ON A TENSOR FIELD $\phi_{i}{ }^{n}$ SATISFYING $\phi^{p}= \pm I$

SHIGERU ISHIHARA
Dedicated to Professor Kentaro Yano on his fiftieth birthday.

(Received June 30, 1961)
S.Tachibana [3] ${ }^{1)}$ has recently studied linear connections with respect to which a tensor field $\phi_{i}{ }^{h}$ satisfying $\phi^{p}= \pm I$, is parallel, and got some necessary and sufficient conditions for a linear connection to make such a structure parallel.

In the present paper, we shall study the integrability condition of such a structure. In case $p=2, \phi_{i}{ }^{h}$ is an almost complex structure, or an almost product structure. In case $p=3, \phi_{i}{ }^{h}$ gives a structure closely related to the almost contact structure or the so-called (F, ξ, η)-structure introduced by S.Sasaki in [2].

The tensor calculus developed in the present paper is quite similar to that given by M.Obata [1].

After giving some preliminaries in $\S 1$, we shall study in $\S 2$ the linear connection with respect to which a tensor field $\phi_{i}{ }^{h}$, such that $\phi^{p}= \pm I$, is parallel. $\S 3$ is devoted to the study of relations between linear connections making $\phi_{i}{ }^{h}$ parallel and a tensor $L_{j i}{ }^{h}$ constructed only from $\phi_{i}{ }^{h}$. In $\S 4$, we shall discuss the properties of a tensor field $\phi_{i}{ }^{h}$ such that $\phi^{3}=I$ as the simplest example for our structures and obtain an integrability condition of such a structure. In the last section the integrability condition for the general case will be given without proof.

1. Preliminaries. In an n-dimensional manifold, ${ }^{2)}$ a tensor field $\phi_{i}{ }^{n}$ of type $(1,1)$ and a tensor field $T_{j i}{ }^{h}$ of type $(1,2)$ are sometimes denoted respectively by

$$
\phi=\left(\phi_{i}{ }^{h}\right) \quad \text { and } \quad T=\left(T_{j i}{ }^{h}\right)
$$

by making use of matrix notations with respect to the indices h and i^{3}. Let $\psi=\left(\psi_{i}^{h}\right)$ by an other tensor field of type (1,1). Then we shall use the following notation:

[^0]\[

$$
\begin{gathered}
\phi \cdot \psi=\left(\phi_{i}{ }^{a} \psi_{a}{ }^{h}\right), \\
T \cdot \psi=\left(T_{j i}^{a} \psi_{a}{ }^{h}\right), \phi \cdot T=\left(\phi_{i}^{b} T_{j b}{ }^{h}\right), \\
\phi \cdot T \cdot \boldsymbol{\psi}=\left(\phi_{i}^{b} T_{j b}{ }^{a} \psi_{a}{ }^{h}\right) .
\end{gathered}
$$
\]

The identity matrix I denotes obviously the numerical tensor field δ_{i}^{h} such that $\delta_{i}^{h}=1$, if $h=i$, and $\delta_{i}^{h}=0$, if $h \neq i$.

We suppose that on a differentiable manifold there is given a non-trivial tensor field $\phi=\left(\phi_{i}{ }^{h}\right)$ of type $(1,1)$ satisfying $\phi \neq \pm I$ and

$$
\begin{equation*}
\phi^{p}=\varepsilon I, \tag{1.1}
\end{equation*}
$$

for some integer $p(\geqq 2)$, where ε is a constant +1 or -1 and ϕ^{p} denotes the p-th power of the matrix ϕ. Such a tensor field is briefly called a (p, ε)-structure. Because this ϕ is non-singular, it has the inverse tensor ϕ^{-1}, which we denote by $\psi=\left(\psi_{i}^{h}\right)$. Denoting ϕ^{r} and ψ^{r} respectively by

$$
\stackrel{r}{\phi}=\left(\stackrel{r}{\phi}{ }_{i}{ }^{h}\right) \quad \text { and } \quad \stackrel{r}{\psi}=\left(\stackrel{r}{\psi}{ }_{i}{ }^{n}\right),
$$

we have easily from the definition

$$
\begin{equation*}
\stackrel{r}{\phi^{-1}}=\stackrel{r}{\psi}, \quad \stackrel{p}{\phi}=\stackrel{p}{\psi}=\varepsilon I, \tag{1.2}
\end{equation*}
$$

where r is an arbitrary integer.
We shall now define a correspondence Φ_{1} which associates a tensor field $\Phi_{1} T$ of type (1.2) to any tensor field T of the same type by the following formula :

$$
\begin{equation*}
\Phi_{1} T=\frac{1}{p} \sum_{r=0}^{p-1} \stackrel{r}{\phi} \cdot T \cdot \stackrel{r}{\psi} . \tag{1.3}
\end{equation*}
$$

