NOTE ON (ϕ, ξ, η) -STRUCTURE

CHEN-JUNG HSU¹⁾

(Received June 27, 1961)

Prof. Sasaki has recently investigated a structure called (ϕ, ξ, η) -structure $[1]^{2}$ which is closely related to the almost contact structure studied by W.Gray and W. M. Boothby-H. C. Wang, and may also be considered as an analogue of almost complex structure for odd dimensional manifolds.

Let M^{2n+1} be a (2n + 1)-dimensional differentiable manifold of class C^{∞} . M^{2n+1} is said to have a (ϕ, ξ, η) -structure if there exists a tensor field ϕ_j^i , a contravariant vector field ξ^i and a covariant vector field η_j (each is of class C^{∞}) over M^{2n+1} such that the following conditions are satisfied:

(0.1) $\xi^i \eta_i = 1,$ $(i, j, k = 1, 2, \dots, 2n + 1)$

$$(0.2) rank | \boldsymbol{\phi}_j^i | = 2n,$$

- $(0.3) \qquad \qquad \phi_j{}^i\xi^i = 0,$
- $(0.4) \qquad \qquad \phi_j{}^i\eta_i=0,$

$$(0.5) \qquad \qquad \phi_j{}^i\phi_k{}^j = -\delta_k{}^i + \xi^i\eta_k.$$

In this note we intend to show that starting from a differentiable manifold M^{2n+1} having (ϕ, ξ, η) -structure one can construct by a natural way a manifold with 3- π -structure [2] in the sense of the present author, and by applying the theory of 3- π -structure we can obtain a tensor analogous to the Nijenhuis tensor in the case of almost complex structure. Moreover, canonic connections for the considered structure are also obtained by the use of the results of π -structure.

1. Associated 3- π -structure. From (0.2) and (0.3) it is evident that ξ^i is a proper vector corresponding to the proper value 0 of ϕ_j^i and the proper subspace of the proper value 0 is spanned only by ξ^i .

Let v^{i} be any proper vector corresponding to a non-zero proper value λ of ϕ_{j}^{i} , then

(1.1)
$$\phi_j{}^i v^j = \lambda v^i.$$

¹⁾ This research was in part supported by a grant from the National Council on Science Development.

²⁾ Number in bracket refers to the reference at the end of paper.

Multiply η_i and sum with respect to *i*, we have

(1.2) $\phi_i{}^i\eta_iv^j = \lambda v^i\eta_i.$

By (0.4) we get $\lambda v^i \eta_i = 0$, therefore

$$(1.3) v^i \eta_i = 0.$$

If we contract (1.1) with ϕ_i^k we have

$$\phi_i{}^k\phi_j{}^iv^j = \lambda\phi_i{}^kv^i.$$

From this we have by (0.5) and (1.1)

$$(-\delta_i^{\ k}+\xi^k\eta_i)v^j=\lambda^2v^k.$$

which gives by (1.3)

$$\lambda^2 v^k = -v^k$$
 and $\lambda^2 = -1$.

Thus the only non-zero proper values of ϕ_j^i are *i* and -i. As ϕ_j^i is real, it follows that each of the proper values has the multiplicity *n*, and the corresponding proper subspace T_P and S_P of the tangent space M_P at point *P* of M^{2n+1} are both of dimension *n*. So, over the differentiable manifold M^{2n+1} we have three distributions *X*, *T* and *S* which assign each point *P* of M^{2n+1} three subspaces X_P, T_P, S_P of the complexification M_P^c of the tangent space M_P . Moreover, $M_P^c = X_P^c + T_P + S_P$ (direct sum) for every point *P* of M^{2n+1} . Thus the differentiable manifold M^{2n+1} is endowed with a 3- π -structure defined by three distributions *X*, *T* and *S*.

