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1. Introduction. In the previous paper I [2], one of the authors defined

the notions of manifolds with (φ, ξ, ̂ )-structure and of manifolds with (φ, ξ, η9

^-structure and studied some algebraic properties of these manifolds. By

definition, a differentiable manifold M2 W + 1 with (φ, ζ, ̂ -structure is a manifold

with three tensor fields φ), ξι and ηs defined over Mzn+ι which satisfy the

relations

(1.1) rank \φ)\ = 2n,

(1.2) ?ηt = 1,

(1.3) Φψ = 0,

(1.4) Φh = 0,

Every differentiable manifold with (φ, ξ, ̂ -structure has a positive definite

Riemannian metric g such that

(1.6) ffι£* = Vt,

(1.7) gijΦlΦί = ghk - vtVk,

(1.8) gihφ) = - gihψt ( = Φv).

We call such metric g an associated Riemannian metric of the {φ, ξ, η)

structure. Any manifold with (φ, ζ, ̂ -structure and its associated Riemannian

metric is called a manifold with (φ, ξ9 η, ^-structure.

In this paper, we shall study mainly about some tensor fields defined by

(φ? ξ, ̂ -structures and connections which leave φ), ζι and η% covariant constant.

Notations are same as in I.

2. Some tensors on manifolds with (φ, ξ, ̂ )-structure. Let M2n+1 be

a differentiate manifold with (φ, ξ, ̂ -structure and R be a real line, and

consider the product manifold M 2 W + 1 X R. We take a sufficiently fine open

covering U of M2 W + 1 by coordinate neighborhoods. If we denote coordinates of
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U in U by xι (Lj, k = 1, 2, , 2n + l) and a cartesian coordinate of R by

x°°9 then (x\ x") can be considered as a set of coordinates of U X i? and {LτXi?|

£7 € U} constitutes an open covering of M2n+1 X R by coordinate neighborho-
ods.

Now, suppose that U9 U' (U Γ) U' 4*Φ) belong to U and x\ x1' are their

coordinates and let

(2.1) a? = a? (x\ , x2n+1).

be the coordinate transformation in U Γ)U'. We define the coordinate trans-

formation between U X R and U' X R by

(2.2)
= X

Making use of the product manifold M2n+1 X R and the pseudo-group of

the type (2.2), we shall define four tensors 2V}fc, Nj, Njk and Nj over M2 W + 1.

We begin with the following

LEMMA 1. If we put

(2.3) F) = Φ)9 FL = ξ\ FT = - ηj9 FZ = 0

in coordinate neighborhoods \U X R | U € Uj, ίÂ w JF1^ (A, β, C = 1, 2, ...,

2n + 1, oo) defines a field of mixed tensor over M2n+1 X -R te /ίΛ respect to

the pseudo-group of transformations of the type (2. 2), <z?z<i F 4 ^ gives an

almost complex structure on M2n+1 X R.

PROOF. AS the Jacobian matrix of the coordinate transformation (2. 2) is

given by

0

we get

dχ~"
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which shows that Fi defines a tensor field on the product manifold M2n+1 Xi?.

Making use of the properties (l. l ) ~ ( l . 5), we can easily see that the

tensor Fi satisfies

(2.4) FiFE = - Si

Now the Nijenhuis tensor of this almost complex structure is given by

(2.5) Nio = F?(dEFi - daFi) - F%($ΛFi - dcFl).

If we calculate the components of this tensor by grouping their' indices, in

two groups (1,2, ,2n + l) and <χ>, we get

(2.6) i NJk =
N) s NU = ξ'Xd.Φ) - d/K) -

Now we suppose that an affine connection Tι

jk is given on the manifold

"*1. We denote the torsion tensor of the connection by

(2.7) O« _

° jk —

and denote the covariant differentiation by a comma, then we can easily see

that the four sets of components N%, N), NjJc and Nj can be written as fol-

lows:

ϊ Φ'ί - Sΐhφ"j) + 2S)k,

N) = ξ\ΦU -

'mξh - 2SLΦ?t,

ηM) ~ Φ)(ηh,k - ηk>h)

(2.8)

