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Let k be a finite algebraic number field, / the idele group of k with
natural topology, C the idele class group of k, D the connected component of
the neutral element of C. In this short note, we shall study characterization
of such characters of certain subgroups of / that are canonically obtained
from characters of C/D, and obtain some informations about the role of the
totally positive units in the class field theory.

In §§1-2, we shall prepare some notations, definitions and easy lemmas.
In §3, we shall state a theorem of our previous paper [3], as Theorem 1,
and obtain some applications, necessary in the following. Then, considering
Artin's representatives1* of E, we shall obtain the aimed results as Theorems
2,3 and Corollary in §§4-5.

The author is greatly indebted to the referees for many suggestions for
improving the paper.

1. Let k, I, C, and D be as stated above, throughout the present note.
As usual, we identify the multiplicative group k* of the non-zero elements of
k with the principal idele group P of k. For each prime divisor p of k, we
identify the multiplicative group k* of the non-zero elements of the p-com-
pletion field k9 of k with /„, respectively, where we denote by Ip the subgroup
of I that consists of all ideles a with 1 as the q-component (a\ for each
prime divisor Cf of k different from p. Let Y be an arbitrary, not necessarily
closed, subgroup of I. We consider F a s a topological group by the relative
topology with reference to Z. Y is not necessarily locally compact, but has
sufficiently many characters. Each character % (%') of C (C/D) gives canonically
a character % of Y, which we call a G- (D ) character of Y, respectively. We
shall use the following well known result from the duality of locally compact
Abelian groups that we state, without proof, as

LEMMA I. Let B be a locally compact Abelian group, and Bx a closed
subgroup. Then, there exists for each character x of Bx a character % of B

1) Cf. [1] & [5].
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such that the restriction of % to Bx coincides with %.

Let % and % be as stated in the above lemma. Then we call x an extention

of %.

COROLLARY50. Let B be a locally compact abelian group, Bx a compact
subgroup, and B2 a closed subgroup of B. Then, a character X of Bx is exten-
sible to a character % of B, such that the restriction of x to B2 is trivial, if
and only if the restriction of x to the intersectin Bx Γ) B2 of Bx and B2 is
trivial.

2. Let Eo denote the subgroup of / that consists of all ideles a that
satisfy both the following conditions: (i) For every archimedean prime divisor3)

p, the p-component (a\ is 1. (ii) For each non-archimedean prime divisor o\,
the Cj-component (a\ is a q-unit. Let T be an arbitrary set of non-archimedean
prime divisors of k. We define an endomorphism T* of /, corresponding to
T, such that, for each prime divisor p of k, the p-component (T%a)\ of the
image of a is given by

(1) (Γ*(α)), = (<z)» 0 € T)

= 1 ( P ^ T ) .

Obviously, T*2 = T* and (T%a)\ — 1 for each archimedean prime divisor C\.
Let ET denote the intersection of Eo and the image T*(I) of / by T*: Eτ

= Eo Π T*(I). When T = {p} consits of a single prime divisor p, we use the
notation E9, for brevity, in place of E{v]. Let % be a character of Eo, P a non-
archimedean prime divisor of k. We say that p is ramified by x, if and only
if the restriction of % to Es is non-trivial. We denote by V(χ) the set of all
non-archimedean prime divisors ramified by %. As is well known, V(χ) is
always a finite set, and we can define conductor of a character of Eo as usual.
The following proposition and corollary follow trivially from Lemma 1 and
Corollary to it.

PROPOSITION I. Every character X of Eo is a G-character.

COROLLARY. Let T be an arbitrary set of non-archimedean divisors and
X be a character of Eτ. Then, % is extensible to a G-character X of Eo such
that V (x) c: T.

2) This follows easily from a result in the p. 17 of [4] and the duality theorem of loclally
compact Abelian groups.

3) We use the words non-archimedean prime divisors and archimedean prime divisors in
place of finite prime divisors and infinite prime divisors.
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3. For each idele a of k, we define Z(a) as the set of all prime divisors

p (not necessarily non-archimedian) of K with p-component (a\ different

from 1, i e.,

(2) Z(a)= \P;(alΦl}.

Let Jo be the subset of / that consists of all ideles a that satisfy both the

following conditions; (i) Z(a) does not contain any archimedean prime divisor,

(ii) The Kronecker density of Z{a) is 0. Obviously, Jo is a non-closed subgroup

of /. The following theorem was proved in our previous paper ([3]):

THEOREM 1. The natural map of Jo into C/D is injective.