Let v^{j} be any vector field contained in the distribution T + S, then by (0.1) and (1.3) we have

(1.4)
$$(\boldsymbol{\xi}^{i}\boldsymbol{\eta}_{j})\boldsymbol{\xi}^{j}=\boldsymbol{\xi}^{i} \quad \mathrm{and} \quad (\boldsymbol{\xi}^{i}\boldsymbol{\eta}_{j})v^{j}=0.$$

So, $\xi^i \eta_j$ is the projection tensor field for the distribution X.

Let p_j^i and q_j^i be respectively the projection tensor field for the distributions T and S. Then if v_+^i and v_-^i are respectively contained in T and S, we have

(1.5)
$$\begin{cases} p_{j}^{i}v_{+}^{j} = v_{+}^{i}, \quad p_{j}^{i}v_{-}^{j} = 0; \\ q_{j}^{i}v_{+}^{j} = 0, \quad q_{j}^{i}v_{-}^{j} = v_{-}^{i}; \\ p_{i}^{i}\xi^{j} = q_{i}^{i}\xi^{j} = 0. \end{cases}$$

Since, by definition

(1.6)
$$\begin{cases} \phi_{j}^{i}v_{+}^{j} = iv_{+}^{i}, \quad \phi_{j}^{i}v_{-}^{j} = -iv_{-}^{i}, \\ \phi_{j}^{i}\xi^{j} = 0, \end{cases}$$

we have

(1.7)
$$\phi_j^i = i p_j^i - i q_j^i,$$

because both sides of the latter formula have the same effect for all vectors of the tangent space at every point of M^{2n+1} .

As M_P^{c} is the direct sum of X_P^{c} , T_P and S_P , we also have

(1.8)
$$\xi^i \eta_j + p_j^i + q_j^i = \delta_j^i.$$

Now we start to consider the inverse implication: Assume that we have a (2n + 1)-dimensional differentiable manifold M^{2n+1} endowed with a 3- π -structure defined by the complete system [2] consists of three distributions X, T and S, of which the first one is a one dimensional real distribution and the latter two are *n*-dimensional conjugate complex distributions which together span the complexification of a 2*n*-dimensional real distribution. If ξ^i , v_{a}^{+i} , $v_{a}^{-i}(\alpha = 1,...,n)$ respectively span X, T and S, then there exists a covariant vector field η_i such that

(1.9)
$$\begin{cases} \eta_i v_+^{i} = 0, \quad \eta_i v_-^{i} = 0, \ (\alpha = 1, ..., n) \\ \xi^i \eta_i = 1. \end{cases}$$

Then it is evident that $\xi^i \eta_j$ is the projection tensor field for the distribution X. Let p_j^i and q_j^i be respectively the projection tensor field for T and S, then (1.5) holds for any vector field v_+^i and v_-^i contained respectively in T and S. It is also evident that (1.8) and the following relation hold:

$$(1. 10) \qquad \qquad \overline{p}_j{}^i = q_j{}^i.$$

Next, define ϕ_j^i by (1.7), then we have by $(1.5)_3$ that

$$(0.3) \qquad \qquad \phi_j{}^i\xi'=0$$

Moreover, by $(1.5)_1$ and $(1.9)_1$ we have

$$\eta_i p_j{}^i v_+{}^i = v_+{}^i \eta_i = 0.$$

Similarly, from $(1.5)_1$ and (0.3), we have

$$\eta_i p_j^i v_j' = 0$$
 and $\eta_i p_j^i \xi' = 0$.

So $\eta_i p_j^i u^i = 0$ holds for any vector u^i of the tangent space. Thus we have (1.11) $\eta_i p_j^i = 0$, and similarly, $\eta_i q_j^i = 0$.

Consequently, we have (1.7)

$$(0.4) \qquad \qquad \phi_j{}^i\eta_i=0.$$

From (1.7) and (1.8) we have moreover

(0.5)
$$\phi_{j}^{i}\phi_{k}^{j} = (ip_{j}^{i} - iq_{j}^{i})(ip_{k}^{j} - iq_{k}^{j})$$
$$= -(p_{k}^{i} + q_{k}^{i}) = -\delta_{k}^{i} + \xi^{i}\eta_{k}.$$

436

From (1.10) it follows that ϕ_j^i is real. And, from (1.7) and (1.5) it follows that ϕ_j^i satisfies (1.6), so the rank of $|\phi_j^i|$ is 2n.