N} = ξXηM - ηM) - 2SUlVu-

Hence, we get the following

THEOREM 1. If M2n+1 is a manifold with (φ,ξ,η) structure, then the

four sets of components N}k, N), Njk and N3 of the Nijenhuis tensor of the

almost complex structure on M2n+1 X R give four tensors on the manifold
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M2n+1 which are uniquely determined by the (φ, ζ, η)-structure.
Especially, when the connection Tμ is symmetric, (2.8) can be simplified

as follows:

i% = ΦKΦin — Φl,}) — Φ)(Φlh — Φlic) + ζjVk — %U
ft = £h(ώ\. — ώi Λ — ώh,£K

(2.9)

3. Some properties of the tensor fields N%, N*, Njk and Nj. In this
section we study some properties of the tensors defined in §2. If we calculate
the Lie derivatives of η} and φ) with respect to the infinitesimal transformation
f', we get

and

Therefore we have the following

THEOREM 2. (3. 1) iV5
(3.2) Nj

COROLLARY 1. Nj = 0 if and only if ηό is invariant under the trans-
formations generated by the infinitesimal transformation ξι.

COROLLARY 2. N) = 0 if and only if φ) is invariant under the transfor-
mations generated by the infinitesimal transformation ξ\

We know that the Nijenhuis tensor Nic is hybrid with respect to the
indices A and C and pure with respect to the indices B and C. The condition
of hybrid is, by definition, given by

(3.3) NΛ

BΈFEc = - NίcFi. (H)

If we write down the components of both sides of the last equation by
grouping their indices in two groups (1,2, ,2n + l) and °°, we get the
following eight relations

Φ\N% + Nι

lhφl + ?Njk - N'lVk = 0,
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f% - NjhΦl - NjVk = 0,

(3 4) I ΦiN* + m* ~ ?N> = °'
NLP = 0,

Nhe = o,
The condition of purity is, by definition, given by

(3.5) NBEFC = NicFji-

Although, this is an immediate consequence of (3.3), we shall write down
the components of both sides as (3. 4) for later use, omitting equations which
appear in (3. 4) tooυ.

= o,

(3.6)
= 0,

Njhφl - Nhkφ) + Njηk - Nkηj = 0,

Njhξ
h + Nhφ) = 0.

THEOREM 3. For any manifold with {φ, ξ, η)-structure, the relations

(3.7) J

Nt = NhkφT,

N, = VhNϊφ),

N, = NU%,

Nίk = - VtNlΦl

N'j = ΦiNU" + ?NJ*

hold good.

PROOF. We can easily verify that (3. 7)i follows from (3. 6)4 and (3. 4)8,
(3.7)2 follows from (3.4)7 and (3. 4)8, (3. 7)s follows from (3.4)2, and (3.7)*,
(3. 7)5 follow from (3. 4)x.

From (3. 7) we can easily see that the following Theorem is true.

THEOREM 4. If any one of Nj]c> Nj and N)k vanishes, then Ns vanishes.
If N) and N}κ vanish, then Njk vanishes. If Njk and Njk vanish, then N]
vanishes.

Now, we put

(3 8) ajk = djVtc - dkηj9

1) We derived several of (3.4) and (3.6) by direct calculations. The usefulness of
purity and hybrid is remarked by S. Tachibana.
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then aikdx3 Λ dx* is the exterior derivative of η = ηjdxJ and we have the

following

THEOREM 5. Njk = 0, if and only if

(3.9) aόkφ{φί = alm,

i.e., if and only if dη is invariant under φ).

PROOF. Necessity. Since Njk = 0, we have

Φtajh = φ)akh.

If we multiply with the last equation by φ[ and sum for j , we get

= ( - δ?

On the other hand, by virtue of the definition of Nj and Theorem 3, we have

akhξ
h = - JV* = 0.

Therefore

Sufficiency. From

we get

So we have

Hence

JVi* = Φlajh - ψjakh = 0.

Q.KD.

COROLLARY 1. iVjλ: = 0 if and only if

(3.10) aJkfbK = alm,

where we have put

(3.Π) # = # + £V
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PROOF. The necessity is easily seen, since

ajkΦlΦk = alm9 ajk? = 0.

