ON A TENSOR FIELD ϕ_i^h SATISFYING $\phi^p = \pm I$

SHIGERU ISHIHARA

Dedicated to Professor Kentaro Yano on his fiftieth birthday.

(Received June 30, 1961)

S.Tachibana [3]¹⁾ has recently studied linear connections with respect to which a tensor field ϕ_i^h satisfying $\phi^p = \pm I$, is parallel, and got some necessary and sufficient conditions for a linear connection to make such a structure parallel.

In the present paper, we shall study the integrability condition of such a structure. In case p = 2, ϕ_i^h is an almost complex structure, or an almost product structure. In case p = 3, ϕ_i^h gives a structure closely related to the almost contact structure or the so-called (F, ξ, η) -structure introduced by S.Sasaki in [2].

The tensor calculus developed in the present paper is quite similar to that given by M.Obata [1].

After giving some preliminaries in §1, we shall study in §2 the linear connection with respect to which a tensor field ϕ_i^h , such that $\phi^p = \pm I$, is parallel. §3 is devoted to the study of relations between linear connections making ϕ_i^h parallel and a tensor L_{ji}^h constructed only from ϕ_i^h . In §4, we shall discuss the properties of a tensor field ϕ_i^h such that $\phi^3 = I$ as the simplest example for our structures and obtain an integrability condition of such a structure. In the last section the integrability condition for the general case will be given without proof.

1. Preliminaries. In an *n*-dimensional manifold,²⁾ a tensor field ϕ_i^h of type (1, 1) and a tensor field T_{ji}^h of type (1, 2) are sometimes denoted respectively by

$$\boldsymbol{\phi} = (\boldsymbol{\phi}_i^h)$$
 and $T = (T_{ji}^h)$

by making use of matrix notations with respect to the indices h and i^{3} . Let $\Psi = (\Psi_i^{h})$ by an other tensor field of type (1,1). Then we shall use the following notation:

¹⁾ See the Bibliography at the end of the paper.

²⁾ We restrict ourselves to differentiable manifolds of class C^{∞} and we suppose for all quantities to be of class C^{∞} .

³⁾ $a, b, c, h, i, j = 1, 2, \dots, n.$

Š. ISHIHARA

$$\begin{split} \boldsymbol{\phi} \cdot \boldsymbol{\psi} &= (\boldsymbol{\phi}_{i}^{\ a} \boldsymbol{\psi}_{a}^{\ b}), \\ T \cdot \boldsymbol{\psi} &= (T_{ji}^{\ a} \boldsymbol{\psi}_{a}^{\ b}), \ \boldsymbol{\phi} \cdot T = (\boldsymbol{\phi}_{i}^{\ b} T_{jb}^{\ b}), \\ \boldsymbol{\phi} \cdot T \cdot \boldsymbol{\psi} &= (\boldsymbol{\phi}_{i}^{\ b} T_{jb}^{\ a} \boldsymbol{\psi}_{a}^{\ b}). \end{split}$$

The identity matrix I denotes obviously the numerical tensor field δ_i^h such that $\delta_i^h = 1$, if h = i, and $\delta_i^h = 0$, if $h \neq i$.

We suppose that on a differentiable manifold there is given a non-trivial tensor field $\phi = (\phi_i^h)$ of type (1, 1) satisfying $\phi \neq \pm I$ and

(1.1)
$$\phi^{\nu} = \varepsilon I,$$

for some integer $p(\geq 2)$, where ε is a constant +1 or -1 and ϕ^p denotes the *p*-th power of the matrix ϕ . Such a tensor field is briefly called a (p,ε) -structure. Because this ϕ is non-singular, it has the inverse tensor ϕ^{-1} , which we denote by $\psi = (\psi_i^n)$. Denoting ϕ^r and ψ^r respectively by

$$\overset{r}{\phi} = (\overset{r}{\phi}_{i}^{h})$$
 and $\overset{r}{\psi} = (\overset{r}{\psi}_{i}^{h}),$

we have easily from the definition

(1.2)
$$\overset{r}{\phi}^{-1} = \overset{r}{\psi}, \qquad \overset{p}{\phi} = \overset{p}{\psi} = \mathcal{E}I,$$

where r is an arbitrary integer.