Thus we have the following:

THEOREM 1.1. A necessary and sufficient condition for a (2n+1)-dimensional manifold M^{2n+1} to have a (ϕ, ξ, η) -structure is that the manifold be endowed with a 3π -structure defined by a complete system consists of three distributions X, T and S, of which the first one is a one dimensional real distribution, and the latter two are n-dimensional conjugate complex distributions which together span the complexification of a 2n-dimensional real distribution.

2. Fundamental tensors and torsion tensors. From (1.7) and (1.8) we have

(2.1)
$$\begin{cases} p_{j}^{i} = \frac{1}{2} (\delta_{j}^{i} - \xi^{i} \eta_{j} - i \phi_{j}^{i}), \\ q_{j}^{i} = \frac{1}{2} (\delta_{j}^{i} - \xi^{i} \eta_{j} + i \phi_{j}^{i}), \end{cases}$$

so p_j^i and q_j^i are conjugate complex to each other.

Now the fundamental tensor for the associated $3-\pi$ -structure is defined as follows:

(2.2)
$$F_j^i = \lambda(\xi^i \eta_j + \omega_1^2 p_j^i + \omega_1 q_j^i),$$

where ω_1 is a cubic root (± 1) of unity and λ is any non-zero complex number. Substitute (2.1) in (2.2) we have

(2.3)
$$\qquad \qquad \stackrel{1}{F_j}^i \equiv F_j^i = \frac{\lambda}{2} \left\{ -\delta_j^i + 3\xi^i \eta_j + i\omega_1(1-\omega_1)\phi_j^i \right\}.$$

From which it follows that

(2.4)
$$F_{k}^{2} \equiv F_{j}^{i}F_{k}^{j} = \frac{\lambda^{2}}{2} \{-\delta_{k}^{i} + 3\xi^{i}\eta_{k} - i\omega_{1}(1-\omega_{1})\phi_{k}^{i}\},$$

and

(2.5)
$$\overset{3}{F_{l}}{}^{i} \equiv F_{j}{}^{i}F_{k}{}^{k}F_{l}{}^{k} = \lambda^{3}\delta_{l}{}^{i}.$$

We also can associate M^{2n+1} with three kinds of 2- π -structure as follows:

(2.6)
$$F_{j}^{i} = \lambda_{1} \{ \xi^{i} \eta_{j} - (p_{j}^{i} + q_{j}^{i}) \},$$

(2.7)
$$F_{j}^{i} = \lambda_{2} \{ (\xi^{i} \eta_{j} + p_{j}^{i}) - q_{j}^{i} \},$$

(2.8)
$$F_{j}^{i} = \lambda_{3} \{ (\xi^{i} \eta_{j} + q_{j}^{i}) - p_{j}^{i} \}.$$

These three tensor fields satisfy the following relations:

(2.9)
$$F_{1}^{i}F_{k}^{j} = \lambda_{1}^{2}\delta_{k}^{i}, F_{2}^{j}F_{k}^{j} = \lambda_{2}^{2}\delta_{k}^{i}, F_{3}^{i}F_{3}^{j} = \lambda_{3}^{2}\delta_{k}^{i}.$$

(2.10)
$$\begin{cases} F_{1}^{i}F_{k}^{j} = F_{2}^{j}F_{k}^{j} = \frac{\lambda_{1}\lambda_{2}}{\lambda_{3}}F_{3}^{i}, F_{2}^{i}F_{k}^{j} = F_{3}^{i}F_{2}^{j} = \frac{\lambda_{2}\lambda_{3}}{\lambda_{1}}F_{1}^{i}, \\ F_{3}^{i}F_{1}^{j} = F_{1}^{i}F_{3}^{j} = \frac{\lambda_{1}\lambda_{3}}{\lambda_{2}}F_{2}^{i}. \end{cases} \end{cases}$$