To prove the sufficiency, we multiply (3.10) by ξm and sum for m, then we

get

So aLmζm is the characteristic covector of ψ{ corresponding to the characteristic

value 1, therefore

And from this we get

λ = aίmξmξι = 0.

So we get

aJkξ
k = 0.

Making use of this and the above condition, we have

ajkΦΊΦm = alrΛ.

Therefore by virtue of Theorem 4, we get

Njk=0. Q.E.D

COROLLARY 2. / / the {φ, ξ, η)structure is the one induced from a contact

structure, then Njk and Nj vanish identically,

PROOF. Since the (φ, ξ, ^)-structure is given by a contact structure we have

Oi} = Φίj

On the other hand, we may easily show that

(3.12) ΦMl = Φ«.

Therefore, from the last Theorem, we see that

Ar, * = 0.

Nj = 0 follows from Theorem 4. Q. E. D.

Moreover, relative to the tensor JV}*, we have the following

THEOREM 6. If the tensor N% vanishes, then other three tensors Nj9 Njk

and Nj vanish.

PROOF. AS N}k = 0, Nj = 0 by Theorem 4. Hence, we get from (3. 4)3 and
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(3.6),

Nlhφl = 0,

Therefore, we get

Njh = 0.

As N% and Njk vanish, we see by virtue of Theorem 4 that

Q.E.D.

4. An affine connetion which leaves the tensor φ) covariant constant.
On an almost complex manifold, we can always find affine connections which
leave the fundamental collineation covariant constant. In this section, we shall
find such a connection on a manifold with (φ, ζ, ^-structure and study some
properties of this connection. We begin with the following

0

THEOREM 7. Let T% be an arbitrary affine connection on a manifold with

(Φ» £? v)' structure, and put

(4.1) τ% = - -L φi, Φl-J- ξ%Vj + ξ%,k,

where the comma is the covariant differentiation with respect to the connection
0

I1]*. Then Φ) is covariant constant with respect to the connection defined by

(4.2) n = h + n.
PROOF. If we denote the covatiant differentiation with respect to the latter

connection by , then

Φ)* = ΦU + TlΦ) - τ%Φϊ

= ΦU

£1
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+ 4- Φϊ*Pv» + 44 ftv/

+ ξ\v3Φi
A

= ΦUlηk + £ W # = f(Ψ5«7»),t = 0. Q.E.D.

THEOREM 8 TjΓ Γjfc is a connection which leaves φ) covariant constant,

then with respect to this connection

(4.3) ξ\k = χkξ\ Vj;k=

hold good, where Xk is a covariant vector.

PROOF. From the fact that

ΦF = 0,

we get

While the rank \φ)\ = 2n, and ζj is a characteristic vector corresponding to the

characteristic value 0, we have

Similarly, we get

Vj k

Since f*̂  = 1, we have

F Λ; + f̂ ;* = 0.

Therefore

λ* + μk = 0. Q.E.D.

N.B. We can easily see that

(4.4) λfc = η£*.k.

In the same way as the above proof, we can prove the following

THEOREM 9. With respect to the connection which leaves ψ] covariant

constant, we have
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(4.5) ξ€-k = vkξ\ vj;k = - vkηh

where vk is a covariant vector.

From Theorems 8 and 9, we get

COROLLARY. φ).k = 0, if and only if iή;k = 0.

Next if we calculate the covariant derivative of ξι with respect to the

connection stated in Theorem 7, we get

i.e.,

(4.6) f . 4 = _ -

And so

(4.7) 9J;* = ~-
A

On the other hand, according to a theorem of Ishihara and Obata in [1],

we can find a symmetric affine connection which leaves ξ* covariant constant.
0

So if we take this connection as Γjfc in Theorem 7, we have

(4.8) Φm = 0, ξl;k = 0, VyΛ = 0.

Therefore we get

THEOREM 10. On a manifold with a (φ. ξ, η)-structure we can find an
affine connection which leaves φ), ξι and η^ covariant constant.

