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1. Introduction- Books on the classical differential geometry of surfaces
in 3-space usually prove a theorem to the effect that a surface of Gaussian
curvature 0 is a developable surface or torse. To be more precise, the following
two statements are proved: (a) If every point on a surface of Gaussian curvature
0 is a flat point1} then the surface is a piece of a plane, (b) If no point on a
surface of Gaussian curvature 0 is a flat point, then through every point there
is a unique asymptotic line, and the tangent plane is constant along this line.2)

Apparently all such books neglect completely the case of a surface of
curvature zero which has both flat and non-flat points. This seems rather strange
in view of the fact that many obvious examples illustrate this case. Perhaps
most classical differential geometers felt that this case was too complicated and
the possibilities were too numerous to obtain interesting results. The following
quotation from the footnote to a paper3) written by the late Professor A. Wint-
ner in 1955 illustrates this attitude:

"Certain difficulties inherent to Euler's definition of a torse are known
since Lebesgue's thesis (1902). But it may not be necessary to go such extremes
as Lebesgue went (continous but not one-to-one parametrizations) in order to
show that the theory of torses is not as simple as it appears from the texts of
differential geometry, including the rigor-conscious b3θks. For is it true that if
[the Gaussian curvature] K = 0 on a surface S of class C2, then a neighborhood
of every point of S can be "ruled" so as to be a torse in Euler's sense also ?
I can neither prove nor believe this, not even under the assumption that S is
of class C00, which in view of the possibility of clustering zeros of [the second
fundamental form] H (i.e. of flat points where H2 = 0=K) is hardly stronger
than S being of class C2. A counter example, with S of class C~, would
be the first such instance in the differential geometry of surfaces as to require
the full force of (function-theoretical) analyticity rather than just C°°-
character."
It is the purpose of this paper to show that interesting and significant results
can be obtained on surfaces of curvature 0 in the case where there are both flat

1) That is, a point where all the coefficients of the second fundamental form vanish. Such
an umbilic point is also called a planar point.

2) For a precise statement and proof of this result under minimum assumptions of differen-
tiability, see theorem (V) of [2].

3) This footnote occurs on p. 355 of [5].
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and non-flat points. Strangely enough, in this situation the most striking result

and the one that is easiest to state is of a global nature:

THEOREM I. A complete surface of Gaussian curvature 0 in Euclidean

3-space is a cylinder.

As usual, by a "cylinder" is meant the surface generated by the set of

lines parallel to the £-axis through a curve in the ry-plane since the surface

is complete, the curve must either be closed or of infinite length. This theorem

was announced by A. V. Pogorelov4) without proof in 1956 under very general

hypotheses. A paper by Hartman and Nirenberg [l] contains among other things

a proof of this theorem for π-dimensional hypersurfaces of class C2 in Eucli-

dean (n 4- l)-space. Below we give an elementary proof in the spirit of classical

differential geometry for surfaces of class C4.

If the hypothesis of completeness is omitted, the situation is more com-

plicated. Let S be a surface of Gaussian curvature 0 in 3-space (S need not

be complete), let A denote the set of all flat points of S, and U = S — A the

set of all non-flat points. It is clear that A is precisely the set of all points

where the mean curvature vanishes, hence it is a closed subset of S; similarly,

U is an open subset of S. The classical theory says nothing about the subsets

A and U, their relationship to one another, etc. The following theorems show

that the sets A and U must satisfy rather stringent requirements.

Recall that through each point of U there passes a unique asymptotic line

according to the classical theory. These lines do not exist in A.

THEOREM II. The asymptotic lines in U are "maximal" in the sense

that they extend to infinity or to the "boundary" of S in each direction.

Obviously, this imposes restrictions on U9 since it is simply covered by this

family of asymptotic lines, each of which is maximal.

For the statement of the next theorem, let IT denote the boundary of U

in the topology of S.

THEOREM III. Through each point of U' there passes a straight line

on S, and this straight line is entirely contained in U'. Thus U' is the union

of straight lines.

