LINEAR CONNECTIONS AND QUASI-CONNECTIONS

ON A DIFFERENTIABLE MANIFOLD

Yung-Chow Wong

(Received August. 2, 1961)
-Dedicated to the University of Hong Kong on its Golden Jubilee in 1961 -

1. Introduction. In the modern theory of linear connections on an n dimensional differentiable manifold M, an important role is played by the frame bundle B over M, and by the $n^{2}+n$ fundamental and basic vector fields E_{λ}^{μ}, $E_{\alpha}(1 \leqq \boldsymbol{\alpha}, \lambda, \mu \leqq n)$ on B. While the fundamental vector fields E_{λ}^{μ} are determined by the differential structure of M alone, the basic vector fields E_{α} together with the differential structure determine, and are determined by, a linear connection on M. The vector fields E_{λ}^{μ} and E_{α} are linearly independent everywhere on B and satisfy the following structure equations:

$$
\begin{align*}
{\left[E_{\lambda}^{\mu}, E_{\rho}^{\sigma}\right] } & =\delta_{\rho}^{\mu} E_{\lambda}^{\sigma}-\delta_{\lambda}^{\sigma} E_{\rho}^{\mu}, \\
{\left[E_{\alpha}, E_{\lambda}^{\mu}\right] } & =-\delta_{\alpha}^{\mu} E_{\lambda}, \tag{1.1}\\
{\left[E_{\alpha}, E_{\beta}\right] } & =-T_{\alpha \beta}^{\gamma} E_{\gamma}-R_{\mu \alpha \beta}^{\lambda} E_{\lambda}^{\mu},
\end{align*}
$$

where [,] denotes the Lie product (bracket operation), δ_{ρ}^{μ} is the Kronecker delta, and $T_{\alpha \beta}^{\gamma}, R_{\mu \alpha \beta}^{\lambda}$ are functions on B corresponding to the torsion tensor and the curvature tensor on M of the linear connection.

Now equation (1.1) merely expresses the Lie product in the Lie algebra of $G L(n, R)$, and equation $(1.1)_{3}$ determines the torsion and curvature of the linear connection. Therefore, among the equations (1,1), only (1.1$)_{2}$ imposes any condition on the basic vector fields E_{α}. There arises then the natural question: The fundamental vector fields E_{λ}^{μ} being known, will any set of n vector fields E_{α} on B satisfying the condition

$$
\begin{equation*}
\left[E_{\alpha}, E_{\lambda}^{\mu}\right]=-\delta_{\alpha}^{\mu} E_{\lambda} \tag{1.1}
\end{equation*}
$$

determine a linear connection on M ?
In an attempt to answer this question, we discover a new kind of connections on M, to be called quasi-connections, which include the linear connections as particular case. More precisely, we shall obtain in this paper the following results:
i) With any set of n vector fields E_{α} on B satisfying (1.1)2 there is associated
a tensor ${ }^{1)} C$ of type (1.1) on M and an assignment ϕ to each coordinate system (U, u^{i}) in M of a set of n^{3} functions $\phi_{j k}^{i}$ for which the law of transformation in $U \cap U^{*}$ is (Theorem 3.1)

$$
\phi_{j k}^{a} \frac{\partial u^{i *}}{\partial u^{a}}=C_{j}^{a} \frac{\partial^{2} u^{i *}}{\partial u^{a} \partial u^{k}}+\frac{\partial u^{a *}}{\partial u^{j}} \frac{\partial u^{b^{*}}}{\partial u^{k}} \phi_{a+b}^{i^{*}} .
$$

ii) The field of planes (i.e. tangent subspaces) spanned by the vector fields E_{α} on B is projectable onto the field of image planes of C on M (Theorem 4.3).
iii) If $E_{\lambda}^{\mu}, E_{\alpha}$ are linearly independent everywhere on B, then (C, ϕ) determinesa unique linear connection on M (Theorem 5.1 and $\S 9$).
iv) If $E_{\lambda}^{u}, E_{\alpha}$ are not assumed to be everywhere independent on B, then (C, ϕ) may not determine a linear connection on M. However, by means of C and ϕ, a covariant differentiation of tensors on M can be defined. We call this structure (C, ϕ) a quasi-connection on $M(\S 6)$.
v) In the general case iv), equation (1.1) ${ }_{3}$ imposes a further condition on E_{α}. If the number $n^{2}+m\left(\leqq n^{2}+n\right)$ of independent vectors among $\left(E_{\lambda}^{u}\right)_{z},\left(E_{\alpha}\right)_{z}$ is the same at all points z of B, then the tensor C is of the same rank $m(\leqq n)$ on M, and conversely (Theorem 4.2). In this case,
a) the condition imposed on E_{α} by (1.1) $)_{3}$ is that the field of image mplanes of C on M is involutive (Theorem 7.2);
b) certain 'curvature' tensors for the quasi-connection (C, ϕ) exist (Theorem 8.1).
vi) If C is of rank n everywhere on M, the quasi-connection (C, ϕ) is equivalent to the linear connection with components $\Gamma_{j k}^{i}={\overline{C_{j}^{a}}}_{j}^{i} \phi_{a k}^{i}$, where \bar{C} is the reciprocal of C (§9).