N. B. We call the connection stated in the last theorem a (φ, ξ, ^-con-

nection.

Next, we consider a manifold with (φ, ξ, η, ̂ -structure. If we take the

1 i ) n

••» [ with respect to gi3 as T)k, we get

ΦϋΦί
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4- ώn

2 Λ

^ΦW
2 *' '

L.8), we

1

~2~*

1

2

1 ώh a
mgih

have

nJ>)4

+ x » «
2 / M * ;

1 , m , Λ

— A* »flΊι

1
'"* 2 ffhr'

VΦ7 + , ^

1
4 2

* = - -

- —(ViVj),k
Δ

— 9JU* = 0.
2

Then, as ξι is a unit vector field, we get

So we have

fi* = 0, ηj;k = 0.

Hence, we get the following

THEOREM l l . On a manifold with (φ,ξ,η,g)-structure we can find an
affine connection which leaves φ), ζ\ η} and gi5 covariant constant.

5. Symmetric (φ, ξ, ̂ -connections. In this section, we study the condition
for the existence of symmetric (φ, ξ, ̂ -connections. We begin with the fol-
lowing lemma.

LEMMA 2. On the manifold admitting vector fields ζ\ η3 which satisfy
the condition

(5.1) ξ% = 1,

there exists a symmetric affine connection which leaves I1 and η3 covariant
constant, if and only if η3 is a gradient (i.e., η is closed).

PROOF. The necessity is trivial. So we prove the sufficiency. By virtue of
Ishihara and Obata's theorem, we can find a symmetric affine connection which
leaves ζι covariant constant. We denote the coefficients of this connection by
0

Γjfc and the operation of covariant differentiation by a vertical line | respectively.
If we set
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(5.2) Γj, = h + *W

then Vjjc defines a symmetric affine connection, as η} is a gradient by as-

sumption. If we denote the covariant differentiation with respect to the latter

connection by a comma, we get

So the connection defined by Γ% satisfies the condition stated above. Q. E, D.

By virtue of Lemma 2, we have the following

THEOREM 12. Let M2n+1 be a manifold with (φ, ξ, η)-structure. If %

is a gradient and Nj = 0, then we can find a (Φ, ζ, η)-connectίon whose torsion

tensor is equal to N€
ik.

8

PROOF. Since Vj is a gradient, we can find a symmetric affine connection

such that

(5.3) ξ\k = 0, Vj9k = 0.

We denote its coefficients and covariant differentiation by T% and a comma

respectively. Since N) = 0 can be written as

it is transformed to

(5.4) FΦU = 0.

On the other hand, from (l, 3), (l . 4) and (1.5) we get the following

relations.

(5.5) #,£ = 0, ΦUVi = 0, (##),* = 0.

If we set

(5.6) h = Γjfc + T%

where

(5.7) n = - -— \ΦϊΦkι - $,*) + Φ'iΦ\, + ΦU)\
4

and denote the covariant differentiation with respect to the connection defined

by Γjfc by , then we get
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ΦU - 4 ~ WitΦki-ΦU) + ΦΊ(&,n + Φl.*)\Φ)
4

ΦXΦk, + # » ) ) #

ΦU - —(Φki - ΦUX- δj + ξ%)
4

+ — ΦXΦUΦl + ΦM
4

Φ,* + ΦU s)
2 4

= 0,

ft* = ft - — {ΦXΦli - ΦU) + ΦKΦU + ΦUίt

4

= 0,

and so by Theorem 8

Vj k = 0

The torsion tensor of this connection is easily seen to be given by

iΦh - Φi) - ΦIΦU - ΦU)\

(5.8) % = -±-N% Q.E.D.
O

By virtue of Theorem 12 and Theorem 6, we get
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COROLLARY. On a manifold with (φ}ζ,η)'Slructure, we can find a sym-
metric (Φ,ζ,v)~connection if and only if the following conditions are satisfied:

i) ηj is a gradient,

ϋ) i\α = o.

REMARK, If a (φ, ξ, ^)-structre is the one defined by a contact strcture,
then ηό is not a gradient. So, in this case, there exists no symmetric (φ} ξ, η)-
connection.
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