It should be added that the tangent plane to S is constant along each

component of IT. (To prove this, note that IT a A, hence the second funda-

4) See [3]; a review of this note is in Math. Review, vol. 19, p. 309. To the best of my
knowledge, Pogorelov has not as yet published a proof. [NOTE ADDED IN PROOF.
Since this paper was submitted, another proof of Theorem 1 has been given by J, J. Stoker
in volume XIV, number 3 of "Communications on Pure and Applied Mathematics."]
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mental form vanishes identically at each point of U then use the Weingarten
equations.)

We give a proof of theorems II and III below for surfaces of class C4.
The proof of theorem II is given first it depends on the simple observation
that l /M, the reciprocal of the mean curvature, is a linear function of arc
length along any asymptotic curve in U. Theorems I and III then follow by
fairly easy arguments.

In retrospect, it seems amazing that these theorems about surfaces of
Gaussian curvature 0 were not discovered many years ago. Looked at from a
slightly different point of view, theorem I describes all possible isometric im-
mersions of a complete 2-dimensional Riemannian manifold of curvature 0 in
Euclidean 3-space. The analogous problem for complete surfaces of constant
negative curvature was solved by Hubert in 1901 with his famous theorem
regarding the impossibilty of imbedding the hyperbolic plane in 3-space, while
H. Liebmann in 1899 solved this problem for surfaces of constant positive
curvature (spheres). Clearly these theorems of Liebmann and Hubert are deeper
than theorem I above, and not so plausible geometrically.

In this paper we shall use the notations of the book of Struik [4]. We
will deal exclusively with surfaces of differentiability class C4 and Gaussian
curvature 0 in Euclidean 3-space. These assumptions will not be repeated.

2. Two Basic Lemmas. The two lemmas stated below are concerned
with the behavior of the asymptotic curves in the open subset U of the surface
S. Both are of a local nature. The first is undoubtedly well known; the state-
ment and proof are included for the sake of completeness. The second is the
key lemma which asserts that l/M is a linear function of arc length along an
asymptotic curve.

LEMMA 1. Any asymptotic curve in U is a segment of a geodesic.

LEMMA 2. On any fixed asymptotic curve in U the mean curvature M
satisfies the following differential equation :

ds2 V M

Here the derivatives are taken with respect to arc lengths along the asymp-
totic curve.

PROOFS. Given any point p^U, we can choose a local coordinate system
(u, v) in a sufficiently small neighborhood of p in U such that the asymptotic
curves and their orthogonal trajectories are the v and u curves respectively.
With this coordinate system, the first and second fundamental forms become
(in the notation of Struik, [4])
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/ = Edu2 + G dv\

II = edu\ e + 0,

i. e. F — f — g = 0. The Mainardi-Codazzi equations then become

( _ eEυ

(2. 1) j

0 =

(see Struik [4], p. 113).
From the second of these equations, we conclude that Gu — 0, hence G is a
function of v alone. If we further suppose (as we may) that the parameter v
measures arc length along some one of the curves u = constant, then it is
readily seen that G = 1, and the first fundamental form becomes

I = Edu2 + dv2.

It follows that v measures arc length along any curve u = constant. The Gaus-
sian curvature is given by

κ=- 1

(see Struik [4], p. 113, equation (3-7)), hence

(2. 2) dWE = Q

dv2

Next, we apply equation (1-10) on p. 130 of Struik [4] to compute the
geodesic curvature κg of the curves u = constant the result is that κg = 0,
hence the curves u = constant are geodesies. This completes the proof of
lemma 1.

It follows from equation (2. 2) that

(2. 3) *SE = d(u)'V + c2(u)

where cγ(u) and cγ{u) are functions of u. From the first equation in (2. 1) it
follows that

(2.4) e = CS(U) Λ/¥, clu) + 0.

In our coordinate system,

M
2E

by equation (7-2) on p. 83 of Struik, [4]. Therefore
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, , 2E 2VΈ
(2. 5)

fa)
Now if we restrict attention to a single asymptotic curve u = u0 and recall

that v measures arc length along this asymptotic curve, the proof of lemma 2
follows easily by differentiation of formula (2. 5).