The components of $\Phi_{1} T$ are sometimes denoted by

$$
\Phi_{1} T=\left(\Phi_{1} T_{j i}{ }^{h}\right) .
$$

Then, taking account of (1.2), we see easily

$$
\Phi_{1} \Phi_{1}=\Phi_{1} .
$$

Next, defining another correspondence Φ_{2} by

$$
\begin{equation*}
\Phi_{2} T=T-\Phi_{1} T, \tag{1.4}
\end{equation*}
$$

we obtain directly from (1.4)

$$
\begin{equation*}
\Phi_{2} \Phi_{2}=\Phi_{2}, \Phi_{1} \Phi_{2}=\Phi_{2} \Phi_{1}=0 \tag{1.5}
\end{equation*}
$$

where 0 means the zero correspondence assigning the zero tensor field to any tensor of type (1.1). Taking account of (1.4) and (1.5). we have

Lemma 1. A tensor field T of type $(1,2)$ satisfies the equation $\Phi_{2} T=0$
if and only if there exists another tensor field S of the same type such that $T=\Phi_{1} S$.

Lemma 2. Let A be a given tensor field of type $(1,2)$ and

$$
\begin{equation*}
\Phi_{2} T=A \tag{1.6}
\end{equation*}
$$

be a linear equation with unknown tensor field T of the same type. Then (1.6) has at least one solution if and only if $\Phi_{1} A=0$ (or equivalently $\Phi_{2} A=A$). If this is the case, the general solution of (1.6) is given by

$$
T=A+U
$$

where U is an arbitrary tensor field of type (1,2) satisfying $\Phi_{2} U=0$.
We now give two identities for the later use. For any tensor field T of type $(1,2)$ we have identities:

$$
\begin{align*}
\Phi_{2} T & =\frac{1}{p} \sum_{s=1}^{p-1} \sum_{r=0}^{s-1} \stackrel{r}{\phi} \cdot(T-\phi \cdot T \cdot \psi) \cdot \stackrel{r}{\psi} \tag{1.7}\\
T & -\phi \cdot T \cdot \psi=\Phi_{2} T-\cdots \cdot\left(\Phi_{2} T\right) \cdot \psi . \tag{1.8}
\end{align*}
$$

Let $h_{j i}$ be a positive definite Riemannian metric. Then, as was proved in [3], it is easily verified that a tensor field $g_{j i}$ defined by

$$
g_{j t}=\frac{1}{p} \sum_{r=0}^{p-1} \phi_{j}^{r} h_{c b} \phi_{i}^{b}
$$

is a positive definite Riemann metric satisfying

$$
\begin{equation*}
\phi_{j}{ }^{c} g_{c b} \phi_{i}^{b}=g_{j \imath} . \tag{1.9}
\end{equation*}
$$

2. ϕ-connections. Let Γ be a linear connection with respect to which the covariant derivative $\nabla_{j} v^{h}$ of a contravariant vector field v^{h} is given by

$$
\nabla_{j} v^{h}=\partial_{j} v^{h}+\Gamma_{j a}^{h} v^{a},
$$

where $\Gamma_{j t}^{h}$ are coefficients of the connection Γ. A linear connection Γ is called a ϕ-connection if it makes a (p, ε)-structure ϕ parallel, i. e. if $\nabla_{j} \phi_{i}^{h}=0$. We define a correspondence $\boldsymbol{\Phi}$ associating a linear connection $\boldsymbol{\Phi} \Gamma$ to any linear connection Γ by the formula

$$
\begin{equation*}
\Phi \Gamma_{j l}^{n}=\Gamma_{j i}^{h}+\frac{1}{p} \sum_{r=1}^{p-1}\left(\nabla_{j} \dot{\phi}_{i}{ }^{a}\right)^{r} \dot{\psi}_{a}^{n} \tag{2.1}
\end{equation*}
$$

where $\Phi \Gamma_{j i}^{h}$ denote the coefficients of the new connection $\Phi \Gamma$. Let $T=\left(T_{j i}{ }^{h}\right)$ be a tensor field of type (1,2). Then $\Gamma+T$ denotes a linear connection with coefficients $\Gamma_{j i}^{h}+T_{j i}{ }^{h}$. Now, by making use of the definition (2.1) of Φ and the definition (1.3) of Φ_{1}, we have directly