Substitute (2.1) in (2.6), (2.7) and (2.8) we have

(2. 11)
$$\begin{cases} F_1^{i} = \lambda_1 (2\xi^i \eta_j - \delta_j^{i}), \\ F_j^{i} = \lambda_2 (\xi^i \eta_j - i\phi_j^{i}), \\ F_2^{i} = \lambda_3 (\xi^i \eta_j + i\phi_j^{i}). \end{cases}$$

It is known that the torsion tensor (analogue of the Nijenhuis tensor) for a 2- π -structure is as follows [2].

(2.12)
$$t_{a}^{i} = -\frac{1}{4\lambda_{a}^{2}} (\delta_{j}^{p} F_{k}^{q} + \delta_{k}^{q} F_{j}^{p}) (\partial_{p} F_{q}^{i} - \partial_{q} F_{a}^{j}), \ (a = 1, 2, 3).$$

Thus for respective case of (2.11) we have

(2.13)
$$t_{jk}^{ji} = -\xi^{i}(-N_{j}\eta_{k} + N_{k}\eta_{j} + \eta_{j,k} - \eta_{k,j}),$$
$$t_{jk}^{ji} = -\frac{1}{4}P_{jk}^{i} - \frac{1}{4}iQ_{jk}^{i},$$
$$t_{jk}^{ji} = -\frac{1}{4}P_{jk}^{i} + \frac{1}{4}iQ_{jk}^{i},$$

in which

(2.15)
$$\begin{cases} P_{jk}^{i} = N_{jk}^{i} - t_{jk}^{i} - \xi^{i}(\eta_{j,k} - \eta_{k,j}), \\ Q_{jk}^{i} = -N_{j}^{i}\eta_{k} + N_{k}^{i}\eta_{j} + \xi^{i}N_{jk}, \end{cases}$$

where $\eta_{j,k} \equiv \frac{\partial \eta_j}{\partial x^k} \equiv \partial_k \eta_j$, and the $N_{jk}^{\ i}$, N_{jk} , $N_j^{\ i}$, N_j are tensors obtained by Sasaki and Hatakeyama [3] and defined as follows:

(2.16)
$$\begin{cases} N_{jk}^{i} = \phi_{k}^{a}(\phi_{j,q}^{i} - \phi_{q,j}^{i}) - \phi_{j}^{p}(\phi_{k,p}^{i} - \phi_{p,k}^{i}) - \eta_{j}\xi_{i,k}^{i} + \eta_{k}\xi_{j,j}^{i}, \\ N_{jk}^{i} = \phi_{k}^{a}(\eta_{q,j} - \eta_{j,q}) - \phi_{j}^{p}(\eta_{p,k} - \eta_{k,p}), \\ N_{j}^{i} = \xi^{a}(\phi_{j,q}^{i} - \phi_{q,j}^{i}) - \phi_{j}^{a}\xi_{j,q}^{i}, \\ N_{j}^{i} = \xi^{p}(\eta_{j,p} - \eta_{p,j}). \end{cases}$$

For the torsion tensor of a $3-\pi$ -structure we have [2]:

$$(2.17) t_{jk}^{i} = \frac{1}{9\lambda^{3}} \bigg[\bigg\{ -2(\delta_{j}^{p} F_{k}^{q} + \delta_{k}^{q} F_{j}^{p}) + \frac{1}{\lambda^{3}} F_{j}^{p} F_{k}^{q} \bigg\} (\partial_{p} F_{q}^{i} - \partial_{q} F_{p}^{i})$$

438

 $+ \left\{ -2(\delta_{j}^{p} F_{k}^{q} + \delta_{k}^{q} F_{j}^{p}) + F_{j}^{1} F_{k}^{1} \right\} (\partial_{p} F_{q}^{1} - \partial_{q} F_{p}^{i}) \Big].$

