NOTE ON (ϕ, ξ, η)-STRUCTURE

CHEN-JuNG HSU ${ }^{1)}$

(Received June 27,1961)

Prof. Sasaki has recently investigated a structure called (ϕ, ξ, η)-structure [1] ${ }^{2}$) which is closely related to the almost contact structure studied by W.Gray and W. M. Boothby-H. C. Wang, and may also be considered as an analogue of almost complex structure for odd dimensional manifolds.

Let $M^{2 n+1}$ be a $(2 n+1)$-dimensional differentiable manifold of class C^{∞}. $M^{2 n+1}$ is said to have a (ϕ, ξ, η)-structure if there exists a tensor field $\phi_{j}{ }^{i}$, a contravariant vector field ξ^{i} and a covariant vector field $\boldsymbol{\eta}_{j}$ (each is of class C^{∞}) over $M^{2 n+1}$ such that the following conditions are satisfied:

$$
\begin{equation*}
\xi^{i} \eta_{i}=1, \quad(i, j, k=1,2, \ldots \ldots, 2 n+1) \tag{0.1}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{rank}\left|\phi_{j}{ }^{i}\right|=2 n, \tag{0.2}
\end{equation*}
$$

$$
\begin{equation*}
\phi_{j} \xi^{i}=0, \tag{0.3}
\end{equation*}
$$

$$
\begin{equation*}
\phi_{j}^{i} \boldsymbol{\eta}_{i}=0, \tag{0.4}
\end{equation*}
$$

$$
\begin{equation*}
\phi_{j}{ }^{i} \phi_{k}{ }^{j}=-\delta_{k}{ }^{i}+\xi^{i} \eta_{k} . \tag{0.5}
\end{equation*}
$$

In this note we intend to show that starting from a differentiable manifold $M^{2 n+1}$ having (ϕ, ξ, η)-structure one can construct by a natural way a manifold with $3-\pi$-structure [2] in the sense of the present author, and by applying the theory of $3-\pi$-structure we can obtain a tensor analogous to the Nijenhuis tensor in the case of almost complex structure. Moreover, canonic connections for the considered structure are also obtained by the use of the results of π-structure.

1. Associated $3-\pi$-structure. From (0.2) and (0.3) it is evident that ξ^{i} is a proper vector corresponding to the proper value 0 of $\phi_{j}{ }^{i}$ and the proper subspace of the proper value 0 is spanned only by ξ^{i}.

Let v^{j} be any proper vector corresponding to a non-zero proper value λ of $\phi_{j}{ }^{i}$, then

$$
\begin{equation*}
\phi_{j}{ }^{i} v^{j}=\lambda v^{i} . \tag{1.1}
\end{equation*}
$$

[^0]Multiply η_{i} and sum with respect to i, we have

$$
\begin{equation*}
\phi_{j}{ }^{i} \eta_{i} v^{j}=\lambda v^{i} \eta_{i} . \tag{1.2}
\end{equation*}
$$

By (0.4) we get $\lambda v^{i} \boldsymbol{\eta}_{i}=0$, therefore

$$
\begin{equation*}
v^{i} \eta_{i}=0 \tag{1.3}
\end{equation*}
$$

If we contract (1.1) with $\phi_{i}{ }^{\text {e }}$ we have

$$
\phi_{i}{ }^{k} \phi_{j}{ }^{i} v^{j}=\lambda \phi_{i}{ }^{k} v^{i} .
$$

From this we have by (0.5) and (1.1)

$$
\left(-\delta_{j}^{k}+\xi^{k} \eta_{j}\right) v^{j}=\lambda^{2} v^{k} .
$$

which gives by (1.3)

$$
\lambda^{2} v^{r}=-v^{k} \text { and } \lambda^{2}=-1
$$

Thus the only non-zero proper values of $\phi_{j}{ }^{i}$ are i and $-i$. As $\phi_{j}{ }^{i}$ is real, it follows that each of the proper values has the multiplicity n, and the corresponding proper subspace T_{P} and S_{P} of the tangent space M_{P} at point P of $M^{2 n+1}$ are both of dimension n. So, over the differentiable manifold $M^{2 n+1}$ we have three distributions X, T and S which assign each point P of $M^{2 n+1}$ three subspaces X_{P}, T_{P}, S_{P} of the complexification M_{P}^{c} of the tangent space M_{P}. Moreover, $M_{P}{ }^{c}=X_{P}{ }^{c}+T_{P}+S_{P}$ (direct sum) for every point P of $M^{2 n+1}$. Thus the differentiable manifold $M^{2 n+1}$ is endowed with a $3-\pi$-structure defined by three distributions X, T and S.

