ON THE MATSUSHIMA'S THEOREM IN A COMPACT EINSTEIN K-SPACE

SUmio Sawaki

(Received March 30, 1961 Revised July 21, 1961)
A. Lichnerowicz ${ }^{11}$ has proved that the Matsushima's theorem ${ }^{2)}$ in a compact Kähler-Einstein space holds good in a compact Kählerian space with constant curvature scalar. In the previous paper [4], we have shown that the Matsushima's theorem is valid also in a compact almost-Kähler-Einstein space. The purpose of this paper is to show that it holds equally well in a compact Einstein K-space.

In $\S 1$ we shall give definitions and propositions. In $\S 2$ we shall give well known identities in a K-space. In $\S 3$ we shall prepare some lemmas on contravariant almost-analytic vectors in a K-space. The last $\S 4$ will be devoted to the proof of the main theorem.

1. Preliminaries. We consider a $2 n$-dimensional almost-Hermitian space $X_{2 n}$ which admits an almost complex structure $\boldsymbol{\varphi}_{j}^{i 3)}$ and positive definite Riemannian metric tensor $g_{j i}$ satisfying

$$
\begin{align*}
& \boldsymbol{\varphi}_{r}{ }^{i} \boldsymbol{\varphi}_{j}^{r}=-\delta_{j}^{i}, \tag{1.1}\\
& g_{r s} \boldsymbol{\varphi}_{j}^{r} \boldsymbol{\varphi}_{i}^{s}=g_{j i} . \tag{1.2}
\end{align*}
$$

By (1.1) and (1.2), we have

$$
\begin{equation*}
\boldsymbol{\varphi}_{j i}=-\boldsymbol{\varphi}_{i j}, \nabla_{h} \boldsymbol{\varphi}_{j i}=-\nabla_{h} \boldsymbol{\varphi}_{i j} \tag{1.3}
\end{equation*}
$$

where $\boldsymbol{\varphi}_{j i}=\boldsymbol{\varphi}_{j}{ }^{r} g_{r i}$ and ∇_{j} denotes the operator of Riemannian covariant derivative.

We define the following linear operators

$$
O_{t h}^{m l}=\frac{1}{2}\left(\delta_{i}^{m} \delta_{h}{ }^{l}-\varphi_{i}^{m} \boldsymbol{\varphi}_{h}{ }^{l}\right), \quad{ }^{*} O_{i h}^{m l}=\frac{1}{2}\left(\delta_{i}{ }^{m} \delta_{h}{ }^{l}+{\boldsymbol{\varphi}_{i}}^{m} \boldsymbol{\varphi}_{h}{ }^{l}\right)
$$

and a tensor is called pure (hybrid) in two indices if it is annihilated by

[^0]transvection of ${ }^{*} O(O)$ on these indices. From the definition, we have easily the following

PROPOSITION 1. ${ }^{*} O_{i h}^{a b} \nabla_{j} \boldsymbol{\varphi}_{a b}=0, O_{i b}^{a h} \nabla_{j} \boldsymbol{\varphi}_{a}{ }^{b}=0$.
PROposition 2. For two tensors $T_{j i}$ and $S^{j i}$, if $T_{j i}$ is pure in j, i and $S^{j i}$ is hybrid in $j_{i} i$ then $T_{j i} S^{j i}$ vanishes.

A vector v^{i} is called a contravariant almost-analytic vector if its contravariant components satisfy

$$
\begin{equation*}
\underset{v}{\mathscr{E}} \boldsymbol{\varphi}_{j}{ }^{i} \equiv v^{r} \nabla_{r} \boldsymbol{\varphi}_{j}{ }^{i}-\boldsymbol{\varphi}_{j}^{r} \nabla_{r} v^{i}+\boldsymbol{\varphi}_{r}{ }^{i} \nabla_{j} v^{r}=0^{4)} \tag{1.4}
\end{equation*}
$$

where $\underset{v}{f}$ is the operator of Lie derivative.
From (1.4) we have

$$
\begin{equation*}
\nabla_{j} v^{i}+\boldsymbol{\varphi}_{j}{ }^{a} \boldsymbol{\varphi}_{b}{ }^{i} \nabla_{a} v^{b}-v^{r}\left(\nabla_{r} \boldsymbol{\varphi}_{j}{ }^{l}\right) \boldsymbol{\varphi}_{l}{ }^{i}=0 \tag{1.5}
\end{equation*}
$$

which is equivalent to (1.4).
Lastly multiplying (1.5) by $\frac{1}{2} \boldsymbol{\varphi}_{i i} \nabla^{k} \boldsymbol{\phi}^{j l}$, we have

$$
\begin{equation*}
\frac{1}{2} \boldsymbol{v}^{r}\left(\nabla_{r} \boldsymbol{\varphi}_{j l}\right) \nabla^{k} \boldsymbol{\varphi}^{j l}+\boldsymbol{\varphi}_{r l}\left(\nabla^{k} \boldsymbol{\varphi}_{j}^{l}\right) \nabla^{j} v^{r}=0 . \tag{1.6}
\end{equation*}
$$

In this place, if $\nabla^{j} v^{r}=\nabla^{r} v^{j}, \boldsymbol{\varphi}_{r l} \nabla^{k} \boldsymbol{\varphi}_{j}{ }^{l}$ being anti-symmetric in j, r,
we have

$$
\boldsymbol{\varphi}_{r l}\left(\nabla^{k} \boldsymbol{\varphi}_{j}^{l}\right) \nabla^{j} v^{r}=0 .
$$