Substituting (2.3) and (2.4), we have the following expression after some straightforward calculations:

(2.18)
$$t_{jk}{}^{i} = \frac{1}{4} \left\{ -N_{jk}{}^{i} - 3\xi^{i}(\eta_{j,k} - \eta_{k,j}) + 2\xi^{i}(N_{j}\eta_{k} - N_{k}\eta_{j}) + \xi^{i}\phi_{j}{}^{p}\phi_{k}{}^{q}(\eta_{j,p} - \eta_{p,q}) - N_{p}{}^{i}(\phi_{j}{}^{p}\eta_{k} - \phi_{k}{}^{p}\eta_{j}) \right\}.$$

3. (ϕ, ξ, η) -connections. It is known [2] that if γ_{jk}^{i} is any linear connection of the manifold, and we define a connection l_{jk}^{i} by

$$(3.1) l_{jk}{}^i = \boldsymbol{\gamma}_{jk}{}^i + T_{jk}{}^i$$

with

(3.2)
$$T_{jk}^{i} = \frac{1}{3} \frac{1}{\lambda^{3}} \{ (\nabla_{k} F_{j}^{l}) F_{l}^{2i} + (\nabla_{k} F_{j}^{l}) F_{l}^{ii} \},$$

where ∇ denotes the covariant derivative with respect to γ_{jk}^{i} , then l_{jk}^{i} is a π -connection of the differentiable manifold with a 3- π -structure whose fundamental tensor is given by (2.3), that is, l_{jk}^{i} is a connection which leaves the fundamental tensor F_{j}^{i} covariant constant. Therefore $\overset{2}{F_{j}}^{i}$ and $\overset{3}{F_{j}}^{i} = \lambda^{3}\delta_{j}^{i}$ are also left covariant constant. Consequently l_{jk}^{i} leaves also $\xi^{i}\eta_{j}$ and ϕ_{j}^{i} covariant constant, i.e.,

(3.3)
$$\begin{cases} (\xi^{i}\eta_{j})_{;k} = \xi^{i}_{;k}\eta_{j} + \xi^{i}\eta_{j;k} = 0, \\ \phi^{i}_{j;k} = 0, \end{cases}$$

as $\xi^i \eta_j$ and ϕ_j^i can respectively be expressed as linear combination of F_j^i , F_j^i and δ_j^i by (2.3) and (2.4). In (3.3); denotes the covariant derivative with respect to the π -connection l_{jk}^i induced by γ_{jk}^i .

If we substitute (2, 3) and (2, 4) into (3.2) we have

(3.4)
$$T_{jk}{}^{i} = \frac{1}{2} \left\{ -\left(\nabla_{k}\boldsymbol{\xi}^{i}\right)\boldsymbol{\eta}_{j} + 3\boldsymbol{\xi}^{i}\boldsymbol{\eta}_{i}(\nabla_{k}\boldsymbol{\xi}^{i})\boldsymbol{\eta}_{j} + 2\boldsymbol{\xi}^{i}(\nabla_{k}\boldsymbol{\eta}_{j}) - \left(\nabla_{k}\boldsymbol{\phi}_{i}{}^{i}\right)\boldsymbol{\phi}_{i}{}^{i}\right\}.$$

Now by simple calculation, we have

(3.5)
$$\boldsymbol{\xi}_{jk}^{i} = \nabla_{k} \boldsymbol{\xi}^{i} + T_{jk}^{i} \boldsymbol{\xi}^{j} = \boldsymbol{\xi}^{i} \boldsymbol{\eta}_{l} (\nabla_{k} \boldsymbol{\xi}^{l}).$$

Since Ishihara and Obata [4] have shown that there is a symmetric affine connection which leaves ξ^i covariant constant, if we take $\gamma_{jk}{}^i$ in (3.1) as such a connection $\mathring{\gamma}_{jk}{}^i$, then it follows from (3.5) that the induced π -connection leaves ξ^i covariant constant, and consequently also leaves η_j covariant constant by