We shall now define a correspondence Φ_1 which associates a tensor field $\Phi_1 T$ of type (1.2) to any tensor field T of the same type by the following formula:

(1.3)
$$\Phi_1 T = \frac{1}{p} \sum_{r=0}^{p-1} \phi \cdot T \cdot \psi.$$

The components of $\Phi_1 T$ are sometimes denoted by

$$\Phi_1 T = (\Phi_1 T_{ii}^{h}).$$

Then, taking account of (1.2), we see easily

$$\Phi_1\Phi_1=\Phi_1.$$

Next, defining another correspondence Φ_2 by

$$\Phi_2 T = T - \Phi_1 T,$$

we obtain directly from (1.4)

(1.5)
$$\Phi_2 \Phi_2 = \Phi_2, \ \Phi_1 \Phi_2 = \Phi_2 \Phi_1 = 0,$$

where 0 means the zero correspondence assigning the zero tensor field to any tensor of type (1.1). Taking account of (1.4) and (1.5), we have

LEMMA 1. A tensor field T of type (1,2) satisfies the equation $\Phi_2T=0$

if and only if there exists another tensor field S of the same type such that $T = \Phi_1 S$.

LEMMA 2. Let A be a given tensor field of type (1, 2) and

$$(1.6) \Phi_2 T = A$$

be a linear equation with unknown tensor field T of the same type. Then (1.6) has at least one solution if and only if $\Phi_1 A=0$ (or equivalently $\Phi_2 A=A$). If this is the case, the general solution of (1.6) is given by

$$T = A + U,$$

where U is an arbitrary tensor field of type (1,2) satisfying $\Phi_2 U = 0$.

We now give two identities for the later use. For any tensor field T of type (1, 2) we have identities:

(1.7)
$$\Phi_2 T = \frac{1}{p} \sum_{s=1}^{p-1} \sum_{r=0}^{s-1} \phi \cdot (T - \phi \cdot T \cdot \psi) \cdot \psi,$$

(1.8)
$$T - \phi \cdot T \cdot \psi = \Phi_2 T - \phi \cdot (\Phi_2 T) \cdot \psi.$$

Let h_{ji} be a positive definite Riemannian metric. Then, as was proved in [3], it is easily verified that a tensor field g_{ji} defined by

$$g_{ji} = \frac{1}{p} \sum_{r=0}^{p-1} \overset{r}{\phi}_{j}^{c} h_{cb} \phi_{i}^{b}$$

is a positive definite Riemann metric satisfying

(1.9)
$$\phi_j^{\ c} g_{cb} \phi_i^{\ b} = g_{ji}$$

2. ϕ -connections. Let Γ be a linear connection with respect to which the covariant derivative $\nabla_j v^h$ of a contravariant vector field v^h is given by

$$abla_j v^h = \partial_j v^h + \Gamma^h_{ja} v^a$$
,

where Γ_{ji}^{h} are coefficients of the connection Γ . A linear connection Γ is called a ϕ -connection if it makes a (p, ε) -structure ϕ parallel, i. e. if $\nabla_{j} \phi^{h}_{i} = 0$. We define a correspondence Φ associating a linear connection $\Phi\Gamma$ to any linear connection Γ by the formula

(2.1)
$$\Phi\Gamma_{ji}^{\hbar} = \Gamma_{ji}^{\hbar} + \frac{1}{p} \sum_{r=1}^{p-1} (\nabla_j \phi_i^r) \psi_a^{\hbar},$$

where $\Phi\Gamma_{j_i}^{h}$ denote the coefficients of the new connection $\Phi\Gamma$. Let $T = (T_{j_i}^{h})$ be a tensor field of type (1,2). Then $\Gamma + T$ denotes a linear connection with coefficients $\Gamma_{j_i}^{h} + T_{j_i}^{h}$. Now, by making use of the definition (2.1) of Φ and the definition (1.3) of Φ_i , we have directly

S. ISHIHARA

LEMMA 3. We have

$$\Phi(\Gamma + T) = \Phi\Gamma + \Phi_1 T$$

for any linear connection Γ and any tensor field T of type (1, 2).

S. Tachibana [3], basing on the notion of the infinitesimal connection defined in the principal tangent bundle, has proved

THEOREM 1. A linear connection Γ is a ϕ -connection if and only if there exists another linear connection $\hat{\Gamma}$ such that

$$\Gamma = \Phi \hat{\Gamma}.$$

Theorem 1 shows that there exists always a ϕ -connection in any manifold admitting a (p, ε) -structure. This theorem together with (2.1) implies that the correspondence Φ satisfies $\Phi \Phi = \Phi$ and that, for any ϕ -connection $\Gamma, \Phi \Gamma = \Gamma$ holds good.