Let \boldsymbol{v}^{j} be any vector field contained in the distribution $T+S$, then by (0.1) and (1.3) we have

$$
\begin{equation*}
\left(\xi^{i} \eta_{j}\right) \xi^{j}=\xi^{i} \quad \text { and } \quad\left(\xi^{i} \eta_{j}\right) v^{j}=0 . \tag{1.4}
\end{equation*}
$$

So, $\xi^{i} \eta_{j}$ is the projection tensor field for the distribution X.
Let $p_{j}{ }^{i}$ and $q_{j}{ }^{i}$ be respectively the projection tensor field for the distributions T and S. Then if $v_{+}{ }^{i}$ and $v_{-}{ }^{i}$ are respectively contained in T and S, we have

$$
\left\{\begin{array}{l}
p_{j}^{i} v_{+}{ }^{j}=v_{+}{ }^{i}, \quad p_{j}{ }^{i} v_{-}{ }^{j}=0 ; \tag{1.5}\\
q_{j}^{i} v_{+}{ }^{j}=0, \quad q_{j}^{i} v_{-}^{j}=v_{-}^{i} ; \\
p_{j}{ }^{i} \xi^{j}=q_{j}^{i} \xi^{j}=0 .
\end{array}\right.
$$

Since, by definition

$$
\left\{\begin{array}{c}
\phi_{j}{ }^{i} v_{+}^{j}=i v_{+}^{i}, \quad \phi_{j}^{i} v_{-}^{j}=-i v_{-}^{i}, \tag{1.6}\\
\phi_{j}{ }^{i} \xi^{j}=0,
\end{array}\right.
$$

we have

$$
\begin{equation*}
\phi_{j}{ }^{i}=i p_{j}{ }^{i}-i q_{j}{ }^{i}, \tag{1.7}
\end{equation*}
$$

because both sides of the latter formula have the same effect for all vectors of the tangent space at every point of $M^{2 n+1}$.

As $M_{P}{ }^{c}$ is the direct sum of $X_{P}{ }^{c}, T_{P}$ and S_{P}, we also have

$$
\begin{equation*}
\xi^{i} \eta_{j}+p_{j}^{i}+q_{j}{ }^{i}=\delta_{j}^{i} . \tag{1.8}
\end{equation*}
$$

Now we start to consider the inverse implication: Assume that we have a ($2 n+1$)-dimensional differentiable manifold $M^{2 n+1}$ endowed with a $3-\pi$-structure defined by the complete system [2] consists of three distributions X, T and S, of which the first one is a one dimensional real distribution and the latter two are n-dimensional conjugate complex distributions which together span the complexification of a $2 n$-dimensional real distribution. If $\xi^{i},{\underset{\alpha}{+}}_{v_{+}}^{i},{ }_{\alpha}^{v_{-}}{ }^{i}(\alpha=1, \ldots, n)$ respectively span X, T and S, then there exists a covariant vector field η_{i} such that

$$
\begin{align*}
& \eta_{i} v_{+}{ }^{i}=0, \quad \eta_{i} v_{-}{ }^{i}=0,(\alpha=1, \ldots, n) \tag{1.9}\\
& \xi^{i} \eta_{i}=1 .
\end{align*}
$$

Then it is evident that $\xi^{i} \eta_{j}$ is the projection tensor field for the distribution X. Let $F_{j}{ }^{i}$ and $q_{j}{ }^{i}$ be respectively the projection tensor field for T and S, then (1.5) holds for any vector field $v_{+}{ }^{i}$ and $v_{-}{ }^{i}$ contained respectively in T and S. It is also evident that (1.8) and the following relation hold:

$$
\begin{equation*}
\bar{p}_{j}^{i}=q_{j}^{i} . \tag{1.10}
\end{equation*}
$$

Next, define $\phi_{j}{ }^{i}$ by (1.7), then we have by (1.5) ${ }_{3}$ that

$$
\begin{equation*}
\phi_{j} \xi^{i}{ }^{\prime}=0 . \tag{0.3}
\end{equation*}
$$