Since quasi-connection is a generalization of linear connection, there are various concepts and problems relating to a quasi-connection similar to those relating to a linear connection. But we shall not consider them in this paper.
2. Linear connections on smooth manifolds (cf. Chern [2], chapter 4 ; and Wong [5]). In this section we give a summary of the theory of linear connections which is needed in our later work. We assume as known the classical (local) theory of linear connections and the elementary properties of n-dimensional smooth manifolds (i.e. of class C^{∞} and with countable base) and their frame bundles. All the functions, vector fields and tensors defined on a smooth manifold or an open submanifold of it are assumed to be smooth (i. e. of class C^{∞}). Each of the indices $a, b, c, \ldots \ldots, i, j, k, \ldots \ldots, \alpha, \beta, \gamma, \ldots \ldots, \lambda, \mu, \nu, \ldots$ runs from 1

[^0]to n. Summation over repeated indices, Latin or Greek, is implied.
Let M be an n-dimensional smooth manifold, B the frame bundle over M, and $\pi: B \rightarrow M$ the natural projection which maps the frame $z(u)$ at $u \in M$ onto the point u.

A covering of M by (local) coordinate systems gives rise to a covering of B by (local) coordinate systems in the following manner. Let (U, u^{i}) be any coordinate system in M with coordinate neighborhood U and local coordinates u^{i}. Then the tangent vectors $X_{x}(u)$ of any frame $z(u)$ in M can be expressed locally as

$$
\begin{equation*}
X_{\alpha}(u)=x_{\alpha}^{i}\left(\frac{\partial}{\partial u^{i}}\right)_{u}, \tag{2.1}
\end{equation*}
$$

where x_{α}^{i} are n^{2} real numbers such that $\operatorname{det}\left(x_{\alpha}^{i}\right) \neq 0$. Thus, $\left\{\pi^{-1}(U),\left(u^{i}, x_{\alpha}^{i}\right)\right\}$ form a covering of B by coordinate neighborhoods $\pi^{-1}(U)$ and local coordinates (u^{i}, x_{α}^{i}).

If (U, u^{i}) and ($U^{*}, u^{i *}$) are two local coordinate systems in M, and $u \in$ $U \cap U^{*}$, then

$$
\begin{equation*}
u^{i^{*}}=u^{i^{*}}\left(u^{1}, \ldots \ldots, u^{n}\right) . \tag{2.2}
\end{equation*}
$$

If $z(u) \in \pi^{-1}\left(U \cap U^{*}\right)$ has the local coordinates $\left(u^{i}, x_{\alpha}^{i}\right)$ and ($\left.u^{i *}, x_{\alpha}^{i *}\right)$, then

$$
\begin{equation*}
x_{\alpha}^{i *}=x_{\alpha}^{j} \frac{\partial u^{i *}}{\partial u^{j}} . \tag{2.3}
\end{equation*}
$$

Thus, the transformation of coordinates in $\pi^{-1}\left(U \cap U^{*}\right)$ is expressed by equations (2.2) and (2.3).

In the classical theory, a linear connection on M is an assignment Γ to each coordinate system (U, u^{i}) in M of a set of n^{3} functions $\Gamma_{j k}^{i}$ such that, in $U \cap U^{*}$, the two sets of functions $\Gamma_{j k}^{\prime}$ and $\Gamma_{j k^{*}}^{i *}$ assigned to $\left(U, u^{i}\right)$ and ($\left.U^{*}, u^{i^{*}}\right)$ are related by

$$
\begin{equation*}
\Gamma_{j k}^{a} p_{a}^{i *}=p_{k k}^{i *}+p_{j}^{a_{j}^{*}} p_{k}^{i^{*}} \Gamma_{a}^{i * *} b_{b}^{* *}, \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{j}^{i^{*}}=\frac{\partial u^{i^{*}}}{\partial u^{j}} \quad, p_{j k}^{i *}=\frac{\partial^{2} u^{i^{*}}}{\partial u^{j} \partial u^{k}} . \tag{2.5}
\end{equation*}
$$