Because of Lemmas 1 and 3, Theorem 1 implies

THEOREM 2. Let $\stackrel{*}{\Gamma}$ be a ϕ -connection. Then a necessary and sufficient condition for a linear connection Γ to be a ϕ -connection is that there exists a tensor field U of type (1,2) such as

$$\Gamma = \Phi \Gamma + U, \qquad \Phi_2 U = 0.$$

Next, we shall give a pro of of Theorem 1 other than that given in [3].

PROOF OF THEOREM 1. Let $\overset{*}{\Gamma}$ be an arbitrary linear connection. Then a linear connection Γ is a ϕ -connection if and only if

(2.2)
$$T_{ji}^{\ h} - \phi_i^{\ b} T_{jb}^{\ a} \psi_a^{\ h} = (\overset{*}{\nabla}_j \phi_i^{\ a}) \psi_a^{\ h},$$

 $\stackrel{*}{\nabla}$ denoting the covariant differentiation with respect to $\stackrel{*}{\Gamma}$, where we have put

$$T_{ji}^{\ h} = \Gamma_{ji}^{h} - \overset{*}{\Gamma}_{ji}^{h}.$$

Taking account of the identities (1.7) and (1.8), we see easily that the equation (2.2) is equivalent to

$$\Phi_2 T = A_2$$

where the unknown tensor field T_{ji}^{h} is denoted by T and $A = (A_{ji}^{h})$ is the tensor field given by

$$A_{ji}{}^{h} = \frac{1}{p} \sum_{r=1}^{p-1} (\nabla_{j} \phi_{i}^{r}) \psi_{a}^{h}.$$

Here, if we take account of (1.7), we have $\Phi_2 A = A$. This means that T = A is a solution of (2.3). Therefore, Lemma 2 implies that the general

solution of (2.3) is given by

$$T = A + \Phi_1 U,$$

where U is a certain tensor field of type (1,2). Thus, a linear connection Γ is a ϕ -connection if and only if

$$\Gamma = \overset{*}{\Gamma} + A + \Phi_{I}U,$$
$$= \Phi \overset{*}{\Gamma} + \Phi_{I}U,$$
$$= \Phi (\overset{*}{\Gamma} + U).$$

This proves Theorem 1.

3. The tensor L_{ji}^{h} . Let $\overset{\circ}{\Gamma}$ be a symmetric linear connection and put $\Gamma = \Phi \overset{\circ}{\Gamma}$, which is a ϕ -connection. Denoting by $S = (S_{ji}^{h})$ the torsion tensor of the ϕ -connection Γ , we have

(3.1)
$$S_{ji}^{h} = \frac{1}{2} \sum_{r=1}^{p-1} (\stackrel{\circ}{\nabla}_{lj} \stackrel{r}{\phi}_{lj}^{a}) \stackrel{r}{\psi}_{a}^{h},$$

where $\overset{\circ}{\nabla}$ means the covariant differentiation with respect to $\overset{\circ}{\Gamma}$. Since $\overset{\circ}{\Gamma}$ is symmetric, it follows from (3.1)

(3.2)
$$S_{ji}^{h} = \frac{1}{p} \left\{ \sum_{r=1}^{p-1} (\partial_{ij} \phi_{ij}^{a}) \psi_{a}^{h} - \sum_{r=1}^{p-1} \phi_{ij}^{b} \mathring{\Gamma}_{ij}^{a} \psi_{a}^{h} \right\},$$

where $\mathring{\Gamma}_{\mu}^{\ h}$ denote the coefficients of $\mathring{\Gamma}$. Now, taking account of (3.2) and the symmetry of $\mathring{\Gamma}$, we see that the tensor field

(3.3)
$$L_{ji}^{\ h} = S_{ji}^{\ h} - (\Phi_1 S_{ji}^{\ h} - \Phi_1 S_{ij}^{\ h})$$

is independent of the connection $\overset{\circ}{\Gamma}$, i.e. L_{ji}^{h} is a tensor field completely determined by the given structure ϕ . The tensor L_{ji}^{h} can be explicitly written down as

$$p^{2}L_{ji}^{h} = (p-1)\sum_{r=1}^{p-1} (\partial_{[j}\phi_{i]}^{a}\psi_{a}^{r})_{a}^{h} - \sum_{s=1}^{p-1}\sum_{r=1}^{p-1} \phi_{[j}^{b}(\partial_{[b]}\phi_{i]}^{r})\psi_{a}^{r+s}.$$

