \phi_{m}^{k}=a_{l m},
$$

we get

$$
a_{l m} \xi^{m}=a_{j k} \phi_{i}^{j} \phi_{m}^{k} \xi^{m}=0
$$

So we have

$$
\begin{aligned}
a_{l m} \phi_{p}^{m} & =a_{j k} \phi_{i}^{j} \phi_{m}^{k} \phi_{p}^{m}=a_{j k} \phi_{l}^{i}\left(-\delta_{p}^{k}+\xi^{k} \eta_{p}\right) \\
& =-a_{j p} \phi_{i l}^{j} .
\end{aligned}
$$

Hence

$$
N_{j k}=\phi_{k}^{h} a_{j h}-\phi_{j}^{h} a_{k h}=0
$$

Q.E. D.

COROLLARY 1. $N_{j k}=0$ if and only if

$$
\begin{equation*}
a_{j k} \psi_{i}^{j} \psi_{m}^{k}=a_{l m} \tag{3.10}
\end{equation*}
$$

where we have put

$$
\begin{equation*}
\psi_{l}^{j}=\phi_{l}^{j}+\xi^{j} \eta_{l} \tag{3.11}
\end{equation*}
$$

PROOF. The necessity is easily seen, since

$$
a_{j k} \phi_{l}^{\prime} \phi_{m}^{k}=a_{l m y} \quad a_{j k} \xi^{j}=0 .
$$

To prove the sufficiency, we multiply (3.10) by ξ^{m} and sum for m, then we get

$$
a_{l m} \xi^{m}=a_{j k} \xi^{k} \psi_{l .}^{\prime}
$$

So $a_{l m} \xi^{m}$ is the characteristic covector of ψ_{l}^{j} corresponding to the characteristic value 1 , therefore

$$
a_{l m} \xi^{m}=\lambda \eta_{l} .
$$

And from this we get

$$
\lambda=a_{l m} \xi^{m} \xi^{l}=0 .
$$

So we get

$$
a_{j k} \xi^{k}=0
$$

Making use of this and the above condition, we have

$$
a_{j k} \phi_{l}^{\prime} \phi_{m}^{k}=a_{l m}
$$

Therefore by virtue of Theorem 4, we get

$$
N_{j k}=0
$$

COROLLARY 2. If the (ϕ, ξ, η)-structure is the one induced from a contact structure, then $N_{j k}$ and N_{j} vanish identically.

PROOF. Since the (ϕ, ξ, η)-structure is given by a contact structure we have

$$
a_{i j}=\phi_{i j} .
$$

On the other hand, we may easily show that

$$
\begin{equation*}
\phi_{i j} \phi_{k}^{\prime} \phi_{l}^{\prime}=\phi_{k l} . \tag{3.12}
\end{equation*}
$$

Therefore, from the last Theorem, we see that

$$
N_{j k}=0 .
$$

$N_{j}=0$ follows from Theorem 4.
Q.E.D.

Moreover, relative to the tensor $N_{j k}^{i}$, we have the following
THEOREM 6. If the tensor $N_{j k}^{i}$ vanishes, then other three tensors $N_{j}, N_{j k}$ and N_{j}^{t} vanish.

PROOF. As $N_{j c}^{i}=0, N_{j}=0$ by Theorem 4. Hence, we get from (3.4) ${ }_{3}$ and
(3.6)

$$
\begin{aligned}
& N_{j h} \xi_{k}^{h}=0, \\
& N_{j \xi} \xi^{h}=0 .
\end{aligned}
$$

Therefore, we get

$$
N_{j h}=0 .
$$

As $N_{j k}^{t}$ and $N_{j k}$ vanish, we see by virtue of Theorem 4 that

$$
N_{j}^{t}=0
$$

Q.E.D.
4. An affine connetion which leaves the tensor ϕ_{j}^{i} covariant constant. On an almost complex manifold, we can always find affine connections which leave the fundamental collineation covariant constant. In this section, we shall find such a connection on a manifold with (ϕ, ξ, η)-structure and study some properties of this connection. We begin with the following