The transition to the modern theory in terms of differential forms can be described briefly as follows: Let $\left(x_{i}^{\alpha}\right)$ be the inverse of the matrix (x_{a}^{i}). Then,
i) There exist on $B n$ 1-forms θ^{α} such that in $\pi^{-1}(U)$,

$$
\begin{equation*}
\theta^{\alpha}=d u^{i} \cdot x_{i}^{\alpha} \tag{2.6}
\end{equation*}
$$

ii) If a linear connection Γ on M is given, there exist on $B \quad n^{2}$ 1-forms ω_{μ}^{λ} such that in $\pi^{-1}(U)$

$$
\begin{equation*}
\boldsymbol{\omega}_{\mu}^{\lambda}=d x_{\mu}^{k} \cdot x_{k}^{\lambda}+x_{\mu}^{k} \Gamma_{\mu}^{\prime} x_{i}^{\lambda} d u^{j} \tag{2.7}
\end{equation*}
$$

iii) The $n+n^{2} 1$-forms θ^{α}, ω_{μ}^{λ} are everywhere linearly independent on B and satisfy the following structure equations

$$
\begin{align*}
& d \theta^{\gamma}=\theta^{\alpha} \wedge \omega_{\alpha}^{\gamma}+\frac{1}{2} T_{\alpha \beta}^{\gamma} \theta^{\alpha} \wedge \theta^{\beta} \\
& d \omega_{\mu}^{\lambda}=\omega_{\mu}^{\rho} \wedge \omega_{\rho}^{\lambda}+\frac{1}{2} R_{\mu \alpha \beta}^{\lambda} \theta^{\alpha} \wedge \theta^{\beta} \tag{2.8}
\end{align*}
$$

iv) The $n^{2}+n$ vector fields E_{λ}^{μ} and E_{α} on B which are dual to the $n+n^{2}$ 1 -forms $\theta^{\boldsymbol{s}}$ and ω_{σ}^{ρ} are called the fundamental vector fields and the basic vector fields respectively. They are characterized by the following equations:

$$
\begin{align*}
& <\theta^{\beta}, E_{\alpha}>=\delta_{\alpha}^{\beta},<\omega_{\sigma}^{\rho}, E_{\alpha}>=0 \tag{2.9}\\
& <\theta^{\beta}, E_{\Omega}^{\mu}>=0,<\omega_{\sigma}^{\rho}, E_{\lambda}^{\mu}>=\delta_{\lambda}^{\rho} \delta_{\sigma}^{\mu}
\end{align*}
$$

and have the following local expressions:

$$
\begin{equation*}
E_{\lambda}^{\mu}=x_{\lambda}^{j} \frac{\partial}{\partial x_{\mu}^{j}}, E_{\alpha}=x_{\alpha}^{j}\left(\frac{\partial}{\partial u^{j}}-x_{\gamma}^{k} \Gamma_{j k}^{i} \frac{\partial}{\partial x_{\gamma}^{i}}\right) \tag{2.10}
\end{equation*}
$$

It is easy to see that the fundamental vector fields and the basic vector fields as defined here are essentially those defined by Ambrose and Singer [1] and Nomizu [3, p. 49].

Expressed in terms of the vector fields E_{λ}^{μ} and E_{α}, the structure equations (2.8) take the form (1.1).
3. The equation (1.1) $)_{2}$. Let M be an n-dimensional smooth manifold and E_{λ}^{μ} the n^{2} fundamental vector fields on the frame bundle B over M. In this section, we shall obtain the local expressions for the most general set of n vector fields E_{a} not necessarily linearly independent satisfying the equation $\left[E_{\alpha}, E_{\lambda}^{\mu}\right]=-\delta_{\alpha}^{\mu} E_{\lambda}$.

We first state without proof the easy
Lemma 3.1. In $\pi^{-1}\left(U \cap U^{*}\right) \subset B$, the following relations hold:

$$
\begin{equation*}
u^{i *}=u^{i *}\left(u^{1}, \ldots \ldots, u^{n}\right), \quad x_{\alpha}^{i *}=x_{\alpha}^{j} p_{j}^{i *} \tag{3.1}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial}{\partial x_{\gamma}^{h}}=p_{h}^{i^{*} \frac{\partial}{\partial x_{\gamma}^{i *}}} \tag{3.2}\\
& \frac{\partial}{\partial u^{k}}=p_{k}^{i^{i *}} \frac{\partial}{\partial u^{i *}}+x_{\alpha}^{j} p_{j k}^{i *} \frac{\partial}{\partial x_{\alpha}^{i *}} \tag{3.3}
\end{align*}
$$

Here, as before, $p_{k}^{i *}=\partial u^{i *} / \partial u^{k}, p_{j k}^{i *}=\partial^{2} u^{i *} / \partial u^{\prime} \partial u^{k}$.
We now prove
THEOREM 3.1. Let M be an n-dimensional smooth manifold, B its frame
bundle, and E_{λ}^{μ} the n^{2} fundamental vector fields on B. Then the most general set of n vector fields \bar{E}_{α} on B satisfying the equation

$$
\begin{equation*}
\left[\bar{E}_{\alpha}, E_{\lambda}^{\mu}\right]=-\delta_{\alpha}^{\mu} \bar{E}_{\lambda} \tag{3.4}
\end{equation*}
$$

is given locally by

$$
\begin{equation*}
\bar{E}_{\alpha}=x_{\alpha}^{i}\left(C_{j}^{i} \frac{\partial}{\partial u^{i}}-x_{\gamma}^{i} \phi_{j k}^{i} \frac{\partial}{\partial x_{\gamma}^{i}}\right), \tag{3.5}
\end{equation*}
$$

where $C_{j}^{i}, \phi_{j_{c}}^{i}$ are functions of u^{l} alone such that in $U \cap U^{*}$,

$$
\begin{align*}
& p_{j}^{a_{*}^{*}} C_{a^{*}}^{i *}=C_{j}^{a} p_{a}^{i *} \tag{3.6}\\
& \phi_{j k}^{a} p_{a}^{i * *}=C_{j}^{a} p_{a k}^{i *}+p_{j}^{a *} p_{k}^{b_{k}^{* *}} \phi_{a t+0,}^{i *} \tag{3.7}
\end{align*}
$$

