TRANSFORMATIONS OF CONJUGATE FUNCTIONS II

SAtoru Igari

(Received November 6, 1961)

1. Paley and Wiener proved that the conjugate functiun $\tilde{f(x)}$ of $f(x)$ is integrable, if $f(x)$ is integrable, monotone in $(0, \pi)$ and odd. Concerning with this theorem G. H. Hardy [1] proved that if

$$
f \in L(-\infty, \infty)
$$

and

$$
\int_{-\infty}^{\infty}|x d f(x)|<\infty
$$

then

$$
g(x)=-\frac{1}{\pi|x|} \int_{-x}^{x} f(t) d t+h(x)
$$

where

$$
h \in L(-\infty, \infty)
$$

and $g(x)$ is Hilbert transform of $f(x)$, that is,

$$
g(x)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{f(i)}{t-x} d t .
$$

Here we prove an analogous theorem, which is a more direct generalization of Paley-Wiener theorem, and consider some of its applications.
2. THEOREM. If $f(x)$ is integrable in $(-\pi, \pi)$ and
then

$$
\int_{-\pi}^{\pi}|x d f(x)|<\infty,
$$

$$
\widetilde{f}(x)=\frac{1}{\pi|x|} \int_{-x}^{x} f(t) d t+h(x)
$$

where $h(x)$ is integrable in $(-\pi, \pi)$ and $\widetilde{f(x)}$ is the conjugate function of $f(x)$.
Throughout this note, A, A^{\prime} are constants and may be different in each case.

PROOF. From the hypothesis we observe that $f(x)$ is of bounded variation and therefore bounded in $\{[-\pi, \pi]-(-\varepsilon, \varepsilon)\}$ for any $\varepsilon>0$. It is sufficient to prove the theorem for even and odd $f(x)$. Then if integral is interpreted as Cauchy principal values, the conjugate is written as

$$
\widetilde{f}(x)=\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{f(t)}{2 \tan (x-t) / 2} d t
$$

$$
=\frac{1}{\pi} \int_{0}^{\pi}\left(\frac{f(t)}{2 \tan (x-t) / 2} \pm \frac{f(t)}{2 \tan (x+t) / 2}\right) d t
$$

where the plus and minus signs correspond to even and odd $f(x)$ respectively. In any case we suppose that $\pi \geqq x \geqq 0$ and write

$$
\begin{aligned}
\widetilde{f}(x) & =\frac{1}{\pi}\left(\int_{0}^{x / 2}+\int_{x / 2}^{\pi}\right)\left(\frac{f(t)}{2 \tan (x-t) / 2} \pm \frac{f(t)}{2 \tan (x+t) / 2}\right) d t \\
& =I_{1}(x)+I_{2}(x) .
\end{aligned}
$$

Now we show that

$$
I^{\prime}(x) \equiv I_{1}(x)-\frac{1}{\pi x} \int_{-x}^{x} f(t) d t
$$

is integrable in $(0, \pi)$. In fact,

$$
\begin{aligned}
\left|I^{\prime}(x)\right| & \leqq \frac{1}{\pi} \int_{0}^{x / 2}\left|\frac{1}{2 \tan (x-t) / 2}-\frac{1}{x}\right||f(t)| d t \\
& +\frac{1}{\pi} \int_{0}^{x / 2}\left|\frac{1}{2 \tan (x+t) / 2}-\frac{1}{x}\right||f(t)| d t+\frac{2}{\pi x} \int_{x / 2}^{\pi}|f(t)| d t .
\end{aligned}
$$

It is easy to see that the third term is integrable in $(0, \pi)$. For the first two terms we observe that

$$
\left|\frac{1}{2 \tan (x-t) / 2}-\frac{1}{x}\right| \leqq A \frac{t}{x^{2}}+A^{\prime}
$$

and

$$
\left|\frac{1}{2 \tan (x+t) / 2}-\frac{1}{x}\right| \leqq A \frac{t}{x^{2}}+A^{\prime} \text { for } 0 \leqq t \leqq x / 2 \leqq \pi / 2
$$