THEOREM 7. Let $\stackrel{n}{\Gamma}_{j k}^{i}$ be an arbitrary affine connection on a manifold with (ϕ, ξ, η)-structure, and put

$$
\begin{equation*}
T_{j k}^{i}=-\frac{1}{2} \phi_{j, k}^{m} \phi_{m}^{i}-\frac{1}{2} \xi_{, k}^{i} \eta_{j}+\xi^{i} \eta_{j, k} \tag{4.1}
\end{equation*}
$$

where the comma is the covariant differentiation with respect to the connection $\dot{\Gamma}_{j k}^{j}$. Then ϕ_{j}^{i} is covariant constant with respect to the connection defined by

$$
\begin{equation*}
\Gamma_{j k}^{t}=\stackrel{0}{\Gamma}_{j k}^{t}+T_{j k}^{t} \tag{4.2}
\end{equation*}
$$

PROOF. If we denote the covatiant differentiation with respect to the latter connection by ; , then

$$
\begin{aligned}
\phi_{j ; k}^{i}= & \phi_{j, k}^{i}+T_{h k}^{i} \phi_{j}^{h}-T_{j k}^{n} \phi_{h}^{i} \\
= & \phi_{j, k}^{i}+\left(-\frac{1}{2} \phi_{n, k}^{m} \phi_{m}^{i}-\frac{1}{2} \xi_{, k}^{i} \eta_{n}+\xi^{i} \eta_{h, k}\right) \phi_{j}^{n} \\
& \quad-\left(-\frac{1}{2} \phi_{j, k}^{m} \phi_{m}^{h}-\frac{1}{2} \xi_{, k}^{h} \eta_{j}+\xi^{h} \eta_{j, k}\right) \phi_{h}^{i} \\
=\phi_{j, k}^{i} & -\frac{1}{2} \phi_{n, k}^{m} \phi_{m}^{i} \phi_{j}^{h}+\xi^{i} \eta_{h, k} \phi_{j}^{h} \\
& +\frac{1}{2} \phi_{j, k}^{m}\left(-\delta_{m}^{l}+\xi^{i} \eta_{m}\right)+\frac{1}{2} \xi_{, k}^{h} \eta_{j} \phi_{h}^{i} \\
= & \frac{1}{2} \phi_{j, k}^{i}-\frac{1}{2}\left[\left(\phi_{h}^{m} \phi_{j}^{h}\right)_{, k}-\phi_{h}^{m} \phi_{j, k}^{h}\right] \phi_{m}^{i}
\end{aligned}
$$

$$
\begin{gather*}
+\xi^{i} \eta_{h, k} \phi_{j}^{h}+\frac{1}{2} \phi_{j, k}^{m} \xi^{i} \eta_{m}+\frac{1}{2} \xi_{, k}^{h} \eta_{j} \phi_{h}^{i} \\
=\frac{1}{2} \phi_{j, k}^{i}-\frac{1}{2} \xi_{, k}^{m} \eta_{j} \phi_{m}^{i}-\frac{1}{2} \xi^{m} \eta_{j, k} \phi_{m}^{i} \\
+\frac{1}{2} \phi_{j, k}^{n}\left(-\delta_{h}^{i}+\xi^{i} \eta_{h}\right)+\xi^{i} \eta_{h, k} \phi_{j}^{n} \\
+\frac{1}{2} \phi_{j, k}^{m} \xi^{i} \eta_{m}+\frac{1}{2} \xi_{, k}^{n} \eta_{j} \phi_{h}^{i} \\
=\phi_{j, k}^{n} \xi^{i} \eta_{h}+\xi^{i} \eta_{h, k} \phi_{j}^{h}=\xi^{i}\left(\phi_{j}^{h} \eta_{h}\right)_{, k}=0 .
\end{gather*}
$$