3. Proof of Theorem II. From lemma 2 it follows that along any fixed
asymptotic curve in U the mean curvature M is given by

(a l) M =
as + b

where a and b are constants and s denotes the arc length measured from a
fixed point p0 on the asymptotic. Assume now that a certain asymptotic curve
C is not maximal i. e., it is only a proper segment of a certain geodesic L and
not the entire geodesic. This means that the geodesic L meets the set A. Let
p be a point on L which is a boundary point of A and U. Then M(p) = 0,
and hence we must have

)=0,
as + b

where s0 is the distance from p to p0 along L. But this is impossible hence
C must be the entire geodesic L.

4. Proof of Theorem I. In case the surface is complete, every geodesic,
and hence every asymptotic curve, can be extended infinitely far in both direc-
tions. Since the mean curvature remains finite on all of S, one must have
a = 0 in formula (3. 1), i. e., the mean curvature M constant along any
geodesic.

Next, recall that a complete surface S of Gaussian curvature 0 has the
Euclidean plane as its universal covering space. Hence any such surface S is
obtained by an isometric immersion of the Euclidean plane in Euclidean 3-space.
Moreover, any geodesic on S is the image of a straight line in the plane.
Since any asymptotic curve on S is an entire geodesic, and no two asymptotic
curves intersect, it follows that the asymptotic curves are all images of lines
in the plane which are parallel. Choose a rectangular coordinate system (u, v)
in the Euclidean plane such that the lines u = constant (parallel to the t>-axis)
include all lines which map onto the asymptotic curves. Since the coordinate
system is rectangular, the first fundamental form of S becomes with this para-
metrisation,
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(4. 1) ds2 = du2 + dv2,

and the argument used in proving lemmas 1 and 2. shows that the second fun-

damental form may be written

(4. 2) II = edu2

in the entire plane. Since

and M is constant along any asymptotic curve, we see that e is a function of

u alone.

Now by using the uniqueness part of the classical theorem of Bonnet (see

Struik, [4], p. 124), one sees that any surface whose first and second funda-

mental forms are given by (4. 1) and (4. 2) with e a function of u alone is

congruent to the cylinder generated by lines parallel to the £-axis through a

curve in the α^-plane here the parameter u is the arc length of the given

curve and the function e(u) is its curvature0.

5. Proof of Theorem III. Let p € IT be any boundary point of the set
U9 and let \pn] be an infinite sequence of points in U such that pn-> p as
n -> °°. For each point pn, let C(pn) denote the unique asymptotic line through
pn. We assert that as n -> °o the lines C(pn) approach a limiting line, which
we will denote by C(p).

To prove this assertion, draw a line L through p such that L intersects
C(pn) for all sufficiently large n and let θn denote the angle between the lines

L and C(pn). It is readily seen from the geometry of the situation that \θn] is

a Cauchy sequence, because no two of the lines C(pn) can intersect on S.

Hence lim θn exists as n -> °°, and this determines the direction of the line

C(p) through p.

A similar argument shows that C(p) is independent of the choice of the

sequence \pn\ Hence C(p) is uniquely determined.

Next, we assert that every point of C(p) on S is a boundary point of U.

First of all, if q is any point on C(p)9 then it is possible to choose for each

integer n a point qn € C(ρn) such that qn-> q as n -> °°. Thus q belongs to

the closure of U. To complete the proof of this assertion, it suffices to show

5) Bonnet's theorem is usually stated as a local theorem. However it applies equally well to
the determination of isometric immersions in the large of simply connected 2-dimensional
Riemannian manifolds in Euclidean 3-space. The immersion is determined up to a rigid
motion by the second fundamental form, which is assumed to satisfy the Gauss-Codazzi
equations. The passage from the local to the global formulation is accomplished by a
process of "analytic continuation" along paths, entirely analogous to the process used in
classical complex function theory.
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that q does not belong to U. If, on the contrary, q belonged to U, then it
would follow by continuity that C(p) was the unique asymptotic line through
q, and hence that p € U9 SL contradiction.

This completes the proof of theorem III.
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