Then, it is sufficient to verify that $\int_{0}^{x / 2} \frac{t}{x^{2}}|f(t)| d t \in L(0, \pi)$.
In order to show $I_{2}(x) \in L(0, \pi)$, we prove first that $I_{2}(x) \in L(0,2 \pi / 3)$.
In this caee, $0 \leqq x \leqq 2 \pi / 3$ and we have

$$
\begin{aligned}
I_{2}(x) & =\frac{1}{\pi}\left(\int_{x / 2}^{3 x / 2}+\int_{3 x / 2}^{\pi}\right) \frac{f(t)}{2 \tan (x-t) / 2} d t \pm \int_{x / 2}^{\pi} \frac{f(t)}{2 \tan (x+t) / 2} d t \\
& =I_{2}^{1}(x)+I_{2}^{2}(x)+I_{2}^{3}(x), \text { say. }
\end{aligned}
$$

For $I_{2}^{2}(x)$, observing that $0 \leqq x / 4 \leqq(t-x) / 2 \leqq \pi / 2$, we have

$$
\left|I_{2}^{2}(x)\right| \leqq A \int_{3 x / 2}^{\pi} \frac{|f(t)|}{t-x} d t .
$$

Hence

$$
\int_{0}^{3 \pi / 2}\left|I_{2}^{2}(x)\right| d x \leqq A \int_{0}^{2 \pi / 3} d x \int_{3 x / 2}^{\pi} \frac{|f(t)|}{t-x} d t
$$

$$
\begin{aligned}
& \leqq A \int_{0}^{\pi}|f(t)| d t \int_{0}^{2^{\prime} / 3} \frac{d x}{t-x} \\
& =A \int_{0}^{\pi} \log 3|f(t)| d t<\infty
\end{aligned}
$$

Since $0 \leqq(x+t) / 2 \leqq 5 \pi / 6$ in $I_{2}^{3}(x)$, we get

$$
\left|I_{2}^{3}(x)\right| \leqq A \int_{x \mid 2}^{\pi} \frac{|f(t)|}{x+t} d t \leqq A \int_{x \mid 2}^{\pi} \frac{|f(t)|}{t} d t
$$

The last term is integrable in ($0,2 \pi / 3$).
Next we show that $I_{2}^{1}(x)$ is $L(0,2 \pi / 3)$.

$$
\begin{aligned}
I_{2}^{1}(x) & =\frac{1}{\pi} \int_{x / 2}^{3 x / 2} \frac{f(t)}{2 \tan (x-t) / 2} d t \\
& =\frac{-1}{\pi} \int_{0}^{x, 2} \frac{d t}{2 \tan t / 2} \int_{x-t}^{x+t} d f(u)
\end{aligned}
$$

and

$$
\begin{aligned}
\left|I_{2}^{1}(x)\right| & \leqq \frac{1}{\pi} \int_{0}^{x / 2} \frac{d t}{2 \tan t / 2} \int_{x-t}^{x+t}|d f(u)| \\
& =\frac{1}{\pi} \int_{x / 2}^{x}|d f(u)| \int_{x-u}^{x / 2} \frac{d t}{2 \tan t / 2}+\frac{1}{\pi} \int_{x}^{3 x / 2}|d f(u)| \int_{u-x}^{x / 2} \frac{d t}{2 \tan t / 2} \\
& =\frac{1}{\pi} \int_{x / 2}^{3 x / 2} \log \left|\frac{\sin x / 4}{\sin (x-u) / 2}\right||d f(u)|
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
\int_{0}^{2 \pi / 3}\left|I_{2}^{1}(x)\right| d x & \leqq \frac{1}{\pi} \int_{0}^{2 \pi / 3} d x \int_{x / 2}^{3 x / 2} \log \left|\frac{\sin x / 4}{\sin (x-u) / 2}\right||d f(u)| \\
& \leqq \frac{1}{\pi} \int_{0}^{\pi / 3}|d f(u)| \int_{2 \pi / 3}^{2 u} \log \left|\frac{\sin x / 4}{\sin (x-u) / 2}\right| d x \\
& +\frac{1}{\pi} \int_{\pi / 3}^{\pi}|d f(u)| \int_{2 u / 3}^{2 \pi / 3} \log \left|\frac{\sin x / 4}{\sin (x-u) / 2}\right| d x \\
& =J_{1}+J_{2}, \text { say. }
\end{aligned}
$$