Now, we consider a linear connection $\hat{\Gamma}$ defined by

$$\hat{\Gamma} = \Gamma - 2\Phi_1 S.$$

Then, by Theorem 2, $\hat{\Gamma}$ is a ϕ -connection. Its torsion tensor is obviously equal to L_{ji}^{h} . Thus, we have

LEMMA 4. In any manifold admitting a (p, ε) -structure ϕ , there always exists a ϕ -connection whose torsion tensor is equal to L_{μ}^{h} .

Taking account of the definition (3.3) of the tensor field L_{ji}^{h} , we see that L_{ji}^{h} vanishes if the manifold admits a symmetric ϕ -connection. Then Lemma 4 implies

THEOREM 3. In a manifold admittinga (p, ε) -structure, a necessary and sufficient condition for the corresponding tensor field L_{ji}^{h} to vanish identically is that there exists a symmetric ϕ -connection.

We shall next give simple forms of L_{ji}^{h} for some smaller values of p. When p = 2, (3.4) is reduced to

$$4\varepsilon L_{ji}^{h} = (\partial_{[j}\phi_{i]}^{a})\phi_{a}^{h} - \phi_{[j}^{b}\partial_{[b]}\phi_{i]}^{h}, \quad (p=2),$$

which is nothing but the Nijenhuis tensor of the almost complex structure ϕ (if $\varepsilon = -1$) or that of the almost product structure ϕ (if $\varepsilon = +1$).

When p = 3, (3.4) is reduced to

$$9\mathcal{E}L_{ji}{}^{h} = 2\{(\partial_{[j}\dot{\phi}_{i]}{}^{a})\dot{\phi}_{a}{}^{a} + (\partial_{[j}\dot{\phi}_{i]}{}^{a})\dot{\phi}_{a}{}^{h}\} \\ - \{(\dot{\phi}_{[j}{}^{b}\partial_{[b]}\dot{\phi}_{i]}{}^{1})\dot{\phi}_{a}{}^{h} + (\dot{\phi}_{[j}{}^{b}\partial_{[b]}\dot{\phi}_{i]}{}^{a})\dot{\phi}_{a}{}^{h}\} \\ - \{\dot{\phi}_{[j}{}^{b}\partial_{[b]}\dot{\phi}_{i]}{}^{h} + \dot{\phi}_{[j}{}^{b}\partial_{[b]}\dot{\phi}_{i]}{}^{h}\} \qquad (p = 3).$$

4. (3, +1)-structures. Let ϕ be a (p, -1)-structure. If p is odd, $-\phi$ is obviously a (p, +1)-structure. Then, in the case where p is odd, it is sufficient for us to consider only (p, +1)-structures.

Let ϕ be a (3, +1)-structure. First, putting

$$Q=\frac{1}{3}(I+\phi+\phi^2),$$

we have

$$Q^2 = Q.$$

Hence, defining P by

$$P=I-Q,$$

we see easily that

$$P^2 = P, \ P \cdot Q = Q \cdot P = 0,$$

i.e. that the pair (P, Q) defines an almost product structure if $Q \neq 0$. When Q = 0, if we put

$$F=\frac{1}{\sqrt{3}}(I+2\phi),$$

449

we have

 $F^2 = -I.$

This implies that the manifold admits an almost complex structure if Q = 0. Next, putting in general case

$$F=\frac{1}{\sqrt{3}}(\boldsymbol{\phi}-\boldsymbol{\phi}^2),$$

we obtain easily

$$(4.1) F^2 = -P, F \cdot P = P \cdot F = F,$$

which implies

$$(4.2) F \cdot Q = Q \cdot F = 0,$$

$$(4.3) F^3 = -F.$$

Conversely, we assume the existence of a non-zero tensor field F of type (1, 1) which satisfies (4. 3). On putting

$$\phi = \frac{3}{2}F^{2} + \frac{\sqrt{3}}{2}F + I,$$

it is easily verified

$$\phi^3=I.$$

Summing up, we obtain

LEMMA 5. A necessary and sufficient condition for a manifold to admit a (3, +1)-structure ϕ is that it admits a non-zero tensor field F of type (1,1)satisfying $F^3 = -F$.