Moreover, by (1.5) ${ }_{1}$ and (1.9) $)_{1}$ we have

$$
\boldsymbol{\eta}_{i} p_{j}^{i} v_{+}{ }^{i}=v_{+}{ }^{i} \eta_{i}=0 .
$$

Similarly, from (1.5) ${ }_{1}$ and (0.3), we have

$$
\eta_{i} p_{j}^{i} v_{-}{ }^{j}=0 \text { and } \eta_{i} p_{j}^{i} \xi^{j}=0 .
$$

So $\eta_{i} p_{j}{ }^{i} u^{j}=0$ holds for any vector u^{j} of the tangent space. Thus we have

$$
\begin{equation*}
\boldsymbol{\eta}_{i} \boldsymbol{p}_{j}{ }^{i}=0, \text { and similarly, } \boldsymbol{\eta}_{i} \boldsymbol{q}_{j}{ }^{i}=0 . \tag{1.11}
\end{equation*}
$$

Consequently, we have (1.7)

$$
\begin{equation*}
\phi_{j}{ }^{i} \eta_{i}=0 . \tag{0.4}
\end{equation*}
$$

From (1.7) and (1.8) we have moreover

$$
\begin{align*}
\phi_{j}{ }^{i} \phi_{k}{ }^{j} & =\left(i p_{j}{ }^{i}-i q_{j}{ }^{i}\right)\left(i p_{k}{ }^{j}-i q_{k}{ }^{j}\right) \tag{0.5}\\
& =-\left(p_{k}{ }^{i}+q_{k}{ }^{i}\right)=-\delta_{k}{ }^{i}+\xi^{i} \eta_{k} .
\end{align*}
$$

From (1.10) it follows that $\phi_{j}{ }^{i}$ is real. And, from (1.7) and (1.5) it follows that $\phi_{j}{ }^{i}$ satisfies (1.6), so the rank of $\left|\phi_{j}{ }^{i}\right|$ is $2 n$.

Thus we have the following:
THEOREM 1.1. A necessary and sufficient condition for a ($2 n+1$)-dimensional manifold $M^{2 n+1}$ to have a (ϕ, ξ, η)-structure is that the manifold be endowed with a 3- π-structure defined by a complete system consists of three distributions X, T and S, of which the first one is a one dimensional real distribution, and the latter two are n-dimensional conjugate complex distributions which together span the complexification of a $2 n$-dimensional real distribution.
2. Fundamental tensors and torsion tensors. From (1.7) and (1.8) we have

$$
\left\{\begin{array}{l}
p_{j}{ }^{i}=\frac{1}{2}\left(\delta_{j}{ }^{i}-\xi^{i} \eta_{j}-i \phi_{j}{ }^{i}\right), \tag{2.1}\\
\quad q_{j}{ }^{i}=\frac{1}{2}\left(\delta_{j}{ }^{i}-\xi^{i} \eta_{j}+i \phi_{j}{ }^{i}\right),
\end{array}\right.
$$

so $p_{j}{ }^{i}$ and $q_{j}{ }^{i}$ are conjugate complex to each other.
Now the fundamental tensor for the associated $3-\pi$-structure is defined as follows:

$$
\begin{equation*}
F_{j}{ }^{i}=\lambda\left(\xi^{i} \eta_{j}+\omega_{1}{ }^{2} p_{j}{ }^{i}+\omega_{1} q_{j}{ }^{i}\right), \tag{2.2}
\end{equation*}
$$

where ω_{1} is a cubic root ($\neq 1$) of unity and λ is any non-zero complex number. Substitute (2.1) in (2.2) we have

$$
\begin{equation*}
\stackrel{1}{F_{j}^{i}} \equiv F_{j}^{i}=\frac{\lambda}{2}\left\{-\delta_{j}{ }^{i}+3 \xi^{i} \eta_{j}+i \omega_{1}\left(1-\omega_{1}\right) \phi_{j}{ }^{i}\right\} . \tag{2.3}
\end{equation*}
$$