Thus from (1.6) we get

$$
\begin{equation*}
v^{r} \nabla_{r} \varphi_{j l}=0 . \tag{1.7}
\end{equation*}
$$

2. Identities in a K-space. An almost-Hermitian space $X_{2 n}$ is called a K-space ${ }^{5 \text { 3 }}$ if it satisfies

$$
\begin{equation*}
\nabla_{j} \boldsymbol{\varphi}_{i h}+\nabla_{i} \boldsymbol{\varphi}_{j h}=0 \tag{2.1}
\end{equation*}
$$

from which we have easily

$$
\begin{equation*}
\nabla_{j} \varphi_{i}{ }^{j}=0 \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
{ }^{*} O_{j i}^{a b} \nabla_{a} \boldsymbol{\varphi}_{b h}=0 .{ }^{6} \tag{2.3}
\end{equation*}
$$

Hereafter we shall consider only a K-space $X_{2 n}$.
Let $R_{k j i}{ }^{h}$ and $R_{j i}=R_{r j i}{ }^{r}$ be Riemannian and Ricci tensor respectively and put
4) S. Tachibana [5].
5) S. Tachibana [5].
6) S. Sawaki [3].

$$
\begin{equation*}
R_{j i}^{*}=\frac{1}{2} \boldsymbol{\varphi}^{a b} R_{a b r i} \varphi_{j}^{r}, R_{j}^{*_{i}}=R^{*}{ }_{j r} g^{q_{i}} \tag{2.4}
\end{equation*}
$$

Applying the Ricci's identity to $\varphi_{i}{ }^{h}$, we get

$$
\nabla_{k} \nabla_{j} \varphi_{i}{ }^{h}-\nabla_{j} \nabla_{k} \varphi_{i}{ }^{h}=R_{k j r}{ }^{h} \varphi_{i}^{r}-R_{k j i}{ }^{r} \varphi_{r}{ }^{h} .
$$

Transvecting the last equation with $g^{i i}$ and using (2.2) and the Bianchi's identity, we have

$$
\begin{equation*}
\nabla^{r} \nabla_{j} \boldsymbol{\varphi}_{r}{ }^{n}=\frac{1}{2} \boldsymbol{\varphi}^{p q} R_{p q j}{ }^{h}+R_{j}^{r} \boldsymbol{\varphi}_{r}{ }^{h} \tag{2.5}
\end{equation*}
$$

or using (2.1)

$$
\begin{equation*}
\nabla^{r} \nabla_{r} \boldsymbol{\varphi}_{j h}=-\frac{1}{2} \boldsymbol{\varphi}^{p a} R_{p g j h}-R_{j}^{r} \boldsymbol{\varphi}_{r h} . \tag{2.6}
\end{equation*}
$$

If we notice the anti-symmetry w. r. t. j and h in (2.6), we find that

$$
R_{j}^{r} \boldsymbol{\varphi}_{r h}+R_{h}^{r} \boldsymbol{\varphi}_{r j}=0
$$

from which we have

$$
O_{j h}^{a b} R_{a b}=0,
$$

i. e. $R_{j h}$ is hybrid in j, h.

On the other hand, in a K-space we know that

$$
\begin{equation*}
\left.R_{j i}^{*}=R_{i j}^{*}, \quad\left(\nabla_{j} \varphi_{a b}\right) \nabla_{i} \varphi^{a b}=R_{j i}-R_{j i}^{*}{ }_{j i}\right) \tag{2.7}
\end{equation*}
$$

and transvecting (2.5) with $\boldsymbol{\varphi}_{h}{ }^{k}$ we get

$$
\begin{equation*}
\boldsymbol{\varphi}_{h}{ }^{k} \nabla^{r} \nabla_{j} \boldsymbol{\varphi}_{r}^{h}=R_{j}^{*_{j}^{k}}-R_{j}^{k} . \tag{2.8}
\end{equation*}
$$

Since by (2.3), $\left(\nabla_{j} \varphi_{a b}\right) \nabla_{i} \varphi^{a b}$ is hybrid in j, i, from the last equation of (2.7). it follows that $R^{*}{ }_{j i}$ is also hybrid in j, i.

In this place, since (2.6) can be written as

$$
\nabla^{r} \nabla_{r} \boldsymbol{\varphi}_{j h}=R_{r h}^{*} \boldsymbol{\varphi}_{j}^{r}-R_{j}^{r} \boldsymbol{\varphi}_{r h},
$$

we see that $\nabla^{r} \nabla_{r} \boldsymbol{\varphi}_{j i}$ is hybrid in j, i.
Again by the Ricci's identity

$$
\begin{aligned}
\boldsymbol{\varphi}^{s h} \nabla_{s} \nabla_{h} \boldsymbol{\varphi}_{k t} & =\frac{1}{2} \boldsymbol{\varphi}^{s h}\left(\nabla_{s} \nabla_{h} \boldsymbol{\varphi}_{k t}-\nabla_{h} \nabla_{s} \boldsymbol{\varphi}_{k t}\right) \\
& =\frac{1}{2} \boldsymbol{\varphi}^{s h}\left(-R_{s h k}{ }^{a} \boldsymbol{\varphi}_{a t}-R_{s h t}{ }^{a} \boldsymbol{\varphi}_{k a}\right)
\end{aligned}
$$