Now, let g_{jt} be a positive definite Riemann metric satisfying (1.9). Then it is easily verified

$$P_j^c g_{cb} P_i^b + Q_j^c g_{cb} Q_i^b = g_{ji},$$

$$F_j^c g_{cb} F_i^b = P_j^c g_{cb} P_i^b.$$

These two relations imply together with Lemma 5

THEOREM 4. A necessary and sufficient condition for an n-dimensional manifold to admit a (3, +1)-structure is that the structure group of its tangent bundle is reducible to the group $O(m) \times U(r)$, where $m \ge 0$ and r > 0 are certain integers such that m + 2r = n.

In this theorem, we have denoted by O(m) and U(r) respectively the orthogonal group of the *n*-dimensional Euclidean space and the unitary group

of the unitary space of r complex dimensions.

In Theorem 4, if m = 1, the structure ϕ is closely related to the almost contact structure and the so-called (F, ξ, η) -structure introduced by S.Sasaki [2]. That is, any orientable manifold with a(3, +1)-structure admits a (F, ξ, η) structure (or equivalently an almost contact structure) if the tensor F corresponding to ϕ is of rank n - 1. In fact, at any point x of the manifold the set of all vectors X^h satisfying $X^a F_a{}^h = 0$ forms a 1-dimensional subspace L_x in each tangent space T_x . The set of all L_x forms obviously a differentiable distribution of 1 dimension throughout the manifold. Let g_{ji} be a positive difinite Riemann metric satisfying (1.9). Then, it is easily verified that the tensor $F_{ji} = F_j{}^a g_{ai}$ is skew-symmetric.

We now assume the manifold to be orientable. There exists obviously the skew-symmetric tensor field

$$\sigma^{i_1 i_2 \dots i_n} = rac{1}{\sqrt{g}} \, \mathcal{E}^{i_1 i_2 \dots i_n}$$

of type (n, 0), where $g = |g_{ji}|$ and $\mathcal{E}^{i_1 \dots i_n}$ is equal to +1 if (i_1, i_2, \dots, i_n) is an even permutation; equal to -1 if (i_1, i_2, \dots, i_n) is an odd permutation; equal to zero otherwise. Because the rank of F_{ji} is 2r (= n - 1), the vector

$$w^h = F_{i_1 i_2} \cdots F_{i_n - \mathbf{i}^{l_n - 1}} \sigma^{i_1 i_2 \cdots i_n - \mathbf{i}^{l_n - 1}h}$$

is everywhere non-zero and $w^a F_a^h = 0$. This means that the vector field w^h is everywhere non-zero and lying on L_x . On putting

$$\boldsymbol{\xi}^{h} = \boldsymbol{w}^{h} / \sqrt{g_{ji} \boldsymbol{w}^{j} \boldsymbol{w}^{i}},$$

 $\boldsymbol{\xi}^{h}$ is a field of unit vectors lying on L_{x} at each point. Then if we put $\eta_{i} = \boldsymbol{\xi}^{a} g_{ia}$, we see

$$Q_i^h = \eta_i \xi^h.$$

This implies together with (4.1)

$$F_i^{\ a}F_a^{\ h}=-\delta_i^h+\eta_i\xi^h.$$

A triple (F_i^h, ξ^h, η_i) satisfying this relation is called a (F, ξ, η) -structure introduced by S.Sasaki [2].

We suppose now that for the given (3, +1)-structure ϕ the tensor L_{ji}^{h} vanishes identically. Then, by virtue of Theorem 3, the manifold admits a symmetric ϕ -connection Γ . Keeping the notations for tensor fields $P=(P_{j}^{h}), Q = (Q_{i}^{h})$ and $F = (F_{i}^{h})$ as above, we obtain

$$\nabla_j P_i^h = 0, \ \nabla_j Q_i^h = 0, \ \nabla_j F_i^h = 0$$

as a consequence of $\nabla_i \phi_i^h = 0$. The first two equations show that the almost

product structure (P, Q) is integrable, i.e. for any point of the manifold there exists a coordinate neighbourhood (U, x^{h}) of this point in which P and Q have respectively the following numerical components:⁴⁾

where we have assumed that P is of rank n - m $(0 \leq m < n)$.