THEOREM 8 If $\Gamma_{j k}^{i}$ is a connection which leaves ϕ_{j}^{i} covariant constant, then with respect to this connection

$$
\begin{equation*}
\xi_{; k}^{i}=\lambda_{k} \xi^{i}, \quad \eta_{j ; k}=-\lambda_{k} \eta_{j} \tag{4.3}
\end{equation*}
$$

hold good, where λ_{k} is a covariant vector.
PROOF. From the fact that

$$
\phi_{j}^{\prime} \xi^{j}=0
$$

we get

$$
\phi_{j}^{\prime} \xi_{; k}=0 .
$$

While the rank $\left|\phi_{i}^{i}\right|=2 n$, and ξ^{j} is a characteristic vector corresponding to the characteristic value 0 , we have

$$
\xi_{; k}^{j}=\lambda_{k} \xi^{j}
$$

Similarly, we get

$$
\eta_{j ; k}=\mu_{k} \eta_{j}
$$

Since $\xi^{i} \eta_{i}=1$, we have

$$
\xi_{; k}^{j} \eta_{j}+\xi^{j} \eta_{j ; k}=0 .
$$

Therefore

$$
\lambda_{k}+\mu_{k}=0
$$

Q.E.D.
N.B. We can easily see that

$$
\begin{equation*}
\lambda_{k}=\eta_{j} \xi^{j}{ }_{; k} \tag{4.4}
\end{equation*}
$$

In the same way as the above proof, we can prove the following
THEOREM 9. With respect to the connection which leaves ψ_{j}^{i} covariant constant, we have

$$
\begin{equation*}
\xi_{; k}^{i}=\nu_{k} \xi^{i}, \eta_{j ; k}=-\nu_{k} \eta_{j}, \tag{4.5}
\end{equation*}
$$

where ν_{k} is a covariant vector.
From Theorems 8 and 9, we get
Corollary. $\phi_{i ; k}^{i}=0$, if and only if $\psi_{j ; k}^{i}=0$.
Next if we calculate the covariant derivative of ξ^{i} with respect to the connection stated in Theorem 7, we get

$$
\begin{aligned}
\xi_{; k}^{i} & =\xi_{, k}^{i}+T_{h k}^{i} \xi^{h} \\
& =\xi_{, k}^{i}-\frac{1}{2} \phi_{h, k}^{n} \phi_{m}^{i} \xi^{h}-\frac{1}{2} \xi_{, k}^{i} \eta_{h} \xi^{l}+\xi^{t} \eta_{h, k} \xi^{h} \\
& =\frac{1}{2} \xi_{, k}^{i}+\frac{1}{2} \xi_{, k}^{n} \phi_{l}^{m} \phi_{m}^{i}+\xi^{i} \eta_{h, k} \xi^{h} \\
& =\frac{1}{2} \xi_{, k}^{i}+\frac{1}{2} \xi_{, k}^{h}\left(-\delta_{h}^{i}+\xi^{i} \eta_{h}\right)-\xi^{i} \eta_{h} \xi_{, k}^{h}
\end{aligned}
$$

i. e.,

$$
\begin{equation*}
\xi_{; k}=-\frac{1}{2} \xi_{, k}^{n} \eta_{h} \xi^{i} . \tag{4.6}
\end{equation*}
$$

And so

$$
\begin{equation*}
\eta_{j ; k}=\frac{1}{2} \xi_{, k}^{h} \eta_{h} \eta_{j} \tag{4.7}
\end{equation*}
$$

On the other hand, according to a theorem of Ishihara and Obata in [1], we can find a symmetric affine connection which leaves ξ^{t} covariant constant. So if we take this connection as $\stackrel{0}{\Gamma}_{j k}^{i}$ in Theorem 7, we have

$$
\begin{equation*}
\phi_{j ; k}^{i}=0, \xi_{; k}^{i}=0, \eta_{j ; k}=0 \tag{4.8}
\end{equation*}
$$

Therefore we get
THEOREM 10. On a manifold with a (ϕ, ξ, η)-structure we can find an affine connection which leaves ϕ_{j}^{i}, ξ^{i} and η_{j} covariant constant.
N. B. We call the connection stated in the last theorem a (ϕ, ξ, η)-connection.