7) S. Tachibana [5].

$$
=-R_{t k}^{*}+R_{k t}^{*}
$$

and therefore by (2.7) we have

$$
\begin{equation*}
\boldsymbol{\varphi}^{s h} \nabla_{s} \nabla_{h} \varphi_{k t}=0 . \tag{2.9}
\end{equation*}
$$

Moreover, making use of (2.7) and Proposition 2, we have

$$
\begin{aligned}
\nabla^{j}\left(R_{j t}-R_{j i}^{*}\right) & =\nabla^{j}\left(\nabla_{j} \boldsymbol{\varphi}_{a b} \cdot \nabla_{i} \varphi^{a b}\right) \\
& =\left(\nabla^{j} \nabla_{j} \varphi_{a b}\right) \nabla_{i} \varphi^{a b}+\left(\nabla_{j} \boldsymbol{\varphi}_{a b}\right) \nabla^{j} \nabla_{i} \boldsymbol{\varphi}^{a b} \\
& =\left(\nabla_{j} \varphi_{a b}\right) \nabla^{j} \nabla_{i} \varphi^{a b}
\end{aligned}
$$

because $\nabla_{i} \varphi^{a b}$ is pure in a, b and $\nabla^{j} \nabla_{j} \varphi_{a b}$ is hybrid in a, b. By the Ricci's identity and the Bianchi's identity the last equation turns to

$$
\begin{aligned}
\nabla^{j}\left(R_{j i}-R_{j i}^{*}\right) & =\nabla_{j} \varphi_{a b}\left(\nabla_{i} \nabla^{j} \varphi^{a b}+R_{i s}^{j}{ }^{a} \varphi^{s b}+R_{i s}^{j}{ }^{b} \varphi^{a s}\right) \\
& =\left(\nabla_{j} \varphi_{a b}\right) \nabla_{i} \nabla^{j} \varphi^{a b}+2\left(\nabla_{j} \varphi_{a b}\right) R_{i s}^{j}{ }_{i s} \varphi^{s b} \\
& =\frac{1}{2} \nabla_{i}\left(\nabla_{j} \varphi_{a b} \cdot \nabla^{j} \varphi^{a b}\right)-\left(\nabla_{b} \varphi_{j a}\right) R^{j a}{ }_{i s} \varphi^{s b},
\end{aligned}
$$

from which we have
i.e.

$$
\begin{align*}
& \nabla^{j} R_{j i}-\nabla^{j} R^{*}{ }_{j i}=\frac{1}{2} \nabla_{i}\left(R-R^{*}\right)-\left(\nabla_{b} \varphi_{j a}\right) R^{j a}{ }_{i s} \phi^{s b}, \\
& \left(\nabla_{b} \varphi_{j a}\right) R^{j a}{ }_{i s} \phi^{s b}=\nabla^{j} R_{j i}^{*}-\frac{1}{2} \nabla_{i} R^{*}-\left(\nabla^{j} R_{j i}-\frac{1}{2} \nabla_{i} R\right), \tag{2.10}
\end{align*}
$$

where $R=R_{j i t} g^{j t}$ and $R^{*}=R^{*}{ }_{j i} g^{j t}$.
In general, since $\nabla^{j} R_{j i}=\frac{1}{2} \nabla_{i} R^{8)}$, from (2.10) we obtain

$$
\begin{equation*}
\left(\nabla_{b} \varphi_{j a}\right) R^{j a}{ }_{i s} \rho^{s b}=\nabla^{j} R_{j i}^{*}-\frac{1}{2} \nabla_{i} R^{*} . \tag{2.11}
\end{equation*}
$$

And by the Bianchi's identity the left hand side of (2.11) can be written as

$$
\begin{aligned}
\left(\nabla_{b} \varphi_{j a}\right) R^{j a}{ }_{i s} \varphi^{s b} & =\nabla_{b} \varphi_{j a}\left(-R_{i s}^{j}{ }^{a}-R_{s i}^{j a}\right) \varphi^{s b} \\
& =\nabla_{b} \varphi_{j a}\left(-R_{s}^{a a_{j}}-R_{s i}^{j a}\right) \varphi^{s b} .
\end{aligned}
$$

But as we have by virtue of (2.3).

$$
\left(\nabla_{b} \boldsymbol{\varphi}_{j a}\right) \boldsymbol{\varphi}^{s b}=\left(\nabla^{s} \boldsymbol{\varphi}_{b a}\right) \boldsymbol{\varphi}_{j}^{b}, \quad\left(\nabla_{b} \boldsymbol{\varphi}_{j a}\right) \boldsymbol{\varphi}^{s b}=\left(\nabla^{s} \boldsymbol{\varphi}_{j b}\right) \boldsymbol{\varphi}_{a}^{b},
$$

the above equation becomes

[^1]\[

$$
\begin{gather*}
\left(\nabla_{b} \varphi_{j a}\right) R^{j a}{ }_{i s} \varphi^{s b}=-\left(\nabla_{b} \varphi_{a}^{b}\right) R_{s}^{a}{ }_{i}^{j} \varphi_{j}^{b}-\left(\nabla_{j} \varphi_{b}\right) R_{s i}^{j}{ }_{s i}^{a} \varphi_{a}{ }^{b}, \\
3\left(\nabla_{b} \varphi_{j a}\right) R^{j a}{ }_{i s} \varphi^{s b}=0 .
\end{gather*}
$$
\]

