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A. Licrmerowicz1} has proved that the Matsushima's theorem50 in a compact

KahlerΈinstein space holds good in a compact Kahlerian space with constant

curvature scalar. In the previous paper [4], we have shown that the Matsushima's

theorem is valid also in a compact almost-Kahler-Einstein space. The purpose

of this paper is to show that it holds equally well in a compact Einstein

K-space.

In §1 we shall give definitions and propositions. In §2 we shall give well

known identities in a K- space. In §3 we shall prepare some lemmas on con-

travariant almost-analytic vectors in a .K-space. The last §4 will be devoted to

the proof of the main theorem.

1. Preliminaries. We consider a 2w-dimensional almostΉermitian space

X2n which admits an almost complex structure £>/3) and positive definite

Riemannian metric tensor gjt satisfying

(1.1) 9>rW=-SΛ

(1-2) gr&Iφΐ = git.
By (1. 1) and (l. 2), we have

(l 3) φjt = — φίj9 Vh<Pji = — Vhψij

where φ^ = φfffri and Vj denotes the operator of Riemannian covariant de-

rivative.

We define the following linear operators

O

and a tensor is called pure (hybrid) in two indices if it is annihilated by

1) A. Lichnerowicz [1]. The number in brackets refers to Bibliography.^.t .the...£ndLjαf.
this paper.

2) Y. Matsushima [2].
3) As to the notations we follow S. Sawaki [3]. Indices run over 1,2,.-..;.., 2^
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transvection of *O(O) on these indices. From the definition, we have easily the

following

PROPOSITION i. *O8vΛ»«» = o, Of^&ϊ = 0.

PROPOSITION 2. For two tensors Tjit and Sji, if TJ4 is pure in j, i and

S3i is hybrid in j,i then T3iS
3i vanishes.

A vector vl is called a contravariant almost-analytic vector if its con-

travariant components satisfy

(1. 4) tφ = vVrPi* - φίVrV* + φJvp = 04)

v

where £, is the operator of Lie derivative.
υ

From (l. 4) we have

(i. 5) vX + φfrivav - v(^τφ3

l}φί = o
which is equivalent to (1. 4).

Lastly multiplying (l. 5) by - φ^φ31, we have

(i. 6) ~- ̂ (v^ OvV +• ψrttfφϊW f = o.
£i

In this place, if ^3vr — rfv3, φ^^φ^ being anti-symmetric in j, r,

we have 9*n(v*W)v'vr = 0.

Thus from (l. 6) we get

(1. 7) vVr^ji = 0.

2. Identities in a K-space. An almost-Hermitian space X2W is called a

K spaceδ> if it satisfies

(2. 1) V/PIA + Vi<Pjh = 0

from which we have easily

(2.2)

(2. 3)

Hereafter we shall consider only a K-space X2n.

Let /ί^i* and R^ = Rrjί

r be Riemannian and Ricci tensor respectively and
put

4) S. Tachibana [5].
5) S. Tachibana [5J.
6) S. Sawaki [3].
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(2. 4) R*β = -i- φatRaMφ,r, Λ*/ = K V
Δi

Applying the Ricci's identity to £>Λ we get

Transvecting the last equation with </7ί and using (2. 2) and the Bianchi's iden-

tity, we have

(2. 5) V

rv^r

ft = -i- ̂ Λ,.,* + Λ>Γ»

^

or using (2. 1)

(2. 6) vW;ft = - ~ <PMRMih - /?,>,».

If we notice the an ti- symmetry w. r. t j and A in (2. 6), we find that

Rfor* + Rlΐφrj = 0

from which we have

0%Rab = 0,
i. e. -RjΛ is hybrid in j, h.

On the other hand, in a X^-space we know that

(2. 7) Λ% = R*tί, (v^)Vi9>αί> = ^* - R V

and transvecting (2. 5) with £?/ we get

(2.8) φh

Since by (2. 3), (Vj^>αδ)Vί9?α& is hybrid in j, z, from the last equation of (2. 7).
it follows that R*# is also hybrid in j9 i.

In this place, since (2.6) can be written as

we see that V rV? ̂ jί is hybrid in j, i.
Again by the Ricci's identity

<ps

-Γ
Ll

7) S, Tachibana [5],
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and therefore by (2. 7) we have

(2. 9) <P\Xn<Pu = 0.

Moreover, making use of (2. 7) and Proposition 2, we have

because Vt'P"'' is pure in α,& and VJVj9Ό» is hybrid in α, δ. By the Ricci's

identity and the Bianchi's identity the last equation turns to

V

}(Rjt - R*}t) =

= J_
2

from which we have

1 . e.

(2. 10) (v»9»*,)#Vrt = V^% - -i- V*** ~ (v^i - 4 V*R\
2 ^ Δ '

where Λ = Λ^flf* and Λ* = R*}ig
st.

In general, since τj}RSι = - -Vi R8 ), from (2. 10) we obtain

(2.11)

^

And by the Bianchi's identity the left hand side of (2. 11) can be written as

= Vtφja(- Rs

a\ - R'.W.

But as we have by virtue of (2. 3)

(V^αV = (vV*αVΛ (WαV6

the above equation becomes

8) K. Yano and S. Bochner [7], p. 19.
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-VΛ i e.

(2. 12) 3Cv, .̂)Λ*>rt = 0.

Consequently from (2. 11) we have

(2.13)

And by the Bianchi's identity and (2. l)

(2. 14) 39»4

r(vV)Rw,, = 0.

Thus multiplying

by v*9*Ji» we have

(2. 15) 2(v V

= 0

because of (2. 1) (2. 12) and (2. 14).