Equation (3.6) shows that C_{j}^{i} are the components of a tensor C of type (1.1) on M. Equation (3.7) gives the transformation law for the set of functions ϕ_{j}^{i} defined for each coordinate system $\left(U, u^{i}\right)$ in M.

PROOF. Let us substitute in (3.4), $E_{\lambda}^{\mu}=x_{\lambda}^{i} \frac{\partial}{\partial x_{\mu}^{i}}$ and

$$
\begin{equation*}
\bar{E}_{\alpha}=f_{\alpha}^{i} \frac{\partial}{\partial u^{i}}+g_{\alpha \lambda}^{i} \frac{\partial}{\partial x_{\gamma}^{i}} \tag{3.8}
\end{equation*}
$$

where $f_{\alpha}^{i}, g_{\alpha \gamma}^{i}$ are unknown functions of u^{i} and x_{α}^{i}. Then the left and right sides of (3.4) are respectively

$$
\begin{aligned}
\bar{E}_{\alpha} E_{\lambda}^{\mu}-E_{\lambda}^{\mu} \bar{E}_{\alpha} & =g_{\alpha \lambda}^{i} \frac{\partial}{\partial x_{\mu}^{i}}-x_{\lambda}^{j} \frac{\partial f_{\alpha}^{i}}{\partial x_{\mu}^{j}} \frac{\partial}{\partial u^{i}}-x_{\lambda}^{j} \frac{\partial g_{\alpha \gamma}^{i}}{\partial x_{\mu}^{j}} \frac{\partial}{\partial x_{\gamma}^{i}}, \\
-\delta_{\alpha}^{u} \bar{E}_{\lambda} & =-\delta_{\alpha}^{u}\left(f_{\lambda}^{i} \frac{\partial}{\partial u^{i}}+g_{\lambda \gamma}^{i} \frac{\partial}{\partial x_{\gamma}^{i}}\right) .
\end{aligned}
$$

Hence equation (3.4) is equivalent to

$$
\begin{equation*}
x_{\lambda}^{j} \frac{\partial f_{\alpha}^{l}}{\partial x_{\mu}^{j}}=\delta_{\alpha}^{\mu} f_{\lambda}^{l}, \tag{3.9}
\end{equation*}
$$

$$
\begin{equation*}
\delta_{\gamma}^{\mu} g_{\alpha \lambda}^{i}-x_{\lambda}^{j} \frac{\partial g_{\alpha \gamma}^{i}}{\partial x_{\mu}^{j}}=-\delta_{\alpha}^{\mu} g_{\lambda \gamma}^{i} . \tag{3.10}
\end{equation*}
$$

Consider first equation (3.9). For $\mu \neq \alpha$, it becomes $\partial f_{\alpha}^{i} / \partial x_{\mu}^{j}=0$. Therefore,

$$
\begin{equation*}
\text { each } f_{\alpha}^{i} \text { is a function of } u^{k}, x_{\alpha}^{k}(1 \leqq k \leqq n) \text { alone. } \tag{3.11}
\end{equation*}
$$

For $\mu=\alpha$, equation (3.9) becomes

$$
\begin{equation*}
x_{\lambda}^{i} \frac{\partial f_{\alpha}^{i}}{\partial x_{\alpha}^{j}}=f_{\lambda}^{i} \quad(\alpha \text { not summed }) \tag{3.12}
\end{equation*}
$$

Let $\boldsymbol{\alpha} \neq \lambda$. Differentiation of (3.12) with respect to x_{λ}^{h} gives, an account of (3.11),

$$
\frac{\partial f_{\alpha}^{i}}{\partial x_{\alpha}^{h}}=\frac{\partial f_{\lambda}^{l}}{\partial x_{\lambda}^{n}} \quad(\alpha, \lambda \text { not summed })
$$

On account of (3.11), both side of this equation are functions of u^{k} alone. Therefore, $f_{\alpha}^{t}=x_{\alpha}^{h} C_{n}^{i}+D_{\alpha}^{i}$, where $C_{n}^{t}, D_{\alpha}^{t}$ are functions of u^{k} alone. Substitution of this in (3.12) gives $D_{\alpha}^{i}=0$. Hence

$$
\begin{equation*}
f_{\alpha}^{t}=x_{\alpha}^{j} C_{j}^{i}, \quad C_{j}^{t}=C_{j}^{t}\left(u^{k}\right) \tag{3.13}
\end{equation*}
$$

which is equivalent to (3.9).
Next consider equation (3.10). For $\mu \neq \gamma, \mu \neq \alpha$, it becomes $\partial g_{\alpha \gamma}^{b} / \partial x_{\mu}^{j}=0$. Therefore,
(3.14) each $g_{\alpha \gamma}^{i}$ is a function of $u^{k}, x_{\alpha}^{k}, x_{\gamma}^{k}(1 \leqq k \leqq n)$ alone.