Consequently from (2.11) we have

$$
\begin{equation*}
\nabla^{j} R_{j i}^{*}=\frac{1}{2} \nabla_{i} R^{*} . \tag{2.13}
\end{equation*}
$$

And by the Bianchi's identity and (2.1)

$$
\begin{aligned}
\boldsymbol{\varphi}_{h}^{r}\left(\nabla^{k} \boldsymbol{\varphi}^{j i}\right) R_{k j i r} & =-\boldsymbol{\varphi}_{h}{ }^{r}\left(\nabla^{k} \boldsymbol{\varphi}^{j i}\right)\left(R_{k i r_{j}}+R_{k r j i}\right) \\
& =-\boldsymbol{\varphi}_{h}{ }^{r}\left(\nabla^{k} \boldsymbol{\varphi}^{i j}\right) R_{k i j r}-\boldsymbol{\varphi}_{h}{ }^{r}\left(\nabla^{j} \boldsymbol{\varphi}^{i k}\right) R_{j k k r}, \quad \text { i. e. }
\end{aligned}
$$

$$
\begin{equation*}
3 \boldsymbol{\varphi}_{h}{ }^{r}\left(\nabla^{k} \boldsymbol{\varphi}^{j i}\right) R_{k j r}=0 . \tag{2.14}
\end{equation*}
$$

Thus multiplying

$$
\nabla_{k} \nabla_{j} \boldsymbol{\varphi}_{i h}-\nabla_{j} \nabla_{k} \boldsymbol{\varphi}_{i h}=-R_{k j i}{ }^{\tau} \boldsymbol{\varphi}_{r h}-R_{k j h}{ }^{r} \boldsymbol{\varphi}_{i r}
$$

by $\nabla^{k} \varphi^{j i}$, we have

$$
\begin{align*}
2\left(\nabla^{k} \boldsymbol{\varphi}^{j i}\right) \nabla_{k} \nabla_{j} \boldsymbol{\varphi}_{i h} & =-\nabla^{k} \boldsymbol{\varphi}^{j i}\left(R_{k j i}{ }^{r} \boldsymbol{\varphi}_{r h}+R_{k j h}{ }^{r} \boldsymbol{\varphi}_{i r}\right) \tag{2.15}\\
& =-\left(\nabla^{c} \boldsymbol{\varphi}^{j i}\right) R_{k j i}{ }^{r} \boldsymbol{\varphi}_{r h}+\left(\nabla_{i} \boldsymbol{\varphi}^{k j}\right) R_{k j h r} \boldsymbol{\varphi}^{r i} \\
& =0
\end{align*}
$$

because of (2.1) (2.12) and (2.14).
On the other hand, taking account of (2.1) and (2.7), we get

$$
\begin{aligned}
\frac{1}{2} \nabla_{k}(R & \left.-R^{*}\right)=\left(\nabla^{j} \boldsymbol{\varphi}^{r s}\right) \nabla_{k} \nabla_{j} \boldsymbol{\varphi}_{r s} \\
& =\nabla^{j} \boldsymbol{\varphi}^{r s}\left(\nabla_{j} \nabla_{k} \boldsymbol{\varphi}_{r s}-R_{k j r}{ }^{t} \boldsymbol{\varphi}_{t s}-R_{k j s}{ }^{t} \boldsymbol{\varphi}_{r t}\right)=0
\end{aligned}
$$

because of (2.1), (2.12), (2.15) and $\left(\nabla^{j} \boldsymbol{\varphi}^{r s}\right) \boldsymbol{\varphi}_{s}^{t}=\left(\nabla^{s} \boldsymbol{\varphi}^{r t}\right) \boldsymbol{\varphi}_{s}^{j}$. That is, we see that in a K-space

$$
\begin{equation*}
R-R^{*}=\text { constant. }{ }^{9} \tag{2.16}
\end{equation*}
$$

For the Nijenhuis tensor, by (2.1),

$$
N_{j i h}=\boldsymbol{\varphi}_{j}^{l}\left(\nabla_{l} \boldsymbol{\varphi}_{i h}-\nabla_{i} \boldsymbol{\varphi}_{l h}\right)-\boldsymbol{\varphi}_{i}{ }^{l}\left(\nabla_{l} \boldsymbol{\varphi}_{j h}-\nabla_{j} \boldsymbol{\varphi}_{l h}\right)
$$

becomes

$$
\begin{equation*}
N_{j i h}=4 \boldsymbol{\varphi}_{j}^{l} \nabla l \varphi_{i l} . \tag{2.17}
\end{equation*}
$$

Finally, for any vector v_{i} we have
(2.18) $\quad \boldsymbol{\rho}_{l}{ }^{i} \boldsymbol{\varphi}^{a b} \nabla_{a} \nabla_{0} v_{i}=\frac{1}{2} \boldsymbol{\varphi}_{l}{ }^{i} \boldsymbol{\varphi}^{a b}\left(\nabla_{a} \nabla_{b} v_{i}-\nabla_{0} \nabla_{a} v_{i}\right)$
9) S. Tachibana [6].

$$
=-\frac{1}{2} \boldsymbol{\varphi}_{l}^{i} \varphi^{a b} R_{a b i} v_{s}=-v_{s} R_{i}^{*} .
$$

3. Contravariant almost-analytic vectors in a K-space. In a K-space, we know the following lemma.

LEMMA 3.1. ${ }^{1)}$ In a compact K-space, a necessary and sufficient condition that a contravariant vector v^{i} be almost-analytic is that it satisfies
(i) $\nabla^{i} \nabla_{v} v^{i}+R_{r}^{i} v^{r}=0 \quad$ (ii) $N_{r l k} \nabla^{r} v^{l}+2 v^{r}\left(R_{r k}-R_{r k}^{*}\right)=0$.