 $(3.3)_1$. Thus if we define connection \mathring{l}_{jk}^{i} by

$$(3.6) \qquad \qquad \mathring{l}_{jk}^{i} = \mathring{\gamma}_{jk}^{i} + \mathring{T}_{jk}^{i}$$

with

(3.7)
$$\mathring{T}_{jk}^{i} = \frac{1}{2} \left\{ 2\xi^{i} (\overset{\circ}{\nabla}_{k} \eta_{j}) - (\overset{\circ}{\nabla}_{k} \phi_{j}^{l}) \phi_{l}^{i} \right\},$$

where $\stackrel{\circ}{\nabla}$ denotes the covariant derivative with respect to $\stackrel{\circ}{\gamma}_{jk}{}^{t}$, then it leaves $\phi_{j}{}^{t}$, ξ^{t} and η_{j} covariant, that is, $\stackrel{\circ}{l}_{jk}{}^{t}$ is a (ϕ, ξ, η) -connection in the sense of Sasaki and Hatakeyama. Thus we have

THEOREM 3.1. On a manifold with a (ϕ, ξ, η) -structure we can find an affine (ϕ, ξ, η) -connection.

By the way we note that the torsion tensor of the connection \hat{l}_{jk}° is as follows.

(3.8)
$$\mathring{S}_{jk}^{i} = \frac{1}{2} (\mathring{T}_{jk}^{i} - \mathring{T}_{kj}^{i})$$

= $\frac{1}{2} \Big[\{ \xi^{i} (\mathring{\nabla}_{k} \eta_{j}) - \xi^{i} (\mathring{\nabla}_{j} \eta_{k}) \} - \frac{1}{2} \{ (\mathring{\nabla}_{k} \phi_{j}^{i}) \phi_{i}^{i} - (\mathring{\nabla}_{j} \phi_{k}^{i}) \phi_{i}^{i} \} \Big].$

Moreover, it is also known that l_{jk} is a π -connection if and only if it can be expressed as

(3.9)
$$\begin{cases} l_{jk}{}^{i} = \overset{\circ}{l}_{jk}{}^{i} + U_{jk}{}^{i}, \text{ where} \\ U_{jk}{}^{i} = \frac{1}{3} \{\sigma_{jk}{}^{i} + \frac{1}{\lambda^{3}} (\overset{\circ}{F}_{j}{}^{d}\sigma_{dk}{}^{c}\overset{\circ}{F}_{c}{}^{i} + \overset{\circ}{F}_{j}{}^{d}\sigma_{dk}{}^{c}\overset{\circ}{F}_{c}{}^{j})\} \end{cases}$$

with some tensor σ_{jk}^{i} .

Let ξ_{jk}^{i} and ξ_{jk}^{i} be respectively the covariant derivative of ξ^{i} with respect to l_{jk}^{i} and \tilde{l}_{jk}^{i} , then

(3. 10)
$$\xi'_{|k} = \xi^{i}_{;k} + U_{jk}{}^{i}\xi^{i}.$$

So the condition for $l_{jk}{}^i$ in (3.9) to be a (ϕ, ξ, η) -connection is that $U_{jk}{}^i\xi^i = 0$. Substitute (3.9), (2.3) and (2.4) into this relation we have the following condition after some simple calculation:

$$(3.11) \qquad \qquad \boldsymbol{\xi}^{j}\boldsymbol{\sigma}_{jk}^{\prime}\boldsymbol{\eta}_{i}=0.$$

Thus we have

THEOREM 3.2. A connection l_{jk}^{i} is a (ϕ, ξ, η) -connection if and only if it can be expressed as (3.9) with some tensor σ_{jk}^{i} satisfying (3.11).