On the other hand, taking account of (2. 1) and (2. 7), we get

- Rkjrψts - RkteΨrύ = 0

because of (2. 1), (2. 12), (2. 15) and (v W* = (vV^Vi-
That is, we see that in a K-space

(2. 16) R - R* = constant.9)

For the Nijenhuis tensor, by (2. 1),

becomes

(2.17) Njίh = 4<

Finally, for any vector vt we have

(2. 18) <PΪφa\

9) S. Tachibana [6].
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3. Contravariant almost-analytic vectors in a K-space. In a K-space,
we know the following lemma.

LEMMA 3. I.1 } In a compact K-space, a necessary and sufficient con-
dition that a contravariant vector vl be almost- analytic is that it satisfies

(i) vW + W = 0 (ϋ) NrlkVV + 2vr(Rΐk - R*rk) = 0.

In general, even if v* is almost-analytic, v* = ψfv is not necessarily almost-
analytic. Suppose that for a contraVariant almost-analytic vector vk in a K-space,
v* is also almost-analytic, then we have from (l. 5)

= 0

or using (2. 3)

(3. 1) (vXV/ - ΨΪVrV* + va(2^φa

k - VαW) = 0.

Transvecting (3. 1) with φ£ it follows that

(3. 2) vX + <PΪ<P*VrV - 9>>α(2v^αfc ~ V«Λ*) = 0.

From (1. 5) and (3. 2) we have

Vα<P/) = 0, i. e.

= 0,

or vrVr^Λ = 0.

Thus we have

LEMMA 3. 2. When a contravariant vector if in a K-space is almost-
analytic, a necessary and sufficient condition that vk be almost- analytic is
that it satisfies

V\r<Pik = 0.

4. A generalization of the Matsushima's theorem.

THEOREM. In a compact Einstein K-space X2n(R =ψ= 0), any contravariant
almost- analytic vector vl is decomposed in the form

where $ and ql are both Killing vectors and φ^q is a gradient vector. The
decomposition stated above is unique.

10) S. Tachibana [5].
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PROOF. Let v* be a contravariant almost-analytic vector in a compact Einstein

<K-space, then from Lemma 3.1 we have

(4.1) v W + -^-z/= 0.
2n

From this equation, we can easily deduce

(4. 2) vVιVr»r + — Vr v = 0
n

and

(4 3) vVivW + -£- V
zn

If we put

/ A Λ\ . h h , 7 l(4.4) p = v + — 9

where ηh — ̂ h^rv
r, then by (4.2) we have

(4. 5) VA/ = Vnvh + — VftVVrf τ = 0

and by (4.1) and (4. 3) we have

(4. 6)

But since (4. 5) and (4. 6) is a necessary and sufficient condition that />* in a
compact Einstein space be a Killing vector,n) it follows that p* is a Killing
vector.

Next, to prove that η* is almost-analytic, putting

- Pjk = VΛ* + φϊφυπd -

and writing out the square of -P^? we get

+ φϊφuW'ftwt - 2VWvy)Vr9>/ +

Consequently, we have

(4. 7) - P^

11) K. Yano and S. Bochner [7], p. 56.
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and therefore by virtue of Green's theorem we have

(4. 8) j[ (V {v^* + ̂ XVr^)vVδ + <PS/V*9>αOvV ( -- i- VJ^σ = 0,

where dσ means the volume element of the space X2n
In this place, by using (2.1), (2.2), (2.7)λ (2.8), (2.17) and (2.18), we have

and hence

= - V

Thus (4 8) turns to

(4.9)

D D v

Substituting ^Λ = - />* — - 1;* in (4. 9) and using (4. 3), we have
n n

(4. 10) Γ
Jrf

On the other hand z;* being almost-analytic, from Lemma 3. 1 we have

Nrltfv ' + '2f '(-̂ - ̂ * - **») = 0.

Hence (4. 10) becomes
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(4. 11) £ [-g- ^{JW/* + 2/(-A- ̂  _ *»„)[ - JLp^*]^ = 0.

Furthermore (4. 11) can be written as

(4. 12) f [̂  v* W)ΛUvy + 2(V^PT(~- 9r* ~ #
J^L 4« l \ 2«

In fact, taking account of (2. 17), we have

because of (2. 9).
Here by (2. 1), (2. 3) and (2. 12), we have

'>ί - V V/Ό

= 0.

Consequently, we have

v'W
On the other hand

V*

vanishes.
_ /? „
Because since v ^ is anti-symmetric in £, r and tfrλ; — R r* is symmetric in

2n
k, r, the first term of the right hand side vanishes.
For the second term, from (2. 13) and (2. 16) we have

O^T D^" — w ^ 7?^" — »̂  D - - Λ
Δ\ J\. rk — \r*X — Vr K — "•

Thus again by Green's theorem from (4. 12), we have

2

from which we have P)k = 0, that is, we see that ηl is a contravariant almost-
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analytic vector.
Next, we shall show that ηl = φfrf is also almost-analytic. Since vf is

almost-analytic and \?V = vV> from (1. 7) we have

(4. 13) ηr

Vrφβ = 0

which shows by virtue of Lemma 3. 2 that rf is also almost-analytic.
Accordingly if we put

(414) ,
JK.

then qh is a contravariant almost-analytic vector and a Killing vector. In fact

==-^-V.ΛVΛβ = 0 and
jΓ\

From (4. 4) and (4.14) we have

Finally we shall prove that such a decomposition is unique.
If we have

where φr

hq and φr

h'q are both gradient vectors, then

(4.15) />Λ-y = 9>ΛV-Λ
Since the left hand side of (4. 15) is a Killing vector and the right hand side
is a gradient vector, we have

v.f = o
where {* = ph-'p\

Hence by the Ricci's identity we have

vjv r - v.Vίf* = Λ^fcr = o
from which we get

Thus we have / ='/ and q ='q\ q. e. d.
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