In general, even if \boldsymbol{v}^{k} is almost-analytic, $\tilde{v}^{k}=\boldsymbol{\varphi}_{r}^{k} v^{r}$ is not necessarily almostanalytic. Suppose that for a contravariant almost-analytic vector v^{k} in a K-space, $\tilde{\boldsymbol{v}}^{k}$ is also almost-analytic, then we have from (1.5)

$$
\nabla_{j} \tilde{v}^{k}+\boldsymbol{\varphi}_{j}^{r} \boldsymbol{\varphi}_{l}^{k} \nabla_{r} \tilde{v}^{l}-\tilde{\boldsymbol{v}}^{\tau}\left(\nabla_{r} \varphi_{j}^{l}\right) \boldsymbol{\varphi}_{l}^{k}=0
$$

or using (2.3)

$$
\begin{equation*}
\left(\nabla_{j} v^{a}\right) \boldsymbol{\varphi}_{a}{ }^{k}-\varphi_{j}{ }^{r} \nabla_{r} v^{k}+v^{a}\left(2 \nabla_{j} \varphi_{a}{ }^{k}-\nabla_{u} \varphi_{j}{ }^{k}\right)=0 . \tag{3.1}
\end{equation*}
$$

Transvecting (3.1) with $\boldsymbol{\varphi}_{k}{ }^{i}$ it follows that

$$
\begin{equation*}
\nabla_{j} v^{i}+\boldsymbol{\varphi}_{j}^{r} \boldsymbol{\varphi}_{k}{ }^{i} \nabla_{r} v^{k}-\boldsymbol{\varphi}_{k}{ }^{i} v^{a}\left(2 \nabla_{j} \boldsymbol{\varphi}_{a}{ }^{k}-\nabla_{a} \boldsymbol{\varphi}_{j}^{k}\right)=0 . \tag{3.2}
\end{equation*}
$$

From (1.5) and (3.2) we have
or

$$
\begin{gathered}
2 \boldsymbol{\varphi}_{k}^{i} v^{a}\left(\nabla_{j} \boldsymbol{\varphi}_{a}^{k}-\nabla_{a} \boldsymbol{\varphi}_{j}^{k}\right)=0, \quad \text { i. e. } \\
v^{v} \nabla_{j} \varphi_{r k}=0, \\
v^{\tau} \nabla_{\nabla} \varphi_{j k}=0 .
\end{gathered}
$$

Thus we have
Lemma 3.2. When a contravariant vector \boldsymbol{v}^{k} in a K-space is almostanalytic, a necessary and sufficient condition that \bar{v}^{k} be almost-analytic is that it satisfies

$$
v^{r} \nabla_{r} \varphi_{j k}=0 .
$$

4. A generalization of the Matsushima's theorem.

THEOREM. In a compact Einstein K-space $X_{2 n}(R \neq 0)$, any contravariant almost-analytic vector v^{i} is decomposed in the form

$$
v^{i}=p^{i}+\varphi_{r}{ }^{i} q^{r}
$$

where p^{i} and q^{i} are both Killing vectors and $\boldsymbol{\varphi}_{r}{ }^{i} q^{r}$ is a gradient vector. The decomposition stated above is unique.
10) S. Tachibana [5].

PROOF. Let v^{i} be a contravariant almost-analytic vector in a compact Einstein K-space, then from Lemma 3.1 we have

$$
\begin{equation*}
\nabla^{l} \nabla \imath v^{i}+\frac{R}{2 n} v^{i}=0 . \tag{4.1}
\end{equation*}
$$

From this equation, we can easily deduce

$$
\begin{equation*}
\nabla^{i} \nabla_{l} \nabla_{r} v^{r}+\frac{R}{n} \nabla_{r} v^{r}=0 \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla^{i} \nabla_{\iota} \nabla^{i} \nabla_{r} v^{r}+\frac{R}{2 n} \nabla^{i} \nabla_{r} v^{r}=0 \tag{4.3}
\end{equation*}
$$

If we put

$$
\begin{equation*}
p^{h}=v^{h}+\frac{n}{R} \eta^{h} \tag{4.4}
\end{equation*}
$$

where $\eta^{h}=\nabla^{h} \nabla_{r} v^{r}$, then by (4.2) we have

$$
\begin{equation*}
\nabla_{h} P^{h}=\nabla_{h} v^{h}+\frac{n}{R} \nabla_{h} \nabla^{h} \nabla_{r} v^{r}=0 \tag{4.5}
\end{equation*}
$$

and by (4.1) and (4.3) we have

$$
\begin{equation*}
\nabla^{i} \nabla \iota p^{i}+\frac{R}{2 n} p^{i}=0 . \tag{4.6}
\end{equation*}
$$