Lemma 3. We have

$$
\Phi(\Gamma+T)=\Phi \Gamma+\Phi_{1} T
$$

for any linear connection Γ and any tensor field T of type (1,2).
S. Tachibana [3], basing on the notion of the infinitesimal connection defined in the principal tangent bundle, has proved

THEOREM 1. A linear connection Γ is a ϕ-connection if and only if there exists another linear connection $\hat{\Gamma}$ such that

$$
\Gamma=\Phi \hat{\Gamma}
$$

Theorem 1 shows that there exists always a ϕ-connection in any manifold admitting $a(p, \varepsilon)$-structure. This theorem together with (2.1) implies that the correspondence Φ satisfies $\Phi \Phi=\Phi$ and that, for any ϕ-connection $\Gamma, \Phi \Gamma=\Gamma$ holds good.

Because of Lemmas 1 and 3, Theorem 1 implies
THEOREM 2. Let $\stackrel{*}{\Gamma}$ be a ϕ-connection. Then a necessary and sufficient condition for a linear connection Γ to be a ϕ-connection is that there exists a tensor field U of type $(1,2)$ such as

$$
\Gamma=\Phi \stackrel{*}{\Gamma}+U, \quad \Phi_{2} U=0
$$

Next, we shall give a pro of of Theorem 1 other than that given in [3].
PROOF OF THEOREM 1. Let $\stackrel{*}{\Gamma}$ be an arbitrary linear connection. Then a linear connection Γ is a ϕ-connection if and only if

$$
\begin{equation*}
T_{j i}{ }^{h}-\phi_{i}{ }^{b} T_{j b}{ }^{a} \psi_{a}{ }^{h}=\left({ }^{*} \nabla_{j} \phi_{i}{ }^{a}\right) \psi_{a}{ }^{h}, \tag{2.2}
\end{equation*}
$$

$\stackrel{*}{\nabla}$ denoting the covariant differentiation with respect to $\stackrel{*}{\Gamma}$, where we have put

$$
T_{j i}{ }^{n}=\Gamma_{j i}^{h}-{\stackrel{*}{\Gamma}{ }_{j i}^{h} .}^{h}
$$

Taking account of the identities (1.7) and (1.8), we see easily that the equation (2.2) is equivalent to

$$
\begin{equation*}
\Phi_{2} T=A \tag{2.3}
\end{equation*}
$$

where the unknown tensor field $T_{j i}{ }^{h}$ is denoted by T and $A=\left(A_{j i}{ }^{h}\right)$ is the tensor field given by

$$
A_{j i}^{n}=\frac{1}{p} \sum_{r=1}^{p-1}\left(\stackrel{*}{\nabla}_{\nabla_{j}}^{r} \dot{\phi}_{i}^{a}\right)^{r}{ }_{a}^{n}
$$

Here, if we take account of (1.7), we have $\Phi_{2} A=A$. This means that $T=A$ is a solution of (2.3). Therefore, Lemma 2 implies that the general
solution of (2.3) is given by

$$
T=A+\Phi_{1} U
$$

where U is a certain tensor field of type (1,2). Thus, a linear connection Γ is a ϕ-connection if and only if

$$
\begin{aligned}
\Gamma & =\stackrel{*}{\Gamma}+A+\Phi_{1} U \\
& =\Phi \stackrel{*}{\Gamma}+\Phi_{1} U \\
& =\Phi(\stackrel{*}{\Gamma}+U)
\end{aligned}
$$