It is easily seen that in (U, x^{\hbar}) the ϕ -connection Γ has zero components except $\Gamma^{\alpha}_{\beta\gamma}$ and $\Gamma^{\lambda}_{\nu\mu}$. Taking account of (4.1) and (4.2), we see that F has the components

(4.4)
$$F = \begin{pmatrix} F_{\alpha}^{\beta} & 0 \\ 0 & 0 \end{pmatrix}$$

in (U, x^h) , where (4.1) implies

(4.5)
$$F_{\beta}{}^{\gamma}F_{\gamma}{}^{\alpha} = -\delta_{\beta}^{\alpha}.$$

In the neighbourhood (U, x^h) any submanifold V defined by $x^{\lambda} = \text{const.}$ is an integral manifold of the (n - m)-dimensional distribution determined by P. Then (4.4) and (4.5) mean that F induces an almost complex structure $F = (F_{\alpha}^{\alpha})$ in each V. On the other hand, $\Gamma_{\gamma\beta}^{\alpha}$ define a symmetric linear connection $\widetilde{\Gamma}$ in each V. Moreover, $\nabla_{j}F_{i}^{\ h} = 0$ implies $\widetilde{\nabla_{\gamma}}\widetilde{F}_{\beta}^{\ \alpha} = 0$ and $\partial_{\lambda}F_{\beta}^{\ \alpha} = 0$, where $\widetilde{\nabla}$ denotes the covariant differentiation with respect to $\widetilde{\Gamma}$. Therefore, the almost complex structure \widetilde{F} is integrable in each V. This means that for any point of V there exists in V a coordinated neighbourhood $(\widetilde{U},\widetilde{x}^{\alpha})$ of this point, in which $F = (F_{\beta}^{\ \alpha})$ has the following numerical components

$$\widetilde{F} = (F_{\beta}^{\alpha}) = \begin{pmatrix} 0 & -I_r \\ & & \\ I_r & 0 \end{pmatrix},$$

where n - m = 2r and I_r is the unit (r, r)-matrix. This fact implies together with $\partial_{\lambda} F_{\beta}^{\alpha} = 0$ that for any point of the manifold there exists a coordinated neighbourhood (U, x^h) of this point, in which the tensor field F has the numerical components

⁴⁾ a, β , $\gamma = 1, 2, ..., n - m$; λ , μ , $\nu = n - m + 1, n - m + 2, ..., n$.

S. ISHIHARA

$$F = \left(\begin{array}{ccc} 0 & -I_r & 0 \\ I_r & 0 & 0 \\ 0 & 0 & 0 \end{array} \right).$$

Summing up, we have proved that if $L_{ji}^{h} = 0$, ϕ is integrable, i.e. for any point of the manifold there exists a coordinated neighbourhood (U, x^{h}) of this point, in which the tensor field ϕ has the numerical components

$$\phi = \begin{pmatrix} -\frac{1}{2}I_r & -\frac{\sqrt{3}}{2}I_r & 0\\ \frac{\sqrt{3}}{2}I_r & -\frac{1}{2}I_r & 0\\ 0 & 0 & I_m \end{pmatrix}.$$

Conversely, it is obvious that when ϕ is integrable, the tensor field L_{μ}^{h} vanishes identically. Then we have

THEOREM 5. In a manifold admitting a (3, +1)-structure ϕ , a necessary and sufficient condition for ϕ to be integrable is that the tensor field L_{μ}^{h} vanishes identically.

As is proved above, if ϕ is integrable, there exist two systems of integral submanifolds in the manifold, corresponding respectively to P and to Q, and each integral submanifold corresponding to P admits an integrable almose complex structure defined by F.

5. The integrability conditions of (p, ε) -structures. Corresponding to Theorem 5, we shall give without proof a theorem explaining the integrability condition of (p, ε) -structures. The (p, ε) -structure is by definition integrable when for any point of the manifold there exists a coordinated neighbourhood (U, x^h) of this point, in which the structure has numerical components.

THEOREM 6. A (p, ε) -structure ϕ is integrable if and only if the corresponding tensor field L_{μ}^{h} vanishes identically.