For $2 \pi / 3 \leqq u \leqq \pi$,

$$
\int_{2 u / 3}^{2 \pi / 3}|\log | \frac{\sin x / 4}{\sin (x-u) / 2}| | d x
$$

is bounded by a constant not depending on u. Thus we have $J_{2}<\infty$.
To treat J_{1} we observe that by changing a variable

$$
\begin{aligned}
& \qquad \begin{array}{l}
\int_{2 u / 3}^{2 u}|\log | \frac{\sin x / 4}{\sin (x-u) / 2}| | d x=u \int_{2 / 3}^{2} \log \left|\frac{\sin u x / 4}{\sin (x-1) u / 2}\right| d x \\
\quad \leqq u \int_{2 / 3}^{2} \log \left|\frac{x}{x-1}\right| d x \\
\leqq A^{\prime} u .
\end{array} \\
& \text { Hence } \quad J_{1} \leqq A \int_{0}^{\pi .3} u|d f(u)|<\infty .
\end{aligned}
$$

Collecting these inequalities, we have $I_{2}(x) \in L(0,2 \pi / 3)$. It remains to prove that $I_{2}(x) \in L(2 \pi / 3, \pi)$. Since $x / 2 \leqq 2 x-\pi \leqq \pi$ for $x, 2 \pi / 3 \leqq x \leqq \pi$, we put

$$
\begin{aligned}
I_{2}(x) & =\frac{1}{\pi}\left(\int_{x / 2}^{2 x-\pi}+\int_{2 x-\pi}^{\pi}\right) \frac{f(t)}{2 \tan (x-t) / 2} d t \pm \frac{1}{\pi} \int_{x / 2}^{\pi} \frac{f(t)}{2 \tan (x+t) / 2} d t \\
& =k_{1}(x)+k_{2}(x)+k_{3}(x), \text { say. } \\
\left|k_{3}(x)\right| & \leqq \frac{1}{\pi} \int_{x / 2}^{\pi} \frac{|f(t)|}{-2 \tan (x+t) / 2} d t \leqq A \int_{x / 2}^{\pi} \frac{1}{-2 \tan (x+t) / 2} d t \\
& =A \log \left|\frac{\sin 3 x / 4}{\sin (x+\pi) / 2}\right|, \text { for } 2 \pi / 3 \leqq x \leqq \pi
\end{aligned}
$$

and the last term is integrable in $(2 \pi / 3, \pi)$. Similarly, since $\pi / 2 \geqq x-t \geqq 0$, for $x / 2 \leqq t \leqq 2 x-\pi$ and $2 \pi / 3 \leqq x \leqq \pi$,
we have

$$
\begin{aligned}
\left|k_{1}(x)\right| & \leqq \frac{1}{\pi} \int_{x / 2}^{2 x-\pi} \frac{|f(t)|}{2 \tan (x-t) / 2} d t \\
& \leqq A|\log | \frac{\sin (\pi-x) / 2}{\sin x / 4}| |
\end{aligned}
$$

Therefore it remains to prove the integrability of $k_{2}(x)$.