Next, we consider a manifold with ($\phi, \boldsymbol{\xi}, \eta, g$)-structure. If we take the Christoffel's symbol $\left\{\begin{array}{c}i \\ j k\end{array}\right\}$ with respect to $g_{i j}$ as $\Gamma_{j k}^{0}$, we get

$$
g_{i j ; k}=g_{i j, k}-\left(-\frac{1}{2} \phi_{i, h}^{m} \phi_{m}^{h}-\frac{1}{2} \xi_{, k}^{h} \eta_{i}+\xi^{h} \eta_{i, k}\right) g_{h j}
$$

$$
\begin{aligned}
& -\left(-\frac{1}{2} \phi_{j, k}^{m} \phi_{m}^{h}-\frac{1}{2} \xi_{, k}^{h} \eta_{j}+\xi^{h} \eta_{j, k}\right) g_{i h} \\
= & \frac{1}{2} \phi_{i, k}^{m} \phi_{m}^{h} g_{h j}+\frac{1}{2} \eta_{j, k} \eta_{i}-\eta_{j} \eta_{i, k} \\
& +\frac{1}{2} \phi_{j, k}^{m} \phi_{m}^{h} g_{i h}+\frac{1}{2} \eta_{i, k} \eta_{j}-\eta_{i} \eta_{j, k} \\
= & \frac{1}{2} \phi_{i, k}^{m} \phi_{m}^{h} g_{j h}+\frac{1}{2} \phi_{j, k}^{m} \phi_{m}^{h} g_{t h}-\frac{1}{2}\left(\eta_{i} \eta_{j}\right)_{, k}
\end{aligned}
$$

By virtue of (1.8), we have

$$
\begin{aligned}
g_{i j ; k}= & -\frac{1}{2} g_{h m} \phi_{j}^{h} \phi_{i, k}^{m}-\frac{1}{2} g_{h m} \phi_{i}^{h} \phi_{j, k}^{m}-\frac{1}{2}\left(\eta_{i} \eta_{j}\right)_{, k} \\
& =-\frac{1}{2}\left(g_{h m} \phi_{j}^{n} \phi_{i}^{m}+\eta_{j} \eta_{i}\right)_{, k}=-\frac{1}{2} g_{j i, k}=0
\end{aligned}
$$

Then, as $\boldsymbol{\xi}^{i}$ is a unit vector field, we get

$$
\begin{gathered}
0=\left(g_{i j} \xi^{\prime} \xi^{j}\right)_{; k}=g_{i j} \xi_{;} \xi_{; k} \xi^{j}+g_{i j} \xi^{\prime(\xi ;} ; k \\
=2 \lambda_{k} .
\end{gathered}
$$

So we have

$$
\xi_{; k}^{\imath}=0, \quad \eta_{j ; k}=0
$$

Hence, we get the following
THEOREM 11. On a manifold with (ϕ, ξ, η, g)-structure we can find an affine connection which leaves $\phi_{j}^{i}, \xi^{i}, \eta_{j}$ and $g_{i j}$ covariant constant.
5. Symmetric (ϕ, ξ, η)-connections. In this section, we study the condition for the existence of symmetric (ϕ, ξ, η)-connections. We begin with the following lemma.

LEMMA 2. On the manifold admitting vector fields ξ^{i}, η_{j} which satisfy the condition

$$
\begin{equation*}
\xi^{t} \eta_{i}=1 \tag{5.1}
\end{equation*}
$$

there exists a symmetric affine connection which leaves ξ^{i} and η_{j} covariant constant, if and only if η_{j} is a gradient (i.e., η is closed).

Proof. The necessity is trivial. So we prove the sufficiency. By virtue of Ishihara and Obata's theorem, we can find a symmetric affine connection which leaves $\boldsymbol{\xi}^{i}$ covariant constant. We denote the coefficients of this connection by $\stackrel{\Gamma}{\Gamma}_{j k}^{i}$ and the operation of covariant differentiation by a vertical line | respectively. If we set

$$
\begin{equation*}
\Gamma_{j k}^{i}=\stackrel{0}{\Gamma}_{j k}^{i}+\xi^{i} \eta_{j \mid k} \tag{5.2}
\end{equation*}
$$

then $\Gamma_{j c}^{i}$ defines a symmetric affine connection, as η_{j} is a gradient by assumption. If we denote the covariant differentiation with respect to the latter connection by a comma, we get

$$
\begin{aligned}
& \xi^{i}{ }_{k}=\xi_{\mid k}^{i}+\xi^{i} \eta_{j \mid k} \xi^{j}=-\xi^{i} \eta_{j} \xi_{\mid k}^{j}=0 \\
& \eta_{j, k}=\eta_{j \mid k}-\xi^{i} \eta_{\| k} \eta_{i}=0
\end{aligned}
$$