But since (4.5) and (4.6) is a necessary and sufficient condition that p^{i} in a compact Einstein space be a Killing vector, ${ }^{11)}$ it follows that p^{i} is a Killing vector.
Next, to prove that η^{i} is almost-analytic, putting

$$
-P_{j k}=\nabla_{j} \eta_{k}+\boldsymbol{\varphi}_{j}{ }^{\tau} \boldsymbol{\varphi}_{l k} \nabla_{r} \eta^{l}-\boldsymbol{\eta}^{r}\left(\nabla_{r} \boldsymbol{\varphi}_{j}^{l}\right) \boldsymbol{\varphi}_{l k}
$$

and writing out the square of $P_{j k}$, we get

$$
\begin{aligned}
& \frac{1}{2} P_{j k} P^{j k} \\
& =\left(\nabla_{j} \boldsymbol{\eta}_{k}\right) \nabla^{j} \boldsymbol{\eta}^{k}+\boldsymbol{\varphi}_{j}^{r} \boldsymbol{\varphi}_{l k}\left(\nabla^{j} \boldsymbol{\eta}^{k}\right) \nabla_{r} \boldsymbol{\eta}^{l}-2 \boldsymbol{\eta}^{r} \boldsymbol{\varphi}_{l k}\left(\nabla^{j} \boldsymbol{\eta}^{k}\right) \nabla_{r} \boldsymbol{\varphi}_{j}^{l}+\frac{1}{2} \boldsymbol{\eta}^{a} \boldsymbol{\eta}^{r}\left(\nabla_{r} \boldsymbol{\varphi}_{j b}\right) \nabla_{a} \boldsymbol{\varphi}^{j b} .
\end{aligned}
$$

Consequently, we have

$$
\begin{equation*}
\frac{1}{2} P_{j k} P^{j k}+\nabla^{j}\left(P_{j k} \eta^{k}\right)=\frac{1}{2} P_{j k} P^{j k}+\left(\nabla^{j} P_{j k}\right) \eta^{k}+P_{j k} \nabla^{j} \eta^{k} \tag{4.7}
\end{equation*}
$$

11) K. Yano and S. Bochner [7], p. 56.

$$
=\eta^{k}\left[\nabla^{j} P_{j k}+\frac{1}{2} \eta^{r}\left(\nabla_{r} \boldsymbol{\varphi}_{j b}\right) \nabla_{k} \boldsymbol{\varphi}^{j b}+\boldsymbol{\varphi}_{b j}\left(\nabla_{k} \boldsymbol{\varphi}_{a}^{j}\right) \nabla^{a} \eta^{b}\right]
$$

and therefore by virtue of Green's theorem we have

$$
\begin{equation*}
\int_{X_{t n}}\left[\eta^{k}\left\{\nabla^{j} P_{j k}+\frac{1}{2} \eta^{\tau}\left(\nabla_{r} \varphi_{j b}\right) \nabla_{k} \varphi^{j b}+\varphi_{b j}\left(\nabla_{k} \varphi_{a}^{j}\right) \nabla^{a} \eta^{b}\right\}-\frac{1}{2} P_{j k} P^{j k}\right] d \sigma=0, \tag{4.8}
\end{equation*}
$$

where $d \sigma$ means the volume element of the space $X_{2 n}$.
In this place, by using (2.1), (2.2), (2.7), (2.8), (2.17) and (2.18), we have

$$
\nabla^{j} P_{j k}=-\nabla^{j} \nabla_{j} \eta_{k}-\boldsymbol{\varphi}_{j}^{r} \boldsymbol{\varphi}_{l k} \nabla^{j} \nabla_{r} \eta^{l}+\eta^{r}\left(\nabla^{j} \nabla_{r} \boldsymbol{\varphi}_{j}^{l}\right) \boldsymbol{\varphi}_{l k}-\boldsymbol{\varphi}_{j}^{r}\left(\nabla_{r} \eta^{l}\right) \nabla^{j} \boldsymbol{\varphi}_{l k}
$$

$$
+\nabla^{j} \boldsymbol{\eta}^{r}\left(\nabla_{r} \boldsymbol{\varphi}_{j}^{l}\right) \boldsymbol{\varphi}_{l k}+\eta^{r}\left(\nabla_{r} \boldsymbol{\varphi}_{j}^{l}\right) \nabla^{j} \boldsymbol{\varphi}_{l k}
$$

$$
=-\nabla^{j} \nabla_{j} \eta_{k}-\eta^{s} R_{k s}^{*}+\eta^{\tau}\left(R_{k r}^{*}-R_{k r}\right)-\boldsymbol{\varphi}_{j}^{r}\left(\nabla_{\tau} \eta^{l}\right) \nabla^{j} \boldsymbol{\varphi}_{l k}
$$

$$
+\nabla^{j} \boldsymbol{\eta}^{\tau}\left(\nabla_{r} \boldsymbol{\varphi}_{j}^{l}\right) \boldsymbol{\varphi}_{l k}+\eta^{r}\left(\nabla_{r} \boldsymbol{\varphi}_{j}^{l}\right)^{j} \boldsymbol{\varphi}_{l k}
$$