This proves Theorem 1.
3. The tensor $L_{j i t}{ }^{n}$. Let $\stackrel{\circ}{\Gamma}$ be a symmetric linear connection and put $\boldsymbol{\Gamma}=\Phi \stackrel{\circ}{\Gamma}$, which is a ϕ-connection. Denoting by $S=\left(S_{j i}{ }^{h}\right)$ the torsion tensor of the ϕ-connection Γ, we have
where $\stackrel{\circ}{\nabla}$ means the covariant differentiation with respect to $\stackrel{\circ}{\Gamma}$. Since $\stackrel{\circ}{\Gamma}$ is symmetric, it follows from (3.1)

$$
\begin{equation*}
S_{j i}^{n}=\frac{1}{p}\left\{\sum_{r=1}^{p-1}\left(\partial_{l j} \phi_{i]}{ }^{a}\right) \stackrel{\psi}{\psi}_{a}^{n}-\sum_{r=1}^{p-1} \boldsymbol{\phi}_{[j}{ }^{\circ}{ }^{\circ}{ }_{i j}{ }^{a}{ }_{b} \stackrel{\psi}{\psi}_{a}^{n}\right\} \tag{3.2}
\end{equation*}
$$

where $\stackrel{\circ}{\Gamma}_{j i t}{ }^{h}$ denote the coefficients of $\stackrel{\circ}{\Gamma}$. Now, taking account of (3.2) and the symmetry of $\stackrel{\circ}{\Gamma}$, we see that the tensor field

$$
\begin{equation*}
L_{j i}{ }^{h}=S_{j i}{ }^{h}-\left(\Phi_{1} S_{j i}{ }^{h}-\Phi_{i S_{i j}}{ }^{h}\right) \tag{3.3}
\end{equation*}
$$

is independent of the connection $\stackrel{\circ}{\Gamma}$, i.e. $L_{j i}{ }^{h}$ is a tensor field completely determined by the given structure ϕ. The tensor $L_{j i}{ }^{h}$ can be explicitly written down as

$$
\begin{aligned}
p^{2} L_{j i}{ }^{n} & \left.=(p-1) \sum_{r=1}^{p-1}\left(\partial_{j j} \phi_{i]}{ }^{a}{ }^{r}\right)_{a}^{r}\right)^{n} \\
& -\sum_{s=1}^{p-1} \sum_{r=1}^{p-1} \dot{\delta}_{[j}{ }^{b}\left(\partial_{|0|} \stackrel{r}{\phi}_{i j}{ }^{a}\right)^{r+s}{ }_{\psi}^{\psi}{ }_{a}^{n} .
\end{aligned}
$$

Now, we consider a linear connection $\hat{\Gamma}$ defined by

$$
\hat{\Gamma}=\Gamma-2 \Phi_{1} S
$$

Then, by Theorem 2, $\hat{\Gamma}$ is a ϕ-connection. Its torsion tensor is obviously equal to $L_{j i}{ }^{h}$. Thus, we have

LEMMA 4. In any manifold admitting $a(p, \varepsilon)$-structure ϕ, there always exists a ϕ-connection whose torsion tensor is equal to $L_{j i}{ }^{h}$.

Taking account of the definition (3.3) of the tensor field $L_{j i}{ }^{h}$, we see that $L_{j i}{ }^{h}$ vanishes if the manifold admits a symmetric ϕ-connection. Then Lemma 4 implies

THEOREM 3. In a manifold admittinga (p, ε)-structure, a necessary and sufficient condition for the corresponding tensor field $L_{j i}{ }^{h}$ to vanish identically is that there exists a symmetric ϕ-connection.

We shall next give simple forms of $L_{j i}{ }^{h}$ for some smaller values of p.
When $p=2$, (3.4) is reduced to

$$
4 \varepsilon L_{j i}{ }^{h}=\left(\partial_{i j} \phi_{i]}{ }^{a}\right) \phi_{a}{ }^{h}-\phi_{i j}{ }^{b} \partial_{[|0|} \phi_{i]}{ }^{h}, \quad(p=2),
$$

which is nothing but the Nijenhuis tensor of the almost complex structure ϕ (if $\varepsilon=-1$) or that of the almost product structure ϕ (if $\varepsilon=+1$).

When $p=3$, (3.4) is reduced to

$$
\begin{aligned}
& 9 \varepsilon L_{j i}{ }^{h}=2\left\{\left(\partial_{i j} \dot{\phi}_{i]}{ }^{a}\right) \stackrel{2}{\phi}_{a}+\left(\partial_{\partial j}{ }_{\dot{\phi}}^{i]}{ }^{a}\right){ }^{1}{ }^{1}{ }_{a}{ }^{3}\right\} \\
& -\left\{\left(\dot{\phi}_{[j}{ }^{b} \partial_{|b|}{ }^{1} \dot{\phi}_{i]}{ }^{a}\right){ }^{1} \dot{\phi}_{a}{ }^{n}+\left(\dot{\phi}_{[j}{ }^{b} \partial_{[b \mid}{ }^{2} \dot{\phi}_{i]}{ }^{a}\right){ }^{2}{ }^{2}{ }^{n}\right\} \\
& -\left\{\dot{\phi}_{[j}{ }^{b} \partial_{\mid b,}{ }^{2} \boldsymbol{\phi}_{i]}{ }^{n}+\stackrel{2}{\phi}_{[j}{ }^{\circ} \partial_{|0|}{ }^{1}{ }_{\boldsymbol{\phi}}^{i]}{ }^{n}\right\} \quad(p=3) .
\end{aligned}
$$