For $\mu \neq \alpha, \mu=\gamma$ so that $\alpha \neq \gamma$, equation (3.10) becomes

$$
\begin{equation*}
g_{\alpha \gamma}^{i}=x_{\lambda}^{j} \frac{\partial g_{\alpha \gamma}^{i}}{\partial x_{\gamma}^{j}} \quad(\gamma \text { not summed }) \tag{3.15}
\end{equation*}
$$

For any fixed α, conditions (3.14) and (3.15) in $g_{\alpha \gamma}^{i}$ are of the same form as conditions (3.11) and (3.12). Therefore we may conclude that

$$
\begin{equation*}
\text { each } g_{\alpha \gamma}^{i} \text { is homogeneous and linear in } x_{\gamma}^{k}(1 \leqq k \leqq n) \text {. } \tag{3.16}
\end{equation*}
$$

For $\mu=\alpha, \mu \neq \gamma$, equation (3.10) becomes

$$
\begin{equation*}
x_{\lambda}^{j} \frac{\partial g_{\alpha \gamma}^{i}}{\partial x_{\alpha}^{j}}=g_{\lambda \gamma}^{i} \quad(\alpha \text { not summed }) . \tag{3.17}
\end{equation*}
$$

For any fixed γ, conditions (3.14) and (3.17) in $g_{\alpha \gamma}^{i}$ are again of the same form as conditions (3.11) and (3.12). Therefore,
(3.18) each $g_{\alpha \gamma}^{i}$ is homogeneous and linear in $x_{\alpha}^{k}(1 \leqq k \leqq n)$.

Combining (3.14), (3.16) and (3.18) we find that

$$
\begin{equation*}
g_{\alpha \gamma}^{i}=-x_{\alpha}^{j} x_{\gamma}^{k} \phi_{j k}^{i}, \quad \phi_{j c}^{i}=\phi_{j k}^{i}\left(u^{l}\right), \tag{3.19}
\end{equation*}
$$

which is equivalent to (3.10).
Equations (3.13), (3.19) and (3.8) now show that any set of n vector fields E_{α} satisfying (3.4) are locally given by (3.5).

It remains to show that in $U \cap U^{*}$, the transformation laws for C_{j}^{i} and $\phi_{j k}^{\prime}$ are respectively (3.6) and (3.7). In $\pi^{-1}\left(U \cap U^{*}\right)$, we have (3.5) as well as

$$
\begin{equation*}
\bar{E}_{\alpha}=x_{\alpha}^{j *}\left(C_{j *}^{t *} \frac{\partial}{\partial u^{i *}}-x_{\gamma}^{k \phi_{j}^{* *} \phi_{j k *}^{* *}} \frac{\partial}{\partial x_{\gamma}^{i *}}\right) \tag{3.20}
\end{equation*}
$$

Rewrite (3.20) and (3.5) by means of Lemma 3.1, and equate the results. We obtain

$$
\begin{aligned}
& =x_{\alpha}^{n}\left\{C_{h}^{j}\left(p_{j}^{i^{i s}} \frac{\partial}{\partial u^{i *}}+x_{\gamma}^{k} p_{j k}^{i *} \frac{\partial^{-}}{\partial x_{\gamma}^{i *}}\right)-x_{\gamma}^{k} p_{l}^{i *} \phi_{h k}^{i k} \frac{\partial}{\partial x_{\gamma}^{i *}}\right\} .
\end{aligned}
$$

Comparison of the coefficients of $\partial / \partial u^{i *}$ and $\partial / \partial x_{\gamma}^{i *}$ then gives (3.6) and (3.7). Hence Theorem 3.1 is completely proved.
4. Some properties of the tensor C on M. Using (2.6) and (3.5), we obtain

$$
\begin{aligned}
\left\langle\theta^{\beta}, \bar{E}_{\alpha}>\right. & =\left\langle d u^{i} \cdot x_{i}^{\beta}, \quad x_{\alpha}^{j}\left(C_{j}^{i} \frac{\partial}{\partial u^{i}}-\phi_{j k}^{i} x_{\gamma}^{k} \frac{\partial}{\partial x_{\gamma}^{i}}\right)\right\rangle \\
& =x_{\alpha}^{j} C_{j}^{i} x_{i}^{\beta} .
\end{aligned}
$$

Hence
THEOREM 4.1. $C_{\alpha}^{\beta}=\left\langle\theta^{\beta}, \overline{E_{\alpha}}\right\rangle$ are the n^{2} functions on B corresponding ${ }^{2)}$ to the tensor C on M.

