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Let ® be the set of complex-valued functions in R1, continuous in 0 5S t
< + °o and vanishing identically in t < 0. Under pointwise addition and con-
volution as multiplication, & forms a commutative algebra over the complex
numbers which contains no zero divisor. Elements of the quotient field D of
the ring & are the operators of Mikusiήski. Every function f(t) in & is
regarded as an element of D which is denoted by {/}. Recently, Mikusiήski
[3] [4] has discussed some properties of an algebraic derivation D in D which
is defined by Du = { — tu(t)\ for any u € &. In any algebra A, an algebraic
derivation F is defined as a linear mapping of A into some algebra J3, which
contains A as a subalgebra, such that F(ab) = F(a)b + aF(b) for any afiGzA.
Here we shall study algebraic derivations in the field D which are continuous
in some sense specified below. Since any derivation in D is completely determin-
ed by its effects on the ring &, we have only to consider algebraic derivations
from & into D. Notations are the same as in Mikusiάski [3], unless otherwise
stated.

Clearly, K is a locally convex space with respect to the topology of uni-
form convergence on compact sets in Rl. Moreover, it is a locally multiplica-
tively-convex F-algebra in the sense of Michael [2], A sequence \an: n = 1,
2,...I in D is said to be convergent to an element a €: D if there exists an
element #€:£) such that ban and ba are contained in & and ban-*ba with res-
pect to the topology of &. Then any sequence has at most one limit. The
pseudo-topology of O thus defined is used in what follows. It is known that
there is no locally convex Hausdorff topology in D which induces this notion
of convergence for sequences (cf. [1], [3]).

THEOREM 1. A linear mapping F of & into D is a continuous derivation
if and only if there exists an element a € D such that F = aD, i.e. F(u)
= a D(u) for any u € &, where D(u) = { — tu(t)}.

PROOF. Let F be a continuous derivation of & into D. Since {tk\ =

k\ /fc+1(£ = 0,1,2,...), any polynomial \f(t)\ ={Σ^=0*****} is eχPressed as
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Σfc=0^ ' Λ*'*+1* where / is the Heaviside's unit function, L e, l(t) = 0 for

ί < 0, = 1 for t > 0. Here we mean { f(f)\ = { f(t)l(t}} for any polynomial
f(t). Applying F, we have

= Σ^(k + 1)! akl

, where 5 = Γ1.

Putting a = — s2 F(/), we have .F(/) = a-D(f) for any polynomial {/} in &.
For any u € S/, there exists, by a theorem of Weierstrass, a sequence of

polynomials JAI which tends to u in &. By the continuity of F, F(fn) tends
to ^(w) in SD. On the other hand, it is clear that the sequence F(fn) =
<z*{ — tfn(t)\ tends to <2 { — ίw(ί)) in D. Since the limit is unique, we have thus
F(u) = a - { - *w(f )} = α - D(«).

It is an easy matter to show that F = aD is a continuous derivation of &
into D for any a € D. Q. E. p.

THEOREM 2. L ί̂ F be a continuous derivation of ^ into D. //
& /wίo itself, then the element a, stated in Theorem 1, represents a measure
μ on R1 with carrier in 0 ̂  t < +

(1) F(u)

for all u € &. T%^5 ί1 is α continuous endomorphism of the linear space G£.

PROOF. By assumption, F(/) is a function in & which we denote by h(t).
It is shown in the proof of Theorem 1 that F(u) = s2 {^(ί)} [Λ(ί)l for any
u € '<£. Put T = - (d2/dtz)h(t\ Then T is a distribution with carrier in 0 ̂  ί
< + oσ. For any w € '£, T*(— tu(t}) is a well-defined distribution whose carrier
is contained in 0 ̂  £ < -f °°. Let ^ be a non-zero twice continuously differenti-
able function with compact carrier in 0 ̂  t < + oo. Then \ve have F(w) {grj
= 5f{ί«(ί)}. {A(01 fpCOl = ίί«(01 WO} ' i^'COl ^ (tιi)*h*g". On the other
hand, it is clear that "(— tu)*T*g = (tu)*h*g". Since F(u) is a function in
&, F(w) {^} = F(u)*g and therefore ^(w>^ = (- tu)*T*g. By [5; Chap. VI,
Th. XIV], we have F(u) = T*( — tu(t)) almost everywhere. This also shows
that T*{— ίw(ί)) is a locally bounded function for any u € S/.

Now we shall show that T is a measure. Let φ be any continuous function
in -R1 with compact carrier. Then, for some real k, 'ψ(ί) = φ(t — k) is in &
and ?K£) = 0 in a neighborhood of t = 0. Thus there is a continuous function
u fe & such that (̂ί) ̂  — tu(t) and therefore T*ty(i) = T*(— tu(tj) is locally
bounded. Since ί̂) — φ(t — K) =>A:̂ = δ(fc)%>, we r have T*ψ = TW(δ(fc)iφ)
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= δ(fc)*(T*<p) = Tic(T*φ). It follows readily that T*φ is a locally bounded
function in Rl

m As φ is arbitrary, T is a measure by a theorem of Schwartz
[5; pp.48-49].

Hence, denoting the measure by μ, we get F(u) = μ*( — tu) = μ*D(u),
where the equalities hold not only almost everywhere but everywhere. It is
now easy to see that F(un} tend to F(u) in & whenever un tend to u in '•&.
The theorem is thus established.

It is also obvious that, for measure μ with carrier in 0 fS t < + °°, the
mapping F defined by (l) is a continuous derivation of & into itself. The
Mikusinski's derivation D is characterized by the fact that it is the only
continuous derivation of & into D satisfying D(s)—l. The measure correspond-
ing to D by Theorem 2 is the Dirac's measure δ.

Since any derivation F = aD, a € D, is extendable to the whole field D
in a unique fashion and since the element a corresponding to F is determined
uniquely, we have the following

THEOREM 3. An algebraic derivation F of & into itself induces a conti-
nuous mapping of & into D, if and only if it is of the form aD where a is
an element in D which is determined uniquely by F.

Finally, it is noted that the continuity hypothesis or the like cannot be
removed from our theorems. To see this, we shall make some remarks on
arbitrary (not assumed to be continuous) derivations in D. Let P be the algebra
of polynomials in / and L the quotient field of P. Then the field D of oper-
ators is a transcendental extension of L. In other words, if we let L0 the largest
subfield of D which is algebraic over L, then L0 =(= D or, equivalently, & ζί L0.
Suppose on the contrary that & d L0, then, for any #€&, there exist a finite
number of elements a0,a^...,an€i L such that a0x

n + a^xn~l +.. .+ an = 0.
We may assume that this equation is irreducible in L and the coefficients
at are contained in P. In this case, an =f= 0. We must have such an equation
for x — \el\. By a simple calculation, we get xm — \tm~1et/(m — 1)!} for
m = 1,2,-... It follows from this and the fact that a0x

n 4- aτx
n~l +...+ an-τx

— — a*. ΦO that a0x
n + ... + an^x = o(ίV) for some k when t tends to + °°.

Since an is a polynomial, we have arrived at a contradiction.
Sinca LO is a separable extension of L, any derivation F of P into D

has, as is well known, the unique extension to L0 which is again denoted by F.
But D is transcendental over L0 and therefore there are infinitely many ex-
tensions F from LO to D unless we impose any restriction on F.
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