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Introduction. Let A be a normal simple algebra with an identity element,
denoted by 1, over a field h According to Wedderburn's structure theorem, A
is isomorphic with a total matrix algebra of certain degree n over a normal
division algebra D over k. J. Dieudonne has extended the theory of determinants
to non-commutative fields, including the ordinary one, and determined the st-
ructure of the general linear group GLn(D) of all regular elements in A ([l],
[2]).

For example, for any i 4= j and any λ of D, we denote by Bi/λ) the matrix
obtained from the unit matrix by replacing the element ai5 = 0 of the unit
matrix by λ. The matrices B^X) (for all i 4= j and all λ in D) generate a
subgroup SLn(D), called the unimodular group. Then SLn(D) is the kernel of
the determinant map and also the derived group of GLn(D). The centralizer of
SLn(D) is the center of GLn(D), isomorphic with the multiplicative group of k,
for n > 2.1) Moreover, when n > 2, but the case, where n = 2 and D is GF(2),
if a subgroup G of GLn(D) which is not contained in the center of GLJJD),
then G contains SLn(D).

From these facts, we have easily

THEOREM I. Let D be a normal division algebra over a field k. Sup-
pose that either n>3 or that n = 2 but that D contains at least four ele-
ments. Then, the second derived group G' of GLn(D) is the first derived
group G' of GLn(D).

When n = 1, if D is a commutative field, the above fact trivial. We shall
consider the case where D is a division algebra of characteristic zero, and we
have

THEOREM 2. Let D be a normal division algebra over a field k, of
characteristic zero, and G be the group of non-zero elements of D. Then, the
first derived group G of G is the minimal algebraic group including the
second derived group G" of G.

1) Also, this holds good for n = l . In fact, if D is a commutative field, then SL^D)^,
GLι(D)=D, and the center of D is D itself. Therefore our assertion is clear. If D is
non-commutative, then D is generated by the derived group of all non-zero elements of
D' ([3]). And, it remains valid too.
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In Theorem 3, we shall see the structures of the algebras associated to G

and G , the groups denoted in Theorem 2.

Proofs of Theorems.

PROOF OF THEOREM 1. Clearly, G" is an invariant subgroup of G', that

is of SLn(D). An element of G",

is not a diagonal matrix, and so, G" is not contained in the center of GLn(D).

This means that G" contains SLn(D), that is G', and then, G" is nothing but

G', as we asserted.

PROOF OF THEOREM 2. Firstly, we shall show that G may be regarded

as an algebraic group. Namely, D has a square degree over k, say n2

9 therefore,

there exists a basis (ux = 1, u2, ,u^) such that

(1) UiU^Σd^u^
Tc

where cm in k. By this basis, every element a of D is uniquely expressible in

the form

(2) . a = a&i + +an2Un2,

with <Zi in k. We form

(3) aUj=
i

with cijj in k, and define

(4) Aa = (α t j),

an ?22-rowed square matrix. Then, we have the so-called first regular representa-

tion. Since D has an identity element, this representation is faithful, and we shall

identify D and its image each other.

Being assumed that ux — 1, it holds that

(5) atj—J2c^k9
k

and especially,

(β) On = ai9

therefore, there is a set © of w4 linear equations of n* variables ai5:

(7) @: α« - Σ'**** = 0.

Thus, by the restriction p of the regular representation to G we regard G



ON DERIVED GROUPS OF NORMAL SIMPLE ALGEBRA

as an algebraic subgroup, defined by @, of GL(V) of dimension n2 over k. If
we exchange at for indeterminates ξi9 then the general quantity A% of D is a
generic point of G. Consequently G is an irreducible algebraic group of dimen-
sion n2 (II, p. 110, Theoreme 14).

Now we shall prove that the Lie algebra of G is D with the bracket pro-
duct in place of the ordinary one. Let α be the associated ideal of G, and g
be the Lie algebra of G. For an endomorphism X of V,

X € g » v(P € a)(dP)(I,X) = 0,

where I is the identity element of G, (II, p. 128, Proposition 1), and

(because G is determined by linear equations),

©)P(X) = 0, (II, p. 35, Formula),

O X € D.