From which it follows that

$$
\begin{equation*}
\stackrel{2}{F}_{k}^{i} \equiv F_{j}^{i} F_{k}^{j}=\frac{\lambda^{2}}{2}\left\{-\delta_{k}^{i}+3 \xi^{i} \eta_{k}-i \omega_{1}\left(1-\omega_{1}\right) \phi_{k}{ }^{i}\right\} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\stackrel{3}{F_{l}^{i}} \equiv F_{j}^{i} F_{k}{ }^{3} F_{l}^{k}=\lambda^{3} \delta_{l}{ }^{i} \tag{2.5}
\end{equation*}
$$

We also can associate $M^{2 n i 1}$ with three kinds of $2-\pi$-structure as follows:

$$
\begin{align*}
& {\underset{1}{j}}^{i}=\lambda_{1}\left\{\xi^{i} \eta_{j}-\left(p_{j}^{i}+q_{j}^{i}\right)\right\}, \tag{2.6}\\
& {\underset{2}{2}}^{i}=\lambda_{2}\left\{\left(\xi^{i} \eta_{j}+p_{j}^{i}\right)-q_{j}^{i}\right\}, \\
& F_{3}^{i}=\lambda_{3}\left\{\left(\xi^{i} \eta_{j}+q_{j}^{i}\right)-p_{j}^{i}\right\} .
\end{align*}
$$

These three tensor fields satisfy the following relations:

$$
\begin{align*}
& {\underset{1}{j}}^{F_{1}}{ }_{1} F_{k}{ }^{j}=\lambda_{1}{ }^{2} \delta_{k}{ }^{2}, F_{2}{ }_{j}{ }^{i} F_{2}{ }^{j}=\lambda_{2}{ }^{2} \delta_{k}{ }^{i}, F_{3}{ }_{j}{ }^{i} F_{3}{ }^{j}=\lambda_{3}{ }^{2} \delta_{k}{ }^{i} . \tag{2.9}
\end{align*}
$$

Substitute (2.1) in (2.6), (2.7) and (2.8) we have

$$
\left\{\begin{array}{l}
F_{1}{ }^{i}=\lambda_{\mathbf{1}}\left(2 \xi^{i} \eta_{j}-\delta_{j}{ }^{i}\right), \tag{2.11}\\
F_{2}{ }^{i}=\lambda_{2}\left(\xi^{i} \eta_{j}-i \phi_{j}{ }^{i}\right), \\
F_{3}{ }^{i}=\lambda_{3}\left(\xi^{i} \eta_{j}+i \phi_{j}{ }^{i}\right) .
\end{array}\right.
$$

It is known that the torsion tensor (analogue of the Nijenhuis tensor) for a $2-\pi$-structure is as follows [2].

$$
\begin{equation*}
t_{a}^{t_{j k}}=-\frac{1}{4 \lambda_{a}^{2}}\left(\delta_{j}{ }^{p} F_{a}{ }^{q}+\delta_{k}{ }^{q} F_{a}^{j}{ }^{p}\right)\left(\partial_{p} F_{a}{ }^{q}-\partial_{q} F_{a}{ }^{i}\right),(a=1,2,3) . \tag{2.12}
\end{equation*}
$$

Thus for respective case of (2.11) we have

$$
\left\{\begin{array}{l}
t_{1}^{j k}{ }^{i}=-\xi^{i}\left(-N_{j} \eta_{k}+N_{k} \eta_{j}+\eta_{j, k}-\eta_{k, j},\right. \tag{2.13}\\
t_{2}^{t_{j k}{ }^{i}}=-\frac{1}{4} P_{j k}^{i}-\frac{1}{4} i Q_{j k}^{i}, \\
t_{3}^{i j}=-\frac{1}{4} P_{j k}^{i}+\frac{1}{4} i Q_{j k}^{i},
\end{array}\right.
$$