$$
\begin{aligned}
k_{2}(x) & =\frac{1}{\pi} \int_{2 x-\pi}^{\pi} \frac{f(t)}{2 \tan (x-t) / 2} d t \\
& =-\frac{1}{\pi} \int_{\pi}^{\pi-x} \frac{f(x+t)-f(x-t)}{2 \tan t / 2} d t \\
& =-\frac{1}{\pi} \int_{0}^{\pi-x} \frac{d t}{2 \tan t / 2} \int_{x-t}^{x+t} d f(u) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\left|k_{2}(x)\right| & \leqq \frac{1}{\pi} \int_{x}^{\pi}|d f(u)| \int_{u-x}^{\pi-x} \frac{d t}{2 \tan t / 2}+\frac{1}{\pi} \int_{2 x-\pi}^{x}|d f(u)| \int_{x-u}^{\pi-x} \frac{d t}{|2 \tan / 2 t|} \\
& \leqq \frac{1}{\pi} \int_{\pi / 3}^{\pi}|\log | \frac{\sin (\pi-x) / 2}{|\sin (u-x) / 2|}| ||d f(u)| . \\
\int_{2 \pi / 3}^{\pi}\left|k_{2}(x)\right| d x & \leqq \frac{2}{\pi} \int_{2 \pi / 3}^{\pi} d x \int_{\pi / 3}^{\pi}|\log | \frac{\sin (\pi-x) / 2}{\sin (u-x) / 2}| ||d f(u)| \\
& \leqq \frac{2}{\pi} \int_{\pi / 3}^{\pi}|d f(u)| \int_{0}^{2 \pi}|\log | \frac{\sin (\pi-x) / 2}{\sin (u-x) / 2}| | d x .
\end{aligned}
$$

Since the inner integral does not exceed some constant not depending on u, the last term is finite.

This proves $I_{2}(x) \in L(2 \pi / 3, \pi)$ and therefore $I_{2}(x) \in L(0, \pi)$. Thus our proof is completed.
3. We consider the following transformations of a function $f(x)$. Let $f(x)$ be even and integrable in $(0, \pi)$ and periodic with period 2π. We set

$$
\begin{aligned}
F(x) & =\int_{x}^{\pi} \frac{f(t)}{2 \tan t / 2} d t \\
F^{*}(x) & =\frac{1}{2 \tan t / 2} \int^{x} f(t) d t
\end{aligned}
$$

for $\pi \geqq x \geqq 0$, and denote by $F_{c}{ }^{*}(x)$ the function $F(x)$ and $F^{*}(x)$ which are extended as even functions.

These transformations have been investigated by many authors. Here we have the following results which are somewhat better than Loo's theorem [3].
(i) If $f(x)(\log 2 \pi / x)$ is integrable in $(0, \pi)$, then $\widetilde{F}_{c}(x)$ is also interable in $(0, \pi)$.
(ii) If $f(x)(\log 2 \pi / x)^{2}$ is integrable in $(0, \pi)$, then $\widetilde{F}_{c}{ }^{*}(x)$ is also integrable in $(0, \pi)$.

To pove (i), we note

$$
\begin{aligned}
\int_{0}^{\pi}|x d F(x)| & =\int^{\pi}\left|x d\left(\int_{x}^{\pi} \frac{f(t)}{2 \tan t / 2} d t\right)\right| \\
& \leqq A \int_{0}^{\pi}|f(t)| d t<\infty,
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{0}^{\pi} \frac{d x}{x} \int_{0}^{x} d t \int_{t}^{\pi} \frac{|f(u)|}{2 \tan u / 2} d u \\
= & \int_{0}^{\pi} d t\left(\int^{\pi} \frac{|f(u)|}{2 \tan u / 2} d u \int^{\pi} \frac{d x}{x}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leqq A \int_{0}^{\pi} \log \frac{\pi}{t} d t \int_{0}^{\pi} \frac{f(u)}{u} d u \\
& =A \int_{0}^{\pi}(1+\log \pi / t)|f(u)| d u<\infty
\end{aligned}
$$

by changing the order of integrations. Using our theorem we get (i).
A proof of (ii) is similar.

REFERENCES

[1] G. H. Hardy, On a theorem of Paley and Wiener, Proc. Cambridge Phil. Soc., 33 (1937), 1-5.
[2] M. Kinukawa and S. Igari, Transformations of conjugate functions, Tôhoku Math. Journ., 13 (1961), 274-280.
[3] C.T.Loo, Note on the properties of Fourier coefficients, Amer. Journ. of Math., 71 (1949), 269-282.
[4] A.ZYGMUND, Trigonometric series, Cambridge (1959).
For further references, see [1] and [2].
Mathematical Institute, Tôhoku University.