Therefore, the intersection of g and © (the vector space of all endomor-
phisms of V) is D, and we see that g contains D. On the other hand, D
contains g. In fact, the enveloping algebra E of G, considered as a subgroup
of GL(V), contains g (II, p. 135, Proposition 6). Now that E is nothing but
D itself, D will contain g, then g is D, as was to be proved.

Next, we shall see that G' is an irreducible algebraic group, having the
derived algebra g' of g as its Lie algebra. Namely, if we consider G as a sub-
group of GL(V), the representation p: G —> GL(V) may be regarded as the
identity map G into GL(V), and is a semi-simple representation. Then, the
corresponding representation dp of g into the Lie algebra gl(V") of GL(V) is
also faithful and semi-simple (III, p. 28, Corollaire 4 de Theoreme 1). This
means that g is reductive. (Ill, p. 76, Proposition 3). Consequently, g is a direct
sum of its center % and the derived algebra g', and g' is semi-simple (HI,
p. 75, Proposition 1),

(8) g = % + g', (direct sum).

g' is the Lie algebra of an (irreducible) minima] algebraic group H con-
taining G' (II, p. 177, Theoreme 15). If G' is an algebraic group, then H will
turn into G', and our assertion holds good.

Let N(x) be a reduced norm of element of x of D, then G is defined as
a group of all elements of D of reduced norm 1 [4], [5]. For a of D, N(a) is
a polynomial of ai} that is of atί in (2) and (3). Since N(x) — 1 is a functional
polynomial over @ (the vector space of endomorphisms of V over k), we see
that G is an algebraic group, to which associated algebra is g'.
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As was mentioned before, g' is semi-simple, therefore, g' = g", the derived

algebra of g'. Since g" is the algebra of the (irreducible) minimal algebraic

group H containing G", and G and H are irreducible, g' = g" yields our theorem

(II, p. 156, Corollaire 1 de Theoreme 8).

The Lie algebra %ί(V) of SL(V) of all automorphisms of determinant
1 is a set of all endomorphisms of trace 0 of V(II, p. 144, Exemple III). Then
we have

THEOREM 3. The notation being as above,

a' = g Π s«y).
PROOF. Since D is normal over k, the center g of g is isomorphic with

k, and has a dimension 1 over k. On account of (8), we see that dimension of
g' over k is n2 — 1. Moreover, G is contained in SL(V), because every element
of G has reduced norm 1, and naturally has determinant 1. Therefore, g' is
contained in the intersection of g and &(V). On the other hand, an element
X — (aυ) °f δ belongs to §1 (V), if and only if the trace of X is 0, that is,
in the formula (5),

Accordingly, not only ^^(for all j=4=l) but also <Zn are linear combination
of Oti, (2 ^ i < w2). Thus, the dimension of the intersection g and §l(V) is
n2 — 1. Consequently, g' coincides with the intersection g and δt(V).

REMARK. If k is algebraically closed, G = G". Because the derived group
of the irreducible algebraic group is algebraic and irreducible in that case (II,
p. 122, Corollaire 2 de Proposition 2).

Dr. H. Kuniyoshi pointed me out that it happens that G is really greater
than G". Namely, let D be a normal division algebra over a />-adic number field
k9 and W = k(ω) be a maximal unramified subfield of D, where ω is an appro-
priate root of unity. Then, we see that for any element a of G, it holds that

a = α>±(1-^ (mod. p\

by Speiser's theorem (since the norm of a = 1), and not necessarily = 1. On
the other hand, it holds that

ω
l - s r l - ϊ (mod.

where, p is the prime ideal of the maximal order of D, S, T are galois trans-
formations of W over k, and i is a rational integer. Therefore, for any element
b of G", we have

b = l (mod. p).

Thus, G is really greater than G \
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