We take an arbitrary one of non-empty sets of non-archimedean prime divisors

of k with 0 as its Kronecker density, denote it by T and fix it from now

on, throughout the rest of this note. Let A be the maximal Abelian extension

of k, G the Galois group of A over k, and σ the canonical homomorphism of

I onto G given by the class field theory. Then, as Eτ is compact, from Theo-

rem 1 follows cleary the following

PROPOSITION 2. The restriction σ to Eτ is an isomorphism.

Let <r(Eτ) denote the image of Eτ by σ into G. From Proposition 2, there

exists the inverse σ^1 of the restriction arτ of σ to Eτ (The defining domain

of στ~
Ύ is σ(Eτj). Let % be a character of ET. We obtain a character χx of

σ(Eτ) from % by στ'\ χx is from Lemma 1 extensible to a character %/ of

G which induces a character of / by σ. Let %' denote its restriction to Eo.

Obviously, % is an extension of % to a /^-character of EQ. Thus, we obtain

the following proposition.

PROPOSITION 3. Every character of ET is a D-character of Eτ.

It is not always possible to extend a character of ET to a D-character X of

Eo, such that V(X) a T. In the following, we shall study the condition for

the extensibility under this restriction.

4. Let F denote the subgroup of P, that consists of all of the totally

positive units of k. Then, we have

THEOREM 2. Let X be a character of Eo. Then, x is a D-character, if

and only if F* is contained in the kernel of %, where we denote (V(χ))*(F)

by F* for brevity.

This is obviously equivalent with the following theorem, that we shall

prove.

THEOREM 2\ Let S be a finite set of non-archimedean prime divisors of
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k, and % be a character of Es. Then % is extensible into a D-character X

of EOy such that V(χ) (Z S, if and only if the kernel of % contains S*(F).

PROOF OF THEOREM 2'. The only-if-part of the theorem is trivial, and

we omit the proof. Let % be a character of Es such that the kernel of X

contains S*(F). We denote by R the set of the non-archimedean prime divisors

of k not belonging to S, and by γ and δ the natural maps of Eo into C and

C/D respectively. Lst 8S denote the restriction of δ to Es. Then there exists,

from Proposition 2, the inverse 8 s"1. Let %* denote the character of <r(Es),

obtained from % by δ^"1. From Corollary to Lemma 1, χ* is extensible to a

character of δ(E0) = 8(ES) 8(ER), such that the restriction to 8(ER) is trivial,

if (and only if) the kernel of %* contains the intersection S(ES) Π 8(ER) of

8(Es) and 8(EB). Let A 4 ) be as stated in Artin's article [l]. As D/Do is a real

line and Eo is compact and totally disconnected, the natural map of Eo

into D/Do is trivial, and so, y(E0) lies in Do. Therefore, for a pair of ideles

e € Es and e € ER it holds 8{e) = δ^'" 1), if and only if ee can be written as

(3) ee = net,

where n is a number in P and oi is one of Artin's representatives. Applying

the endomorphisms (0)* and (°°)* to the both sides of (3), we obtain that n

is a unit and totally positive, respectively, where we denote by 0 and 00 the

set of all non-archimedean prime divisors and that of all archimedean prime

divisors of k. Let Pimip2

mi Prmr with pt € S and non-negative rational inte-
gers mt be the conductor of %. From the construction of Artin's representa-
tives, there exists an element £ of F9 such that, for every one of i=l,2, ,r,
it holds

(*)* = (lfc}*(«))* mod ft-

Then from the assumption that the kernel of % contains S*(F) follows χ(e)

= 1, accordingly %*(δ(V)) = 1. Therefore χ* is, from Corollary of Lemma 1,

extensible to a character of C/D, such that the restriction to 8(ER) is trivial.

It certifies obviously the if-part of the theorem, q. e. d..

5. Let MT be the intermediate field of A/k corresponding to σ(Eτ). From

Theorem 1, Eτ = σ(Eτ), and Mτ is the intersection of the inertia-fields cor-

responding to the prime divisors contained in T. Let L be a ray-class-field

over k such that the conductor f of L/k is divisible by a non-archimedian

prime divisor p, only if P is contained in T. The Galois group of A/LMT is

isomorphic with a subgroup of ET. Let KT be the union of all of such ray-

4) This is an exception of our terminology in this note to use the suffix o in order to
denote concepts concerning the totality of non-archimedean prime divisors of K.
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class-fields over k. Then it follows easily from Theorem 2' that the Galois

group of A/KTMT is isomorphic with the closure T*(JF) of T%F) in Eτ,

which we state as

THEOREM 35 ). ®(A/KTMT) ^ T*(F).

From the above theorem and the corollary to Proposition 1, we have

COROLLARY. The dual group of &{A/KTMT) is canonically isomorphic
with the totality of the restrictions to (°°)* (F) of Gr'όssen-characters®
conductors of which have finite components divisible only by some of prime
divisors contained in T.
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