So the connection defined by $\Gamma_{j k}^{i}$ satisfies the condition stated above. Q.E, D.
By virtue of Lemma 2, we have the following
THEOREM 12. Let $M^{2 n_{+1}}$ be a manifold with (ϕ, ξ, η)-structure. If η_{j} is a gradient and $N_{j}^{i}=0$, then we can find $a(\phi, \xi, \eta)$-connection whose torsion tensor is equal to $\frac{1}{8} N^{t}{ }_{j k}$.

PROOF. Since $\boldsymbol{\eta}_{j}$ is a gradient, we can find a symmetric affine connection such that

$$
\begin{equation*}
\xi_{: k}^{t}=0, \quad \eta_{j, k}=0 \tag{5.3}
\end{equation*}
$$

We denote its coefficients and covariant differentiation by $\Gamma_{j k}^{i}$ and a comma respectively. Since $N_{j}^{t}=0$ can be written as

$$
\xi^{k} \phi_{j, k}^{i}-\phi_{j}^{k} \xi^{\boldsymbol{j}}{ }_{, k}-\boldsymbol{\xi}^{k} \phi_{k, j}^{t}=0
$$

it is transformed to

$$
\begin{equation*}
\xi^{k} \phi_{j, k}^{i}=0 . \tag{5.4}
\end{equation*}
$$

On the other hand, from (1,3), (1.4) and (1.5) we get the following relations.

$$
\begin{equation*}
\phi_{j, k}^{i} \xi^{j}=0, \phi_{j, k}^{i} \eta_{i}=0,\left(\phi_{j}^{i} \phi_{i}^{\prime}\right)_{, k}=0 . \tag{5,5}
\end{equation*}
$$

If we set

$$
\begin{equation*}
\stackrel{1}{\Gamma}_{j k}^{i}=\Gamma_{j k}^{i}+T_{j k}^{i} \tag{5.6}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{j k}^{i}=-\frac{1}{4}\left\{\phi_{j}^{l}\left(\phi_{k, l}^{i}-\phi_{l, k}^{i}\right)+\phi_{l}^{i}\left(\phi_{k, j}^{l}+\phi_{j, k}^{l}\right)\right\} \tag{5.7}
\end{equation*}
$$

and denote the covariant differentiation with respect to the connection defined by $\Gamma_{j k}^{i}$ by ; , then we get