4. $(3,+1)$-structures. Let ϕ be a $(p,-1)$-structure. If p is odd, $-\phi$ is obviously a $(p,+1)$-structure. Then, in the case where p is odd, it is sufficient for us to consider only ($p,+1$)-structures.

Let ϕ be a $(3,+1)$-structure. First, putting

$$
Q=\frac{1}{3}\left(I+\phi+\phi^{2}\right),
$$

we have

$$
Q^{2}=Q .
$$

Hence, defining P by

$$
P=I-Q
$$

we see easily that

$$
P^{2}=P, P \cdot Q=Q \cdot P=0,
$$

i. e. that the pair (P, Q) defines an almost product structure if $Q \neq 0$. When $Q=0$,if we put

$$
F=\frac{1}{\sqrt{3}}(I+2 \phi)
$$

we have

$$
F^{2}=-I
$$

This implies that the manifold admits an almost complex structure if $Q=0$.
Next, putting in general case

$$
F=\frac{1}{\sqrt{3}}\left(\phi-\phi^{2}\right)
$$

we obtain easily

$$
\begin{equation*}
F^{2}=-P, \quad F \cdot P=P \cdot F=F \tag{4.1}
\end{equation*}
$$

which implies

$$
\begin{align*}
F \cdot Q & =Q \cdot F=0, \tag{4.2}\\
F^{3} & =-F . \tag{4.3}
\end{align*}
$$

Conversely, we assume the existence of a non-zero tensor field F of type $(1,1)$ which satisfies (4.3). On putting

$$
\phi=\frac{3}{2} F^{2}+\frac{\sqrt{3}}{2} F+I,
$$

it is easily verified

$$
\phi^{3}=I
$$

Summing up, we obtain
Lemma 5. A necessary and sufficient condition for a manifold to admit $a(3,+1)$-structure ϕ is that it admits a non-zero tensor field F of type $(1,1)$ satisfying $F^{3}=-F$.

Now, let $g_{j i}$ be a positive definite Riemann metric satisfying (1.9). Then it is easily verified

$$
\begin{gathered}
P_{j}^{c} g_{c b} P_{i}^{b}+Q_{j}^{c} g_{c b} Q_{i}^{b}=g_{j t}, \\
F_{j}^{c} g_{c b} F_{i}^{b}=P_{j}^{c} g_{c b} P_{i}^{b} .
\end{gathered}
$$

These two relations imply together with Lemma 5
THEOREM 4. A necessary and sufficient condition for an n-dimensional manifold to admit $a(3,+1)$-structure is that the structure group of its tangent bundle is reducible to the group $O(m) \times U(r)$, where $m \geqq 0$ and $r>0$ are certain integers such that $m+2 r=n$.

In this theorem, we have denoted by $O(m)$ and $U(r)$ respectively the orthogonal group of the n-dimensinoal Euclidean space and the unitary group
of the unitary space of r complex dimensions.
In Theorem 4, if $m=1$, the structure ϕ is closely related to the almost contact structure and the so-called (F, ξ, η)-structure introduced by S.Sasaki [2]. That is, any orientable manifold with a $(3,+1)$-structure admits a (F, ξ, η) structure (or equivalently an almost contact structure) if the tensor F corresponding to ϕ is of rank $n-1$. In fact, at any point x of the manifold the set of all vectors X^{h} satisfying $X^{a} F_{a}{ }^{h}=0$ forms a 1 -dimensional subspace L_{x} in each tangent space T_{x}. The set of all L_{x} forms obviously a differentiable distribution of 1 dimension throughout the manifold. Let $g_{j i}$ be a positive difinite Riemann metric satisfying (1.9). Then, it is easily verified that the tensor $F_{j i}=F_{j}^{a} g_{a i}$ is skew-symmetric.