It follows from (3.5) that in $\pi^{-1}(U)$,

$$
\bar{E}_{a}=x_{\alpha}^{j} C_{j}^{j} \frac{\partial}{\partial u^{i}}+\left(\text { linear combination of } E_{\lambda}^{u}\right) .
$$

But the $n+n^{2}$ vector fields $\partial / \partial u^{i}$ and E_{λ}^{i} on $\pi^{-1}(U)$ are everywhere independent and the matrix $\left(x_{\alpha}^{j}\right)$ is of rank n. Hence,

THEOREM 4.2. If $z \in B$ and $\pi z=u \in M$, the number of linearly independent ones among the vectors $\left(\bar{E}_{\alpha}\right)_{z}$ and $\left(E_{\lambda}^{\mu}\right)_{z}$ at z is

$$
n^{2}+(\text { rank of the tensor } C \text { at } u) .
$$

Now let us regard the tensor $C(u)$ at u as an endomorphism of the tangent n-plane T_{u} to M at u. If the rank of $C(u)$ is $m(\leqq n)$, then the image of T_{u} under $C(u)$ is an m-plane spanned by the vectors $C(u) X_{\alpha}$, where X_{α} are any n linearly independent vectors at u. We call this m-plane the image m-plane of C at u. As the tensor C may not have the same rank at all the points u of M, the image plane of C need not be of the same dimension at all the points of M. In any case, however, the tensor C determines a field of image-planes on M.

[^1]Let z be a frame in M consisting of the linearly independent vectors $X_{\alpha}=x_{\alpha}^{i} \partial / \partial u^{i}$ at $u \in U \subset M$ so that $z \in B$ and $u=\pi z$. Consider the vectors $\left(E_{\lambda}^{u}\right)_{z},\left(\bar{E}_{\alpha}\right)_{z}$ in B at z. Denoting also by π the differential of the natural projection $\pi: B \rightarrow M$, we have easily from (3.5) that

$$
\pi\left(E_{\lambda}^{\mu}\right)_{z}=0, \quad \pi\left(\bar{E}_{\alpha}\right)_{z}=\left(x_{\alpha}^{j} C_{j}^{i} \frac{\partial}{\partial u^{i}}\right)_{u}
$$

Thus, $\pi\left(\bar{E}_{\alpha}\right)_{z}$ is a vector in M at u with components

$$
\begin{equation*}
x_{\alpha}^{j} C_{f}^{i}(u) . \tag{4.1}
\end{equation*}
$$

In other words, if Q_{z} is the $\left(n^{2}+m\right)$-plane at z spanned by the vectors $\left(E_{\lambda}^{u}\right)_{z}$ and $\left(\bar{E}_{\alpha}\right)_{z}$, then πQ_{z} is the m-plane at $u \in M$ spanned by the vectors (4.1). Consequently, πQ_{z} is the image m-plane of C at u. Similarly, if z^{\prime} is any other point in $\pi^{-1}(u), \pi Q_{z^{\prime}}$ is also the image m-plane of C at u. Hence we have proved

THEOREM 4.3. The field of planes on B spanned by the vector fields \bar{E}_{α} is projectable under π onto the field of image planes of the tensor C on M.
5. The case when the tensor C is of full rank everywhere on M.

In this case, Theorem 4.3 becomes trivial. Let \bar{C} be the reciprocal of the tensor C (so that $\bar{C}_{i}^{j} C_{k}^{i}=\delta_{k}^{\prime}=\bar{C}_{k}^{i} C_{i}^{\prime}$) and put

$$
\begin{equation*}
\Gamma_{j k}^{i}=\bar{C}_{j}^{a} \phi_{a k}^{i} \tag{5.1}
\end{equation*}
$$

Then the local expression (3.5) for \bar{E}_{α} can be written as

$$
\begin{equation*}
\bar{E}_{\alpha}=x_{\alpha}^{h} C_{h}^{j}\left(\frac{\partial}{\partial u^{j}}-x_{\gamma}^{k} \Gamma_{j k}^{i} \frac{\partial}{\partial x_{\gamma}^{i}}\right) . \tag{5.2}
\end{equation*}
$$

Putting $\Gamma_{j^{*} k^{*}}^{i *}=\bar{C}_{j^{*}}^{a *} \phi_{a^{*} k^{*},}^{i *}$, we can also rewrite (3.7) as

$$
\Gamma_{j k}^{a} p_{a}^{i *}=p_{1 k}^{i *}+p_{j}^{a *} p_{k}^{b_{k}^{*}} \Gamma_{a * k o *}^{t *}
$$

This is of the form (2.4). Therefore, the n^{3} functions $\Gamma_{y c}^{i}$ defined by (5.1) are components of a linear connection Γ.

