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1. Paley and Wiener proved that the conjugate functiun fix) of fix) is

integrable, if fix) is integrable, monotone in (0, ir) and odd. Concerning with this
theorem G. H. Hardy [ 1 ] proved that if

/€L(-oo,oo)

and ί \xdf(x)\ < oo,

then g(x) = - — 1 — f f(t)dt + h(x)
7Γ\X\ J-x

where h € L(— oo? oo)9

and g(x) is Hubert transform of f(x\ that is,

J_co t — X

Here we prove an analogous theorem, which is a more direct generalization
of Paley-Wiener theorem, and consider some of its applications.

2. THEOREM. If fix) is integrable in ( - τr,τr) and

Γ \xdfix)\< oo,

3 -it

then fix) = -^— Γ fit)dt +

where h(x) is integrable in (— 7r, 7r) α«(i fix) is the conjugate function of fix).

Throughout this note, -A, A are constants and may be different in each

case.

PROOF. From the hypothesis we observe that fix) is of bounded variation

and therefore bounded in {[— 7r, 7r] — (— 8, β)} for any £ > 0. It is sufficient to

prove the theorem for even and odd fix). Then if integral is interpreted as

Cauchy principal values, the conjugate is written as

Ax) = -ί- f At)
2 tanOr - t)/2

dt
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= J_ Γ ( fit)
ir Jo ^ 2 tanOr —

-)dt,
0/2 2 tanGr + t)/2

where the plus and minus signs correspond to even and odd f(x) respectively.

In any case we suppose that TΓ ̂  x 2Ξ: 0 and write

/(0 + At)
•Ό "χi*' ^ Λ tan (x - t)/2 2 tan (x + t)/2

Now we show that

7ΓX J-

is integrable in (0, 7r). In fact,

It Jn

,«/2

2 tan (x — ί)/2

1

2 tan Or + /)/2

\f(ί)\dl

TΓ ^C Ja /2

It is easy to see that the third term is integrable in (0, 7r). For the first two

terms we observe that

- ί)/2 Λ:
<: A A'

and
2 tan (x + 0/2 Λ:

^ A — + A for 0 ^ t ^ .z/2 ^ τr/2.

Γ/2 ^

—Γ 1/(0 \dt ^ L (0, TΓ).

In order to show IΪ(X) € L(0, TΓ), we prove first that I2(x) € L(0, 2 τr/3).

In this caee, 0 ^ x <̂  2 τr/3 and we have

IT \Jxi2 hxl%> 2 tan (x - t)/2 Λ,2 2 tan (x +h ί)/2

= /2 (Λ) + E(x) + H (x), say.

For H(x), observing that 0 ^ x/4 ^ (t — x)/2 ^ τr/2, we have

Hence

Γ JlMΆ
Λx/2 t — X

Γ</2

t — X
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2 / 3 dx
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= A Γlog3|/(*)|Λ
Jo

Since 0 ^ (x + 0/2 ^ 5 τr/6 in I\(x\ we get

ι/ϊ(*)i^A r -tfWLΛ^A r J
4/2 X + £ Λ/2 ί

o t—X

< oo.

The last term is integrable in (0, 2 τr/3).
Next we show that l\(x) is L(0, 2τr/3).

r i {x) = j _ r12 At) dt

ΊΓ 4 / 2 2 tan Or - ί)/2

2 tan ί/2 Λ-t
- 1

and

dt
fo 2 tan ί/2 Λ-t

1

7r . -M 2tan*/2

1 Λ3a;/2

-, 2tan ί/2

J ^ p/2

7Γ Jar/2

log sin

sin Or —

Hence we have

/*2«/3 -I λ»2τc/3 / 3ίc/2

I | I i (*) l<ie^— / ΛΓ / log
JO 7Γ Jo Jίc/2

sin x/4

log
7Γ Jo

1 /•* /»2τr/3

+ — I \df(u)\ I log
7Γ Jτt\z J2U/3

= Ji + J2, say.

sin (x — u)/2

sin x/4

sinin (Λ: — u)/2

sin J :/4

sin (x — u)/2

dx

dx

For 2 τr/3 <:U<:7r,

JϊUβ

log |—7
sin x/A

sin (Λ: —
dx

is bounded by a constant not depending on u. Thus we have J2

To treat J\ we observe that by changing a variable
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f2U , I sin x/4

J2M/3 sin (x — u)/2

^uf log
J213
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X

X - 1

'f
t/2/3

dx

log
sin ux

sin (x —
A
1V2

dx

Hence < A Γ * u | J/(w) | <

Collecting these inequalities, we have I2(x) € 1,(0, 2 τr/3). It remains to prove
that I2(x) € L(2 τr/3, TΓ). Since x/2 <L2x — π ^π for x, 2 τr/3 ^ x 5j TΓ, we
put

7 /̂ Λ 1 i f 1 Γ \ J\t) jj. _L 1

I2\x) — 1 / + 1 I — —-— at ^^ —
TΓ \Jxi2 hx-it J 2 tan (x - t)/2

ΊΓ ίxi2 2 tan (x + t)/2
dt

\ say.

J£) I S 1 9 / 4

sin 3α:/4

t)/2
dt

= A log
in (x + τr)/2sin

, for 2 τr/3 ^ α: ^TΓ,

and the last term is integrable in (2 7r/3, 7r). Similarly, since ττ/2 ̂ > x — t^iO,
for a /2 <^t<^2x — π and 2 τr/3 ^ x <Ξ TΓ,

we have

!*.<*)!

<A log

2tan (α: —

sin (TΓ - x)/2
sin x/4

Therefore it remains to prove the integrability of

7r hx-Tt 2 tan \x —

TΓ J^

7Γ Jo

2 tan t/2

* Γ+t df(u).
2 tan ί/2 Λ-β

Hence,
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dt
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<i / I α/(w; I / — + / I dj\u) \ \
TΓ Jx Ju-x 2 tan t/2 TΓ Λas-* Jχ-u

l o g , s in(* - * ) / 2

I I ^ 2 (^; I dx ^ / dx j log ——) ^
ΛΛ/3 TΓ Λ*/3 Λ/31 sin (u - ar)

2S-?- f ι^«)i Γ
TΓ Jτt/3 Jo

l o g | - ^ n ( 7 Γ -
sin (u — x)/2

dx.

Since the inner integral does not exceed some constant not depending on u, the
last term is finite.

This proves /2(x) € L (2 7r/3,7r) and therefore 72( ̂ ) ^ £(0, 7r). Thus our
proof is completed.

3. We consider the following transformations of a function /Or). Let f(x)
be even and integrable in (0, ΊΓ) and periodic with period 2ΊT. We set

= Γ fit)
2 tan t/2

dt,

for 7Γ ̂  x > 0, and denote by Fc*(x) the function F(^:) and F*(x) which are
extended as even functions.

These transformations have been investigated by many authors. Here we
have the following results which are somewhat better than Loo's theorem [3].

( i ) ίf/faOOog 2τr/x)is integrable in (0,TΓ), then Fc(x) is also inferable
in (0, TΓ). _

(ii) If f(x)(]og 2τr/x)2 is integrable in (0, TΓ), then Fc*(x) is also inte-
grable in (0, TΓ).

To pove (i), we note

-Ά dt

and

2 tan t/2

^ A Γ \f(t)\dt < oo,

/ \ ^t\
Jo & Jo Jt 2 tan

2 tan M/2
du
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= A [ * ( 1 + log*-/*) \f(u)\du <°o

by changing the order of integrations. Using our theorem we get (i).
A proof of (ii) is similar.
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