We now assume the manifold to be orientable. There exists obviously the skew-symmetric tensor field

$$
\sigma^{i_{1} i_{1} \ldots i_{n}}=\frac{1}{\sqrt{g}} \varepsilon^{i_{1} i_{2} \ldots i_{n}}
$$

of type ($n, 0$), where $g=\left|g_{j i}\right|$ and $\varepsilon^{i_{i}} \ldots i_{n}$ is equal to +1 if $\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ is an even permutation; equal to -1 if ($i_{1}, i_{2}, \ldots i_{n}$) is an odd permutation; equal to zero otherwise. Because the rank of $F_{j i}$ is $2 r(=n-1)$, the vector

$$
w^{h}=F_{l_{1},} \cdots \cdots F_{i_{n-1}, i_{n-1}} \sigma^{i_{1}, \ldots i_{n}-i_{n}-1 h}
$$

is everywhere non-zero and $w^{a} F_{a}{ }^{h}=0$. This means that the vector field w^{h} is everywhere non-zero and lying on L_{x}. On putting

$$
\xi^{h}=w^{h} / \sqrt{y_{j i} w^{9} w^{i}},
$$

ξ^{n} is a field of unit vectors lying on L_{x} at each point. Then if we put $\boldsymbol{\eta}_{i}=\xi^{a} g_{i u}$, we see

$$
Q_{i}^{h}=\eta_{i} \xi^{h} .
$$

This implies together with (4.1)

$$
F_{i}{ }^{a} F_{a}{ }^{h}=-\delta_{i}^{h}+\eta_{i} \xi^{h} .
$$

A triple ($F_{i}^{h}, \xi^{n}, \eta_{i}$) satisfying this relation is called a (F, ξ, η)-structure introduced by S.Sasaki [2].

We suppose now that for the given $(3,+1)$-structure ϕ the tensor $L_{j i}{ }^{h}$ vanishes identically. Then, by virtue of Theorem 3, the manifold admits a symmetric ϕ-connection Γ. Keeping the notations for tensor fields $P=\left(P_{j}{ }^{h}\right), Q$ $=\left(Q_{i}{ }^{h}\right)$ and $F=\left(F_{i}^{h}\right)$ as above, we obtain

$$
\nabla_{j} P_{i}^{h}=0, \nabla_{j} Q_{i}^{h}=0, \nabla_{j} F_{i}^{h}=0
$$

as a consequence of $\nabla_{j} \phi_{i}{ }^{h}=0$. The first two equations show that the almost
product structure (P, Q) is integrable, i.e. for any point of the manifold there exists a coordinate neighbourhood (U, x^{h}) of this point in which P and Q have respectively the following numerical components : 4

$$
P=\left(\begin{array}{cc}
\delta_{\beta}^{\alpha} & 0 \\
0 & 0
\end{array}\right), \quad Q=\left(\begin{array}{cc}
0 & 0 \\
0 & \delta_{\mu}^{\lambda}
\end{array}\right)
$$

where we have assumed that P is of rank $n-m(0 \leqq m<n)$.
It is easily seen that in (U, x^{h}) the ϕ-connection Γ has zero components except $\Gamma_{\beta \gamma}^{\alpha}$ and $\Gamma_{\nu \mu}^{\lambda}$. Taking account of (4.1) and (4.2), we see that F has the components

$$
F=\left(\begin{array}{cc}
F_{a}{ }^{\beta} & 0 \tag{4.4}\\
0 & 0
\end{array}\right)
$$

in (U, x^{h}), where (4.1) implies

$$
\begin{equation*}
F_{\beta}^{\gamma} F_{\gamma}{ }^{\alpha}=-\delta_{\beta}^{\alpha} . \tag{4.5}
\end{equation*}
$$

In the neighbourhood (U, x^{h}) any submanifold V defined by $x^{\lambda}=$ const. is an integral manifold of the $(n-m)$-dimensional distribution determined by P. Then (4.4) and (4.5) mean that F induces an almost complex structure $F=\left(F_{\alpha}^{\beta}\right)$ in each V. On the other hand, $\Gamma_{\gamma \beta}^{\alpha}$ define a symmetric linear connection $\widetilde{\Gamma}$ in each V. Moreover, $\nabla_{j} F_{i}{ }^{h}=0$ implies $\widetilde{\nabla}_{\gamma} \widetilde{F}_{\beta}{ }^{\alpha}=0$ and $\partial_{\lambda} F_{\beta}{ }^{\alpha}=0$, where $\tilde{\nabla}$ denotes the covariant differentiation with respect to $\widetilde{\Gamma}$. Therefore, the almost complex structure \widetilde{F} is integrable in each V . This means that for any point of V there exists in V a coordinated neighbourhood $\left(\widetilde{U}, \widetilde{x}^{\alpha}\right)$ of this point, in which $F=\left(F_{\beta}{ }^{\alpha}\right)$ has the following numerical components