$$
\begin{aligned}
& \boldsymbol{\phi}_{j ; k}^{i}=\boldsymbol{\phi}_{j, k}^{i}-\frac{1}{4}\left\{\boldsymbol{\phi}_{h}^{l}\left(\boldsymbol{\phi}_{k, l}^{i} \cdots \boldsymbol{\phi}_{l, k}^{i}\right)+\boldsymbol{\phi}_{l}^{\prime}\left(\boldsymbol{\phi}_{k, h}^{l}+\boldsymbol{\phi}_{h, k}^{l}\right)\right\} \boldsymbol{\phi}_{j}^{h} \\
& +\frac{1}{4}\left\{\phi_{j}^{l}\left(\phi_{l, k}^{h}-\phi_{l, k}^{h}\right)+\phi_{l}^{h}\left(\phi_{k, j}^{l}+\phi_{j, k}^{l}\right)\right\} \phi_{h}^{i} \\
& =\phi_{j, k}^{i}-\frac{1}{4}\left(\phi_{k, l}^{l}-\phi_{l, k}^{i}\right)\left(-\delta_{j}^{l}+\xi^{l} \eta_{j}\right) \\
& +\frac{1}{4} \phi_{j}^{h}\left(\phi_{l, h}^{i} \phi_{k}^{l}+\phi_{l, h}^{l} \phi_{h}^{l}\right) \\
& +\frac{1}{4} \boldsymbol{\phi}_{j}^{n}\left(-\boldsymbol{\phi}_{k}^{n} \boldsymbol{\phi}_{h, l}^{k}+\boldsymbol{\phi}_{l}^{n} \boldsymbol{\phi}_{n, k}^{k}\right) \\
& +\frac{1}{4}\left(\phi_{k, j}^{l}+\phi_{j, k}^{l}\right)\left(-\delta_{i}^{i}+\xi^{i} \eta_{l}\right) \\
& =\frac{1}{2} \phi_{j, k}^{l}+\frac{1}{4} \boldsymbol{\phi}_{j}^{h} \boldsymbol{\phi}_{l, h}^{i} \boldsymbol{\phi}_{k}^{l}+\frac{1}{4} \boldsymbol{\phi}_{j}^{h} \boldsymbol{\phi}_{l, k}^{i} \boldsymbol{\phi}_{h}^{l} \\
& -\frac{1}{4} \boldsymbol{\phi}_{j}^{\prime} \phi_{k}^{h} \phi_{n, l}^{i}+\frac{1}{4} \phi_{j}^{\prime} \phi_{l}^{h} \phi_{h, k}^{i} \\
& =\frac{1}{2} \boldsymbol{\phi}_{j, k}^{2}+\frac{1}{4} \boldsymbol{\phi}_{l, k}^{l}\left(-\delta_{j}^{l}+\boldsymbol{\xi}^{l} \boldsymbol{\eta}_{j}\right)+\frac{1}{4} \boldsymbol{\phi}_{n, k}^{i}\left(-\delta_{j}^{h}+\boldsymbol{\xi}^{h} \eta_{j}\right) \\
& =0 \text {, } \\
& \xi_{;}^{\iota}{ }_{; k}=\xi_{, k}^{j}-\frac{1}{4}\left\{\phi_{h}^{l}\left(\phi_{k, l}^{i}-\phi_{l, k}^{i}\right)+\phi_{l}^{i}\left(\phi_{k, h}^{l}+\phi_{h, k}^{l}\right)\right\} \xi^{h} \\
& =0,
\end{aligned}
$$

and so by Theorem 8

$$
\eta_{j ; k}=0
$$

The torsion tensor of this connection is easily seen to be given by

$$
\begin{aligned}
S_{j k}^{i} & =\frac{1}{2}\left(T_{j k}^{i}-T_{k j}^{i}\right) \\
& =\frac{1}{8}\left\{\phi_{k}^{\prime}\left(\phi_{j, l}^{i}-\phi_{l, j}^{i}\right)-\phi_{j}^{\prime}\left(\phi_{k, l}^{i}-\phi_{l, k}^{i}\right)\right\}
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{S}_{j k}^{i}=\frac{1}{8} N_{j k}^{i} \tag{5.8}
\end{equation*}
$$

Q.E.D.

By virtue of Theorem 12 and Theorem 6, we get

COROLLARY. On a manifold with (ϕ, ξ, η)-structure, we can find a symmetric (ϕ, ξ, η)-connection if and only if the following conditions are satisfied:
i) $\boldsymbol{\eta}_{j}$ is a gradient,
ii) $N_{j k}^{i}=0$.

REMARK, If a (ϕ, ξ, η)-structre is the one defined by a contact strcture, then η_{j} is not a gradient. So, in this case, there exists no symmetric (ϕ, ξ, η)connection.

BIBLIOGRAPHY

[1] S. Ishihara and M. Obata, On manifolds which admit some affine connection, J. of Math. 1(1953), 71-76.
[2] S. SASAKI, On differentiable manifolds with certain structures which are closely related to almost contact structure. I, Tôhoku Math. J., 12(1960)456-476.

Mathematical Institute,
TÔHOKU UnivERSITY.

[^0]: 1) We derived several of (3.4) and (3.6) by direct calculations. The usefulness of purity and hybrid is remarked by S. Tachibana.