For the linear connection Γ, the basic vector fields

$$
\begin{equation*}
E_{\alpha}=x_{\alpha}^{j}\left(\frac{\partial}{\partial u^{j}}-x_{\gamma}^{\kappa} \Gamma_{j c}^{i} \frac{\partial}{\partial x_{\gamma}^{i}}\right) \tag{5.3}
\end{equation*}
$$

are such that $\left\langle\theta^{\beta}, E_{\alpha}\right\rangle=\delta_{\alpha}^{\beta}$. Let $C_{\alpha}^{3}=x_{\alpha}^{h} C_{h}^{l} x_{l}^{\beta}$. Then it follows from (5.2) and (5.3) that

$$
\bar{E}_{\alpha}=C_{\alpha}^{\beta} E_{\beta} .
$$

Summing up, we have
THROREM 5.1. Let M be an n-dimensional smooth manifold, B its frame bundle, and E_{λ}^{μ} the n^{2} fundamental vector fields on B. If \bar{E}_{α} are any n vector fields on B satisfying the equations

$$
\left[\bar{E}_{\alpha}, E_{\lambda}^{\mu}\right]=-\delta_{\alpha}^{\mu} \bar{E}_{\lambda}
$$

such that $\bar{E}_{\alpha}, E_{\lambda}^{\mu}$ are linearly independent everywhere on B, then \bar{E}_{α} determine a unique linear connection Γ on M.

Let $\left\langle\theta^{\beta}, \bar{E}_{\alpha}\right\rangle=C_{\alpha}^{\beta}$. Then the n^{2} functions C_{α}^{β} on B correspond ${ }^{3)}$ to a tensor C of type $(1,1)$ on M which is of rank n everywhere on M. Furthermore, if $\left(\bar{C}_{\alpha}^{\beta}\right)$ is the inverse of the matrix $\left(C_{\beta}^{\alpha}\right)$, then $\bar{C}_{\alpha}^{\beta} \bar{E}_{\beta}$ are the n basic vector fields of the linear connection.

When a linear connection on an n-dimensional smooth manifold M is defined by means of a suitable field of n-planes on the frame bundle B over M, the action of the real general linear group $G L(n, R)$ on B is an essential part of the definition (See Chern [2] and Nomizu [3]). It is interesting to observe that as a consequence of Theorem 5.1, equation (1.1) $)_{2}$ may be regarded as giving a global definition of linear connection on M which does not explicitly involve the action of $G L(n, R)$ on the frame bundle B.
6. A quasi-connection on M. When no assumption is made on the rank of the tensor C which appears in Theorem 3.1, the vector fields \bar{E}_{α} may not define a linear connection on M. But by means of the tensor C and the sets of local functions $\phi_{j k}^{i}$ for which the law of transformation is (3.7), a covariant differentiation of tensors on M can be defined. In fact, we shall prove

THEOREM 6.1. Let C be any tensor of type $(1,1)$ on M, and ϕ an assignment to each coordinate system (U, u^{i}) in M of a set of n^{3} functions $\phi_{j k}^{i}$ for which the law of transformation is

$$
\begin{equation*}
\phi_{j k}^{a} p_{a}^{i^{i *}=}=C_{j}^{a} p_{a k}^{i *}+p_{j}^{a *} p_{k}^{b^{* *}} \phi_{a * b *}^{i * *} \tag{6.1}
\end{equation*}
$$

Then for any tensors X, Y, Z of type $(1,0),(0,1),(1,1)$ respectively on M,

$$
\begin{align*}
& \bar{\nabla}_{l} X^{i}=C_{l}^{a} \partial_{a} X^{i}+X^{a} \phi_{l a}^{i}, \bar{\nabla}_{l} Y_{j}=C_{l}^{a} \partial_{a} Y_{j}-\phi_{l j}^{a} Y_{a}, \tag{6.2}\\
& \bar{\nabla}_{l} Z_{j}^{i}=C_{l}^{a} \partial_{a} Z_{j}^{i}+Z_{j}^{a} \phi_{l a}^{i}-\phi_{l j}^{a} Z_{a}^{i} \tag{6.3}
\end{align*}
$$

where $\partial_{a}=\partial / \partial u^{a}$, are components in $\left(U, u^{i}\right)$ of tensors of type $(1,1),(0,2)$, $(1,2)$ respectively on M. Furthermore, the following equations hold:

[^2]\[

$$
\begin{align*}
& \bar{\nabla}_{l}\left(X^{i} Y_{j}\right)=\left(\bar{\nabla}_{l} X^{i}\right) Y_{j}+X^{i}\left(\bar{\nabla}_{l} Y_{j}\right), \tag{6.4}\\
& \bar{\nabla}_{l}\left(X^{a} Y_{a}\right)=C_{l}^{b} \partial_{b}\left(X^{a} Y_{a}\right) . \tag{6.5}
\end{align*}
$$
\]