$$
\widetilde{F}=\left(F_{\beta}^{\alpha}\right)=\left(\begin{array}{rr}
0 & -I_{r} \\
I_{r} & 0
\end{array}\right)
$$

where $n-m=2 r$ and I_{r} is the unit (r, r)-matrix. This fact implies together with $\partial_{\lambda} F_{\beta}{ }^{\alpha}=0$ that for any point of the manifold there exists a coordinated neighbourhood (U, x^{h}) of this point, in which the tensor field F has the numerical components

[^1]\[

F=\left($$
\begin{array}{ccc}
0 & -I_{r} & 0 \\
I_{r} & 0 & 0 \\
0 & 0 & 0
\end{array}
$$\right)
\]

Summing up, we have proved that if $L_{j i}{ }^{h}=0, \phi$ is integrable, i.e. for any point of the manifold there exists a coordinated neighbourhood (U, x^{h}) of this point, in which the tensor field ϕ has the numerical components

$$
\phi=\left(\begin{array}{ccc}
-\frac{1}{2} I_{r} & -\frac{\sqrt{3}}{2} I_{r} & 0 \\
\frac{\sqrt{3}}{2} I_{r} & -\frac{1}{2} I_{r} & 0 \\
0 & 0 & I_{m}
\end{array}\right) .
$$

Conversely, it is obvious that when ϕ is integrable, the tensor field $L_{j i t}{ }^{n}$ vanishes identically. Then we have

THEOREM 5. In a manifold admitting a (3, +1)-structure ϕ, a necessary and sufficient condition for ϕ to be integrable is that the tensor field $L_{j i}{ }^{h}$ vanishes identically.

As is proved above, if ϕ is integrable, there exist two systems of integral submanifolds in the manifold, corresponding respectively to P and to Q, and each integral submanifold corresponding to P admits an integrable almose complex structure defined by F.
5. The integrability conditions of (p, ε)-structures. Corresponding to Theorem 5, we shall give without proof a theorem explaining the integrability condition of (p, ε)-structures. The (p, ε)-structure is by definition integrable when for any point of the manifold there exists a coordinated neighbourhood (U, x^{h}) of this point, in which the structure has numerical components.

THEOREM 6. $A(p, \varepsilon)$-structure ϕ is integrable if and only if the corresponding tensor field $L_{j i}{ }^{h}$ vanishes identically.

Next, corresponding to Theorem 4, we shall state without proof
THEOREM 7. A necessary and sufficient condition for a manifold to admit a (p, ε)-structure is that the structue group of its tangent bundle is reducible (i) if p is odd, say $p=2 q+1$, to the group

$$
O(m) \times U\left(r_{1}\right) \times \ldots \times U\left(r_{q}\right),
$$

where $n>m \geqq 0, r_{1}, r_{2}, \ldots, r_{q} \geqq 0$,

$$
m+2\left(r_{1}+r_{2}+\ldots+r_{q}\right)=n
$$

(ii) if p is even, $p>2$, say $p=2 q+2$, and $\varepsilon=+1$, to the group

$$
O(m) \times O\left(m^{\prime}\right) \times U\left(r_{1}\right) \times \ldots \times U\left(r_{q}\right)
$$

where $n>m, m^{\prime} \geqq 0, r_{1}, \ldots, r_{q} \geqq 0$,

$$
m+m^{\prime}+2\left(r_{1}+r_{2}+\ldots+r_{q}\right)=n
$$

(iii) if p is even, say $p=2 q$, and $\varepsilon=-1$, to the group

$$
U\left(r_{1}\right) \times U\left(r_{2}\right) \times \cdots \times U\left(r_{q}\right),
$$

where $r_{1}, r_{2}, \ldots, r_{q} \geqq 0,2\left(r_{1}+r_{2}+\ldots+r_{q}\right)=n$.
Corresponding to each case given in Theorem 7, we have the following result. For each case, the integers $m_{2} m^{\prime}, r_{1}, r_{2}, \ldots, r_{q}$ are restricted within the same ranges as in Theorem 7.