and hence

$$
\begin{aligned}
\nabla^{j} P_{j k} & +\frac{1}{2} \eta^{r}\left(\nabla_{r} \boldsymbol{\varphi}_{j b}\right) \nabla_{k} \boldsymbol{\varphi}^{j b}+\boldsymbol{\varphi}_{b j}\left(\nabla_{k} \boldsymbol{\varphi}_{a}^{j}\right) \nabla^{a} \boldsymbol{\eta}^{b} \\
& =-\nabla^{j} \nabla_{j} \eta_{k}-\eta^{r} R_{r k}+3 \boldsymbol{\varphi}_{r}^{j}\left(\nabla^{r} \eta^{l} \nabla^{j} \boldsymbol{\varphi}_{l k}+\frac{3}{2} \eta^{r}\left(\nabla_{r} \boldsymbol{\varphi}_{j b}\right) \nabla_{k} \boldsymbol{\varphi}^{j b}\right. \\
& =-\nabla^{j} \nabla_{j} \boldsymbol{\eta}_{k}-\eta^{r} R_{r k}+\frac{3}{4} N_{r l k} \nabla^{r} \eta^{l}+\frac{3}{2} \eta^{r}\left(R_{r k}-R_{r k}^{*}\right) .
\end{aligned}
$$

Thus (4.8) turns to
(4. 9) $\int_{X_{k n}}\left[\eta^{r}\left\{-\nabla^{\imath} \nabla_{\imath} \eta_{k}-\frac{R}{2 n} \eta_{k}+\frac{3}{4} N_{r l k} \nabla^{r} \eta^{l}+\frac{3}{2} \eta^{r}\left(\frac{R}{2 n} g_{r k}-R^{*}{ }_{r k}\right)\right\}\right.$

$$
\left.-\frac{1}{2} P_{j k} P^{j k}\right] d \sigma=0
$$

Substituting $\eta^{k}=\frac{R}{n} p^{k}-\frac{R}{n} v^{k}$ in (4.9) and using (4.3), we have

$$
\begin{align*}
\int_{x_{2 n}}\left[\frac{3 R}{4 n} \eta^{r}\{ \right. & \left\{N_{r l k} \nabla^{r}\left(p^{l}-v^{l}\right)+2\left(p^{r}-v^{r}\right)\left(\frac{R}{2 n} g_{r k}-R_{r k}^{*}\right)\right\} \tag{4.10}\\
& \left.-\frac{1}{2} P_{j k} P^{j k}\right] d \sigma=0 .
\end{align*}
$$

On the other hand v^{k} being almost-analytic, from Lemma 3.1 we have

$$
N_{r l i k} \nabla^{\tau} v^{l}+2 v^{r}\left(\frac{R}{2 n} g_{r k}-R_{r k}^{*}\right)=0 .
$$

Hence (4.10) becomes

$$
\begin{equation*}
\int_{X_{2 k}}\left[\frac{3 R}{4 n} \eta^{n}\left\{N_{r l k} \nabla^{r} p^{2}+2 p^{r}\left(\frac{R}{2 n} g_{r k}-R^{*}{ }_{r k}\right)\right\}-\frac{1}{2} P_{j k} P^{j k}\right] d \sigma=0 . \tag{4.11}
\end{equation*}
$$

Furthermore (4.11) can be written as

$$
\begin{align*}
\int_{X_{2 n}}\left[\frac{3 R}{4 n}\right. & \nabla^{k}\left\{\left(\nabla_{t} v^{t}\right) N_{r l k} \nabla^{r} p^{i}+2\left(\nabla_{\imath} v^{v}\right) p^{\tau}\left(\frac{R}{2 n} g_{r k}-R_{r k}^{*}\right)\right\} \tag{4.12}\\
& \left.-\frac{1}{2} P_{j k} P^{j k}\right] d \sigma=0 .
\end{align*}
$$

In fact, taking account of (2.17), we have

$$
\begin{aligned}
\nabla^{*}\left(N_{r l k} \nabla^{r} p^{l}\right) & =4 \nabla^{k}\left(\nabla^{r} p^{t} \cdot \dot{\boldsymbol{\varphi}}_{k}^{t} \nabla_{t} \boldsymbol{\varphi}_{r l}\right) \\
& =4\left\{\left(\nabla^{k} \nabla^{r} p^{t}\right) \boldsymbol{\varphi}_{k}^{t} \nabla_{t} \boldsymbol{\varphi}_{r l}+\left(\nabla^{r} p^{l}\right) \boldsymbol{\varphi}_{k}^{t} \nabla^{k} \nabla_{t} \boldsymbol{\varphi}_{r l}\right\} \\
& =4\left(\nabla^{k} \nabla^{r} p^{l}\right) \boldsymbol{\varphi}_{k}^{t} \nabla_{t} \boldsymbol{\varphi}_{r l}
\end{aligned}
$$

because of (2.9).
Here by (2.1), (2.3) and (2.12), we have

$$
\begin{aligned}
4\left(\nabla^{k} \nabla^{r} p^{l}\right) \boldsymbol{\varphi}_{k}^{t} \nabla_{t} \varphi_{r l} & =4 \varphi_{l}^{t}\left(\nabla_{k} \varphi_{r t}\right) \nabla^{k} \nabla^{r} p^{l} \\
& =2 \varphi_{l}^{t}\left(\nabla_{k} \varphi_{r t}\right)\left(\nabla^{k} \nabla^{r} p^{l}-\nabla^{r} \nabla^{c} p^{l}\right) \\
& =2 \varphi_{l}^{t}\left(\nabla_{k} \boldsymbol{\varphi}_{r t}\right) R^{k r}{ }_{s}^{l} p^{s} \\
& =0 .
\end{aligned}
$$