Next, corresponding to Theorem 4, we shall state without proof

THEOREM 7. A necessary and sufficient condition for a manifold to admit $a(p,\varepsilon)$ -structure is that the structue group of its tangent bundle is reducible (i) if p is odd, say p = 2q + 1, to the group

$$O(m) \times U(r_1) \times \ldots \times U(r_a),$$

where $n > m \geq 0$, $r_1, r_2, \dots, r_q \geq 0$,

$$m + 2(r_1 + r_2 + \ldots + r_q) = n;$$

(ii) if p is even, p > 2, say p = 2q + 2, and $\mathcal{E} = +1$, to the group $O(m) \times O(m') \times U(r_1) \times ... \times U(r_n)$.

where n > m, $m' \ge 0$, $r_1, \dots, r_q \ge 0$,

$$m + m' + 2(r_1 + r_2 + \ldots + r_q) = n;$$

(iii) if p is even, say p = 2q, and $\mathcal{E} = -1$, to the group

$$U(r_1) \times U(r_2) \times \cdots \times U(r_a),$$

where $r_1, r_2, ..., r_q \ge 0$, $2(r_1 + r_2 + ... + r_q) = n$.

Corresponding to each case given in Theorem 7, we have the following result. For each case, the integers $m, m', r_1, r_2, \ldots, r_q$ are restricted within the same ranges as in Theorem 7.

In the case (i), where p (= 2q + 1) is odd and $\mathcal{E} = +1$, there exist in the manifold q + 1 tensor fields E, F_1, \dots, F_q of type (1, 1) satisfying

$$E^{2} = E, \ F_{u}^{3} = -F_{u}, \ E \cdot F_{u} = F_{u} \cdot E = 0, \ (u = 1, 2, ..., q),$$
$$F_{u} \cdot F_{v} = F_{v} \cdot F_{u} = 0, (u \neq v; \ u, v = 1, 2, ..., q),$$

where the rank of E is m and the rank of F_u is r_u . The structure ϕ has the following decomposition:

$$\phi = E + \sum_{u=1}^{q} \left\{ \left(\cos \frac{2u\pi}{p} \right) E_u + \left(\sin \frac{2u\pi}{p} \right) F_u \right\},\$$

where $E_u = -F_u^2$.

In the case (ii), where p(=2q+2) is even, p>2 and $\varepsilon = +1$, there exist in the manifold q+2 tensor fields E, E', F_1, \dots, F_q of type (1, 1) satisfying

$$E^{2} = E, E'^{2} = E', E \cdot E' = E' \cdot E = 0,$$

$$F_{u}^{3} = -F_{u}, E \cdot F_{u} = F_{u} \cdot E = 0, E' \cdot F_{u} = F_{u} \cdot E' = 0, (u = 1, 2, ..., q),$$

$$F_{u} \cdot F_{v} = F_{v} \cdot F_{u} = 0, (u \neq v; u, v = 1, 2, ..., q),$$

where the rank of E is m, the rank of E' is m' and the rank of F_u is r_u . The structuer ϕ has the following decomposition:

$$\boldsymbol{\phi} = \boldsymbol{E} + \boldsymbol{E}' + \sum_{u=1}^{q} \left\{ \left(\cos \frac{2u\pi}{p} \right) \boldsymbol{E}_{u} + \left(\sin \frac{2u\pi}{p} \right) \boldsymbol{F}_{u} \right\},\$$

where $E_u = -F_u^2$.

In the case (iii), where p(=2q) is even and $\mathcal{E} = -1$, there exist in the

manifold q tensor fields F_1, F_2, \dots, F_q of type (1, 1) satisfying

$$F_{u}^{3} = -F_{u}, \quad (u = 1, 2, ..., q),$$

 $F_u \cdot F_v = F_v \cdot F_u = 0$, (u = v; u, v = 1, 2, ..., q),

where the rank of F_u is r_u . The structure ϕ has the following decomposition:

$$\phi = \sum_{u=1}^{q} \left\{ \left(\cos \frac{2(u+1)\pi}{p} \right) E_u + \left(\sin \frac{2(u+1)\pi}{p} \right) F_u \right\},$$

where $E_u = -F_u^2$:

When the structure ϕ is integrable, in every case the projection tensor fields E, E', E_u are all integrable and F_u determines an integrable almost complex structure in each integral submanifold corresponding to the projection tensor field E_u .

BIBLIOGRAPHY

- M. OBATA, Affine connections on manifolds with almost complex, quaternion or Hermitian structure., Japan. Jour. Math., 26(1956), 43-77.
- [2] S.SASAKI, On differentiable manifolds with certain structures which are closely related to almost contact structure I., Tôhoku Math. Jour., 12(1960), 459-476.
- [3] S. TACHIBANA, A remark on linear connections with some properties, Natural Science Report of Ochanomizu Univ., 10(1959), 1-6.

UNIVERSITY OF HONG KONG, TOKYO GAKUGEI UNIVERSITY.