In the case (i), where $p(=2 q+1)$ is odd and $\varepsilon=+1$, there exist in the manifold $q+1$ tensor fields E, F_{1}, \ldots, F_{q} of type $(1,1)$ satisfying

$$
\begin{gathered}
E^{2}=E, F_{u}^{3}=-F_{u}, E \cdot F_{u}=F_{u} \cdot E=0,(u=1,2, \ldots, q), \\
F_{u} \cdot F_{v}=F_{v} \cdot F_{u}=0,(u \neq v ; u, v=1,2, \ldots, q),
\end{gathered}
$$

where the rank of E is m and the rank of F_{u} is r_{u}. The structure ϕ has the following decomposition:

$$
\phi=E+\sum_{u=1}^{q}\left\{\left(\cos \frac{2 u \pi}{p}\right) E_{u}+\left(\sin \frac{2 u \pi}{p}\right) F_{u}\right\}
$$

where $E_{u}=--F_{u}^{2}$.
In the case (ii), where $p(=2 q+2)$ is even, $p>2$ and $\varepsilon=+1$, there exist in the manifold $q+2$ tensor fields $E, E^{\prime}, F_{1}, \ldots, F_{q}$ of type $(1,1)$ satisfying

$$
\begin{gathered}
E^{2}=E, E^{\prime 2}=E^{\prime}, E \cdot E^{\prime}=E^{\prime} \cdot E=0, \\
F_{u}^{3}=-F_{u}, E \cdot F_{u}=F_{u} \cdot E=0, E^{\prime} \cdot F_{u}=F_{u} \cdot E^{\prime}=0,(u=1,2, \ldots, q), \\
F_{u} \cdot F_{v}=F_{v} \cdot F_{u}=0,(u \neq v ; u, v=1,2, \ldots, q),
\end{gathered}
$$

where the rank of E is m, the rank of E^{\prime} is m^{\prime} and the rank of F_{u} is r_{u}. The structuer ϕ has the following decomposition:

$$
\phi=E+E^{\prime}+\sum_{u=1}^{q}\left\{\left(\cos \frac{2 u \pi}{p}\right) E_{u}+\left(\sin \frac{2 u \pi}{p}\right) F_{u}\right\},
$$

where $E_{u}=-F_{u}^{2}$.
In the case (iii), where $p(=2 q)$ is even and $\varepsilon=-1$, there exist in the
manifold q tensor fields $F_{1}, F_{2}, \ldots F_{q}$ of type $(1,1)$ satisfying

$$
\begin{gathered}
F_{u}^{3}=-F_{u}, \quad(u=1,2, \ldots, q), \\
F_{u} \cdot F_{v}=F_{v} \cdot F_{u}=0,(u=v ; u, v=1,2, \ldots, q),
\end{gathered}
$$

where the rank of F_{u} is r_{u}. The structure ϕ has the following decomposition:

$$
\phi=\sum_{u=1}^{q}\left\{\left(\cos \frac{2(u+1) \pi}{p}\right) E_{u}+\left(\sin \frac{2(u+1) \pi}{p}\right) F_{u}\right\},
$$

where $E_{u}=-F_{u}^{2}$:
When the structure ϕ is integrable, in every case the projection tensor fields E, E^{\prime}, E_{u} are all integrable and F_{u} determines an integrable almost complex structure in each integral submanifold corresponding to the projection tensor field E_{u}.

BIBLIOGRAPHY

[1] M. Obata, Affine connections on manifolds with almost complex, quaternion or Hermitian structure., Japan. Jour. Math., 26(1956), 43-77.
[2] S.SASAKI, On differentiable manifolds with certain structures which are closely related to almost contact structure I., Tôhoku Math. Jour., 12(1960), 459-476.
[3] S. TACHIBANA, A remark on linear connections with some properties, Natural Science Report of Ochanomizu Univ., 10 (1959),1-6.

[^0]: 1) See the Bibliography at the end of the paper.
 2) We restrict ourselves to differentiable manifolds of class C^{∞} and we suppose for all quantities to be of class C^{∞}.
 3) $a, b, c, h, i, j=1,2, \ldots \ldots \ldots, n$.
[^1]: 4) $\alpha, \beta, \gamma=1,2, \ldots, n-m ; \lambda, \mu, \nu=n-m+1, n-m+2, \ldots, n$.