in which

$$
\left\{\begin{array}{l}
P_{j k}{ }^{i}=N_{j k}{ }^{i}-t_{j}{ }_{j}{ }^{i}-\xi^{i}\left(\eta_{j, k}-\eta_{k . j}\right), \tag{2.15}\\
Q_{j k}{ }^{i}=-N_{j}{ }^{i} \eta_{k}+N_{k}{ }^{i} \eta_{j}+\xi^{i} N_{j k},
\end{array}\right.
$$

where $\eta_{j, k} \equiv \frac{\partial \eta_{j}}{\partial x^{k}} \equiv \partial_{k} \eta_{j}$, and the $N_{j k}{ }^{i}, N_{j k}, N_{j}^{i}, N_{j}$ are tensors obtained by Sasaki and Hatakeyama [3] and defined as follows:

$$
\begin{align*}
& N_{j k}{ }^{i}=\phi_{k}{ }^{q}\left(\phi_{j, q}{ }^{i}-\phi_{q, j}{ }^{i}\right)-\phi_{j}{ }^{p}\left(\phi_{k, p}{ }^{i}-\phi_{p, k}{ }^{i}\right)-\eta_{j} \xi_{j, k}{ }^{i}+\eta_{k} \xi_{j, j,}^{i}, \\
& N_{j k}=\phi_{k}{ }^{q}\left(\eta_{q, j}-\eta_{j, q}\right)-\phi_{j}{ }^{p}\left(\eta_{p, k}-\eta_{k, p}\right), \tag{2.16}\\
& N_{j}{ }^{i}=\xi^{q}\left(\phi_{j, q}^{i}-\phi_{q, j}^{i}\right)-\phi_{j}{ }_{j}{ }^{q} \xi_{, q,}{ }^{q}, \\
& N_{j}=\xi^{p}\left(\eta_{j, p}-\eta_{p, j}\right) .
\end{align*}
$$

For the torsion tensor of a $3-\pi$-structure we have [2]:
(2.17) $\quad t_{j k}{ }^{i}=\frac{1}{9 \lambda^{3}}\left[\left\{-2\left(\delta_{j}{ }^{p}{ }^{1}{ }_{k}{ }^{q}+\delta_{k}{ }^{q}{ }^{1}{ }_{j}{ }^{p}\right)+\frac{1}{\lambda^{3}} \stackrel{\stackrel{2}{F}}{j}{ }^{p}{ }^{2}{ }_{k}{ }^{q}\right\}\left(\partial_{p} \stackrel{F}{q}^{i}-\partial_{q}{ }^{2}{ }_{p}{ }^{i}\right)\right.$

$$
\left.+\left\{-2\left(\delta_{j}^{p}{ }^{2} F_{k}^{q}+\delta_{k}^{q}{ }^{q}{ }_{j}^{p}\right)+\stackrel{F}{j}_{j}^{p}{ }^{1}{ }_{k}{ }^{q}\right\}\left(\partial_{p} F_{q}{ }^{i}-\partial_{q}{ }^{1} F_{p}{ }^{i}\right)\right] .
$$

Substituting (2.3) and (2.4), we have the following expression after some straightforward calculations:

$$
\begin{align*}
t_{j k}{ }^{i}=\frac{1}{4}\{ & -N_{j k}{ }^{i}-3 \xi^{i}\left(\eta_{j, k}-\eta_{k, j}\right)+2 \xi^{i}\left(N_{j} \eta_{k}-N_{k} \eta_{j}\right) \tag{2.18}\\
& \left.+\xi^{i} \phi_{j}{ }^{j} \phi_{k}{ }^{q}\left(\eta_{l, p}-\eta_{p, q}\right)-N_{p}{ }^{i}\left(\phi_{j}{ }^{p} \boldsymbol{\eta}_{k}-\phi_{k}{ }^{p} \eta_{j}\right)\right\} .
\end{align*}
$$