Consequently, we have

$$
\nabla^{k}\left(N_{r l k} \nabla^{r} p^{l}\right)=0 .
$$

On the other hand

$$
\nabla^{n}\left\{p^{r}\left(\frac{R}{2 n} g_{r k}-R_{r k}^{*}\right)\right\}=\nabla^{k} p^{r}\left(\frac{R}{2 n} g_{r k}-R_{r k}^{*}\right)-p^{\tau} \nabla^{*} R_{r k}^{*}
$$

vanishes.
Because since $\nabla^{k} p^{r}$ is anti-symmetric in k, r and $\frac{R}{2 n} g_{r k}-R^{*} r_{k}$ is symmetric in k, r, the first term of the right hand side vanishes.
For the second term, from (2.13) and (2.16) we have

$$
2 \nabla^{c} R_{r k}^{*}=\nabla_{r} R^{*}=\nabla_{r} R=0 .
$$

Thus again by Green's theorem from (4.12), we have

$$
\int_{X_{2 n}} \frac{1}{2} P_{j k} P^{j k} d \sigma=0
$$

from which we have $P_{j k}=0$, that is, we see that η^{i} is a contravariant almost-
analytic vector.
Next, we shall show that $\tilde{\eta}^{i}=\boldsymbol{\varphi}_{r}{ }^{i} \eta^{r}$ is also almost-analytic. Since η^{i} is almost-analytic and $\nabla^{j} \eta^{r}=\nabla^{r} \eta^{j}$, from (1.7) we have

$$
\begin{equation*}
\boldsymbol{\eta}^{r} \nabla_{r} \boldsymbol{\varphi}_{j l}=0 \tag{4.13}
\end{equation*}
$$

which shows by virtue of Lemma 3.2 that $\tilde{\eta}^{i}$ is also almost-analytic.
Accordingly if we put

$$
\begin{equation*}
q^{h}=\frac{n}{R} \boldsymbol{\varphi}_{a}{ }^{h} \boldsymbol{\eta}^{a}, \tag{4.14}
\end{equation*}
$$

then q^{h} is a contravariant almost-analytic vector and a Killing vector. In fact $\nabla_{h} q^{h}=\frac{n}{R} \boldsymbol{\varphi}_{a}{ }^{h} \nabla_{h} \eta^{a}=0$ and

$$
\nabla^{l} \nabla_{l} q^{h}+\frac{R}{2 n} q^{h}=0
$$

From (4.4) and (4.14) we have

$$
v^{h}=p^{h}+\boldsymbol{\varphi}_{r}^{h} q^{r}, \quad \boldsymbol{\varphi}_{r}^{h} q^{r}=-\frac{n}{R} \eta^{h} .
$$

Finally we shall prove that such a decomposition is unique.
If we have

$$
v^{h}=p^{h}+\varphi_{r}^{h} q^{r}, \quad v^{h}==^{\prime} p^{h}+{\varphi_{r}}^{h^{\prime}} q^{r}
$$

where $\boldsymbol{\varphi}_{r}{ }^{h} q^{r}$ and $\boldsymbol{\varphi}_{r}{ }^{h^{\prime}} q^{r}$ are both gradient vectors, then

$$
\begin{equation*}
p^{h}-p^{h}=\boldsymbol{\varphi}_{r}^{h}\left(q^{\tau}-q^{r}\right) . \tag{4.15}
\end{equation*}
$$

Since the left hand side of (4.15) is a Killing vector and the right hand side is a gradient vector, we have

$$
\nabla_{i} \xi^{h}=0
$$

where $\boldsymbol{\xi}^{h}=\boldsymbol{p}^{\boldsymbol{h}} \mathbf{-}^{\prime} \boldsymbol{p}^{\boldsymbol{h}}$.
Hence by the Ricci's identity we have

$$
\nabla_{j} \nabla_{i} \xi^{h}-\nabla_{i} \nabla_{j} \xi^{h}=R_{j i s}{ }^{h} \xi^{\xi}=0
$$

from which we get

$$
R_{i s} \xi^{s}=\frac{R}{2 n} \xi_{i}=0
$$

Thus we have $p^{h}={ }^{\prime} p^{h}$ and $q^{h}=q^{\prime} q^{h}$. q. e. d.

BIBLIOGRAPHY

[1] A. Lichnerowicz, Géométrie des groupes de transformations, Paris, (1958).
[2] Y. MATSUSHIMA, Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kählérienne, Nagoya Math. Jour., 11(1957), 145-150.
[3] S. SAWAKI, On almost-analytic tensors in $* O$-spaces, Tôhoku Math. Jour., 13(1961), 154-178.
[4] S. SAWAKI, A generalization of the Matsushima's theorem, to appear. in Math. Ann.
[5] S. TAchibana, On almost-analytic vectors in certain almost-Hermitian manifolds, Tôhoku Math. Jour., 11 (1959), 351-363.
[6] S. TACHBANA, On infinitesimal conformal and projective transformations of compact K-spaces, to appear in Tôhoku Math. Jour.
[7] K. Yano and S. Bochner, Curvature and Betti numbers, Ann. of Math. Studies, 32(1953).
Niggata University.

[^0]: 1) A.Lichnerowicz [1]. The number in brackets refers to Bibliography at the end of this paper.
 2) Y. Matsushima [2].
 3) As to the notations we follow S. Sawaki [3]. Indices run over $1,2, \ldots, 2 n$.
[^1]: 8) K. Yano and S. Bochner [7], p. 19.