4. Symmetric (ϕ, ξ, η) -connections. As \hat{l}_{jk}^{i} in (3.6) is a π -connection

440

induced by a symmetric connection, it follows from the general theory of π -structure [2] that the connection defined by

(4.1)
$$\hat{l}_{jk}{}^{i} = \overset{\circ}{l}_{jk}{}^{i} - \frac{2}{3} \{ \overset{\circ}{S}_{jk}{}^{i} + \frac{1}{\lambda^{3}} (\overset{\circ}{F}_{j}{}^{d}\overset{\circ}{S}_{ak}{}^{c}\overset{\circ}{F}_{c}{}^{i} + \overset{1}{F}_{j}{}^{d}\overset{\circ}{S}_{ak}{}^{c}\overset{\circ}{F}_{c}{}^{i}) \}$$

is a distinguished π -connection, that is a π -connection having the torsion tensor $t_{jk}{}^{t}$ in (2.18) of the considered $3 \cdot \pi$ -structure as its torsion tensor. In (4.1), $\hat{S}_{jk}{}^{t}$ is the torsion tensor of the connection $\hat{l}_{jk}{}^{t}$ and can be expressed as in (3.8).

On the other hand, since $\hat{l}_{jk}{}^i$ is a (ϕ, ξ, η) -connection, we see by Theorem 3.2 that $\hat{l}_{jk}{}^i$ is also a (ϕ, ξ, η) -connection if and only if the following condition is satisfied:

(4.2)
$$2\boldsymbol{\xi}^{\boldsymbol{\beta}} \hat{S}_{jk}{}^{i} \boldsymbol{\eta}_{\boldsymbol{i}} = 0.$$

Substitute from (3.8), we have

(4.3)
$$\boldsymbol{\xi}^{j}\{(\overset{\circ}{\nabla}_{k}\boldsymbol{\eta}_{j})-(\overset{\circ}{\nabla}_{j}\boldsymbol{\eta}_{k})\}=0.$$

Since ∇ denote the covariant derivative with respect to a symmetric connection specified above, (4.3) is equivalent to the following

$$(4.4) N_k \equiv \boldsymbol{\xi}^{j}(\boldsymbol{\eta}_{k,j} - \boldsymbol{\eta}_{j,k}) = 0.$$

Thus we have

THEOREM 4.1. Let M^{2n+1} be a manifold with a (ϕ, ξ, η) -structure. If $N_j = 0$, then we can find a (ϕ, ξ, η) -connection whose torsion tensor is equal to the tensor t_{jk}^{i} in (2.18).

If η_j is a gradient and $N_j^i = 0$, then t_{jk}^i in (2.18) turns out to be

(4.5)
$$t_{jk}^{i} = -\frac{1}{4} N_{jk}^{i}.$$

Thus we have the following theorem of Sasaki and Hatakeyama[3]:

THEOREM 4.2. Let M^{2n+1} be a manifold with a (ϕ, ξ, η) -structure. If η_j is a gradient and $N_j^i = 0$, then we can find (ϕ, ξ, η) -connection whose torsion tensor is equal to $-\frac{1}{4}N_{jk}^i$.

In concluding, I express my sincere thanks to Prof. S.Sasaki for his valuable suggestions.

REFERENCES

- [1] S.SASAKI, On differentiable manifolds with certain structures which are closely
- [2] C.J. HSU, On some properties of *π*-structures on differentiable manifold. Tôhoku Math. Jour., 12(1960), 456-476.
 [2] C.J. HSU, On some properties of *π*-structures on differentiable manifold. Tôhoku Math. Jour., 12(1960), 429-454.
 [3] S.SASAKI AND Y.HATAKEYAMA, On differentiable manifold with certain structures and intervention of the second structure of t
- which are closely related to almost contact structure. II. Tôhoku Math. Jour., 13(1961), 281-294.
- [4] S. ISHIHARA AND M. OBATA, On manifolds which admit some affine connection. Jour. of Math., 1(1953),71-76

NATIONAL TAIWAN UNIVERSITY.