3. (ϕ, ξ, η)-connections. It is known [2] that if $\boldsymbol{\gamma}_{j k}{ }^{1}$ is any linear connection of the manifold, and we define a connection $l_{j k}{ }^{i}$ by

$$
\begin{equation*}
l_{j k}{ }^{i}=\boldsymbol{\gamma}_{j k}{ }^{i}+T_{j k}{ }^{i} \tag{3.1}
\end{equation*}
$$

with

$$
\begin{equation*}
T_{j k}^{i}=\frac{1}{3} \frac{1}{\lambda^{3}}\left\{\left(\nabla_{k} F_{j}^{l}\right) \stackrel{2}{F}_{l}^{i}+\left(\nabla_{k} \stackrel{2}{j}_{j}^{l}\right) \stackrel{1}{F_{l}^{i}}\right\}, \tag{3.2}
\end{equation*}
$$

where ∇ denotes the covariant derivative with respect to $\gamma_{j k}{ }^{i}$, then $l_{j k}{ }^{i}$ is a π-connection of the differentiable manifold with a $3-\pi$-structure whose fundamental tensor is given by (2.3), that is, $l_{j k}{ }^{i}$ is a connection which leaves the fundamental tensor F_{j}^{i} covariant constant. Therefore $\stackrel{2}{F_{j}^{i}}$ and $\stackrel{3}{F_{j}^{i}}=\lambda^{3} \delta_{j}^{i}$ are also left covariant constant. Consequently $l_{j k}{ }^{i}$ leaves also $\boldsymbol{\xi}^{\boldsymbol{i}} \boldsymbol{\eta}_{j}$ and $\boldsymbol{\phi}_{j}{ }^{i}$ covariant constant, i.e.,

$$
\begin{align*}
& \left(\xi^{i} \eta_{j}\right)_{; k}=\xi_{; k}^{i} \eta_{j}+\xi^{i} \eta_{j ; k}=0, \tag{3.3}\\
& \phi_{j ; k}^{i}=0,
\end{align*}
$$

as $\xi^{i} \boldsymbol{\eta}_{j}$ and $\phi_{j}{ }^{i}$ can respectively be expressed as linear combination of $F_{j}^{i}, \stackrel{2}{F_{j}}{ }^{i}$ and $\delta_{j}{ }^{i}$ by (2.3) and (2.4). In (3.3); denotes the covariant derivative with respect to the $\boldsymbol{\pi}$-connection $l_{j k}{ }^{i}$ induced by $\boldsymbol{\gamma}_{j k}{ }^{i}$.

If we substitute (2.3) and (2.4) into (3.2) we have

$$
\begin{align*}
T_{j k}^{i}=\frac{1}{2}\{ & -\left(\nabla_{k} \xi^{l}\right) \eta_{j}+3 \xi^{i} \eta_{l}\left(\nabla_{k} \xi^{l}\right) \eta_{j} \tag{3.4}\\
& \left.+2 \xi^{l}\left(\nabla_{k} \eta_{j}\right)-\left(\nabla_{k} \phi_{j}^{l}\right) \phi_{l}^{i}\right\} .
\end{align*}
$$

Now by simple calculation, we have

$$
\begin{equation*}
\xi_{; k}^{i}=\Gamma_{k} \xi^{i}+T_{j k}{ }^{i} \xi^{j}=\xi^{i} \eta_{l}\left(\nabla_{k} \xi^{l}\right) \tag{3.5}
\end{equation*}
$$

Since Ishihara and Obata [4] have shown that there is a symmetric affine connection which leaves $\boldsymbol{\xi}^{i}$ covariant constant, if we take $\boldsymbol{\gamma}_{j k}{ }^{\boldsymbol{i}}$ in (3.1) as such a connection $\dot{\gamma}_{j k}{ }^{\text {t }}$, then it follows from (3.5) that the induced π-connection leaves ξ^{t} covariant constant, and consequently also leaves $\boldsymbol{\eta}_{j}$ covariant constant by
(3.3). Thus if we define connection ${ }_{j}{ }_{j k}{ }^{i}$ by

$$
\begin{equation*}
\stackrel{\circ}{l}_{j k}{ }^{i}=\stackrel{\circ}{\gamma}_{j k}{ }^{i}+\stackrel{\circ}{T}_{j k}{ }^{i} \tag{3.6}
\end{equation*}
$$

with

$$
\begin{equation*}
\stackrel{\circ}{T}_{j k}^{i}=\frac{1}{2}\left\{2 \xi^{i}\left(\stackrel{\circ}{\nabla}_{k} \eta_{j}\right)-\left(\stackrel{\circ}{\nabla}_{k} \phi_{j}^{l}\right) \phi_{l}^{i}\right\}, \tag{3.7}
\end{equation*}
$$

where $\stackrel{\circ}{\nabla}$ denotes the covariant derivative with respect to $\stackrel{\circ}{\gamma}_{j k}{ }^{i}$, then it leaves $\phi_{j}{ }^{i}$, ξ^{t} and $\boldsymbol{\eta}_{j}$ covariant, that is, $\dot{l}_{j k}{ }^{i}$ is a $(\boldsymbol{\phi}, \boldsymbol{\xi}, \eta)$-connection in the sense of Sasaki and Hatakeyama. Thus we have

THEOREM 3.1. On a manifold with a ($\phi, \xi, \eta)$-structure we can find an affine (ϕ, ξ, η)-connection.

By the way we note that the torsion tensor of the connection ${ }_{l_{j k}}{ }^{i}$ is as follows.

$$
\begin{align*}
\stackrel{\circ}{S}_{j k}{ }^{i} & =\frac{1}{2}\left(\stackrel{\circ}{T}_{j k}{ }^{i}-\stackrel{\circ}{T}_{k j}{ }^{i}\right) \tag{3.8}\\
& =\frac{1}{2}\left[\left\{\xi^{i}\left(\stackrel{\circ}{\nabla}_{k} \eta_{j}\right)-\xi^{i}\left(\stackrel{\circ}{\nabla}_{j} \boldsymbol{\eta}_{k}\right)\right\}-\frac{1}{2}\left\{\left(\stackrel{\circ}{\nabla} k_{k} \phi_{j}^{l}\right) \phi_{l}{ }^{i}-\left(\stackrel{\circ}{\nabla}_{j} \phi_{k}{ }^{l}\right) \phi_{l}{ }^{i}\right\}\right] .
\end{align*}
$$

Moreover, it is also known that $l_{j k}{ }^{\boldsymbol{k}}$ is a π-connection if and only if it can be expressed as

$$
\left\{\begin{array}{l}
l_{j k}{ }^{i}=\stackrel{\circ}{l}_{j k}{ }^{i}+U_{j k}{ }^{i}, \text { where } \tag{3.9}\\
U_{j k}{ }^{i}=\frac{1}{3}\left\{\sigma_{j k}{ }^{i}+\frac{1}{\lambda^{3}}\left(\stackrel{2}{F_{j}^{d}} \sigma_{d k}^{c}{ }^{1}{ }_{c}^{i}+\stackrel{1}{F_{j}^{d}} \sigma_{d k}{ }^{c} \stackrel{2}{F_{c}^{j}}\right)\right\}
\end{array}\right.
$$

with some tensor $\sigma_{j k}{ }^{i}$.
Let $\xi_{i k}^{i}$ and $\xi_{; k}^{i}$ be respectively the covariant derivative of ξ^{i} with respect to $l_{j k}{ }^{i}$ and $\stackrel{\circ}{j k}{ }^{i}$, then

$$
\begin{equation*}
\xi_{\mid k}^{\prime}=\xi_{; k}^{i}+U_{j k}{ }^{i} \xi^{i} . \tag{3.10}
\end{equation*}
$$

So the condition for $l_{j k}{ }^{i}$ in (3.9) to be a (ϕ, ξ, η) -connection is that $U_{j k}{ }^{i \xi}{ }^{i}=0$. Substitute (3.9), (2.3) and (2.4) into this relation we have the following condition after some simple calculation:

$$
\begin{equation*}
\xi^{j} \sigma_{j k}{ }^{4} \eta_{i}=0 . \tag{3.11}
\end{equation*}
$$

Thus we have
THEOREM 3.2. A connection $l_{j k}{ }^{i}$ is a (ϕ, ξ, η)-connection if and only if it can be expressed as (3.9) with some tensor $\sigma_{j k}{ }^{i}$ satisfying (3.11).
4. Symmetric (ϕ, ξ, η)-connections. As $\check{l}_{j k}{ }^{i}$ in (3.6) is a π-connection
induced by a symmetric connection, it follows from the general theory of π-structure [2] that the connection defined by

$$
\begin{equation*}
\hat{l}_{j k}^{d}=\stackrel{\circ}{l}_{j k}{ }^{t}-\frac{2}{3}\left\{\stackrel{\circ}{S}_{j k}^{d}+\frac{1}{\lambda^{3}}\left(\stackrel{2}{F}_{j}^{d} \stackrel{\circ}{S}_{d k}{ }^{c}{ }^{1} F_{c}^{d}+\stackrel{1}{F}_{j}^{d} \stackrel{\circ}{S}_{d k}{ }^{c} \stackrel{ }{F}_{c}^{d}\right)\right\} \tag{4.1}
\end{equation*}
$$

is a distinguished π-connection, that is a π-connection having the torsion tensor $t_{j k}{ }^{6}$ in (2.18) of the considered $3-\pi$-structure as its torsion tensor. In (4.1), $\stackrel{S}{j}_{j k}{ }^{t}$ is the torsion tensor of the connection ${ }_{l}{ }_{j k}{ }^{t}$ and can be expressed as in (3.8).

On the other hand, since ${ }_{j}{ }^{6}{ }^{6}$ is a (ϕ, ξ, η)-connection, we see by Theorem 3.2 that $\hat{l}_{j k}{ }^{i}$ is also a (ϕ, ξ, η)-connection if and only if the following condition is satisfied:

$$
\begin{equation*}
2 \xi^{\prime} ْ_{j k}{ }^{i} \eta_{i}=0 \tag{4.2}
\end{equation*}
$$

Substitute from (3.8), we have

$$
\begin{equation*}
\xi^{\prime}\left\{\left(\stackrel{\circ}{\nabla} k \eta_{j}\right)-\left(\stackrel{\circ}{\nabla} \cdot \eta_{k}\right)\right\}=0 . \tag{4.3}
\end{equation*}
$$

Since $\stackrel{\circ}{\nabla}$ denote the covariant derivative with respect to a symmetric connection specified above, (4.3) is equivalent to the following

$$
\begin{equation*}
N_{k} \equiv \xi^{\prime}\left(\eta_{k, j}-\eta_{j, k}\right)=0 \tag{4.4}
\end{equation*}
$$

Thus we have
THEOREM 4.1. Let $M^{2 n+1}$ be a manifold with a (ϕ, ξ, η)-structure. If $N_{j}=0$, then we can find a (ϕ, ξ, η)-connection whose torsion tensor is equal to the tensor $t_{j k}{ }^{i}$ in (2.18).

If $\boldsymbol{\eta}_{j}$ is a gradient and $N_{j}{ }^{i}=0$, then $t_{j k}{ }^{i}$ in (2.18) turns out to be

$$
\begin{equation*}
t_{j k}^{i}=-\frac{1}{4} N_{j k}^{i} \tag{4.5}
\end{equation*}
$$

Thus we have the following theorem of Sasaki and Hatakeyama[3]:
THEOREM 4.2. Let $M^{2 n+1}$ be a manifold with a (ϕ, ξ, η)-structure. If η_{j} is a gradient and $N_{j}{ }^{i}=0$, then we can find (ϕ, ξ, η)-connection whose torsion tensor is equal to $-\frac{1}{4} N_{j k}{ }^{i}$.

In concluding, I express my sincere thanks to Prof. S.Sasaki for his valuable suggestions.

REFERENCES

[1] S.SASAKI, On differentiable manifolds with certain structures which are closely related to almost contact structure. I. Tôhoku Math. Jour., 12 (1960), 456-476.
[2] C.J. HSU, On some properties of π-structures on differentiable manifold. Tôhoku Math. Jour., 12 (1960), 429-454.
[3] S. SASAKI AND Y. HATAKEYAMA, On differentiable manifold with certain structures which are closely related to almost contact structure. II. Tôhoku Math. Jour., 13(1961), 281-294.
[4] S. Ishlhara and M. Obata, On manifolds which admit some affine connection. Jour. of Math., 1 (1953), 71-76

NATIONAL TAIWAN UNIVERSITY.

[^0]: 1) This research was in part supported by a grant from the National Council on Science Development.
 2) Number in bracket refers to the reference at the end of paper.