We call the structure on M defined by C and ϕ a quasi-connection (C, ϕ) on M, and call the tensors $\bar{\nabla} X, \bar{\nabla} Y, \bar{\nabla} Z$, as defined locally by (6.2) and (6.3), the covariant derivatives of the tensors X, Y, and Z with respect to the quasiconnection (C, ϕ). The covariant derivative $\bar{\nabla} Z$ of a tensor of any other type can be defined in a similar manner such that for any two tensors X and Y, the equation

$$
\bar{\nabla}(X \otimes Y)=(\bar{\nabla} X) \otimes Y+X \otimes(\bar{\nabla} Y)
$$

holds, where \otimes denotes the tensor product. Obviously, if $C_{j}^{i}=\delta_{j}^{i}$, the quasi-connection (C, ϕ) becomes a linear connection (see also § 9).

The proof of Theorem 6.1 follows familiar lines. Differentiate $X^{i *}=X^{a} p_{a}^{i^{*}}$ with respect to u^{b}, contract the result by C_{l}^{b} and then eliminate the second derivative $p_{a b}^{i *}$ by means of (6.1). We obtain, after rearrangement of terms,

$$
p_{l}^{b^{* *}}\left(C_{b^{*}}^{a^{*}} \partial_{a^{*}} X^{i}+X^{a^{*}} \phi_{b^{*} c^{*}}^{t^{*}}\right)=\left(C_{l}^{b} \partial_{b} X^{a}+X^{b} \phi_{l b}^{a}\right) p_{a}^{i *}
$$

Thus, $\bar{\nabla}_{l} X^{i}$ is a tensor of type $(1,1)$. Similarly we can prove that $\bar{\nabla}_{l} Y_{j}$ is a tensor of type $(0,2)$.

Now $\left(\bar{\nabla}_{l} X^{i}\right) Y_{j}+X^{i}\left(\bar{\nabla}_{l} Y_{j}\right)$ is a tensor, and on account of (6.2) and (6.3),
(6.6) $\quad\left(\bar{\nabla}_{l} X^{i}\right) Y_{j}+X^{i}\left(\bar{\nabla}_{l} Y_{j}\right)=C_{l}^{a} \partial_{a}\left(X^{i} Y_{j}\right)+\left(X^{a} Y_{j}\right) \phi_{i a}^{i}-\phi_{l j}^{a}\left(X^{i} Y_{a}\right)$.

Since a tensor Z_{j}^{i} of type $(1,1)$ has the same law of transformation as the tensor $X^{i} Y_{j}$, comparison of formula (6.6) with the definition (6.3) of $\bar{\nabla}_{l} Z_{j}^{i}$ shows that $\bar{\nabla}_{l} Z_{j}^{\prime}$ is a tensor and, moreover, equation (6.4) holds. Finally, (6.5) is a direct consequence of (6.4) and (6.2). Thus, our theorem is completely proved.

We now proceed to construct a few tensors from C and ϕ.
i) First of all, there is the Nijenhuis tensor N for C, defined locally by

$$
N_{k l}^{h}=C_{k}^{a} \partial_{a} C_{l}^{h}-C_{l}^{a} \partial_{a} C_{k}^{h}-C_{a}^{h}\left(\partial_{k} C_{l}^{a}-\partial_{l} C_{k}^{a}\right) .
$$

We shall write this as

$$
\begin{equation*}
N_{k l}^{h}=C_{[k}^{a} \partial_{a} C_{l]}^{h}-C_{a}^{h} \partial_{l k} C_{l]}^{a}, \tag{6.7}
\end{equation*}
$$

where $[k \ldots . . . l]$ or $[k l]$ indicates that alternation is to be taken with respect to the two indices k and l.
ii) From (6.1) and the law of transformation for C, it follows that

$$
C_{k}^{c} \phi_{c c}^{a} p_{a}^{i *}=C_{k}^{c} C_{l}^{a} p_{c a}^{i *}+p_{k}^{c *} p_{l}^{a *} C_{c *}^{b_{c}^{*} *} \phi_{a * b}^{i^{* *}}
$$

which gives

$$
C_{l k}^{c} \phi_{l c c}^{a} p_{a}^{i_{a}^{*}}=p_{k}^{c \cdot} p_{l}^{a} C_{l^{*}}^{c^{*}} \phi_{\left.a^{*}\right]_{0} *}^{i *}
$$

Therefore,
$C_{l k}^{b} \phi_{l \mid b}^{h} \quad$ is a tensor.
iii) From the formula for the components of the tensor $\bar{\nabla} C$, we have

$$
\bar{\nabla}_{k} C_{l j}^{h}=C_{i k b}^{b} \partial_{b} C_{l j}^{h}-C_{[k \phi}^{b} \phi_{l l b}^{h}-\phi_{i k l j}^{b} C_{b}^{b} .
$$

But the middle term on the right side is the tensor (6.8). Therefore,

$$
\begin{equation*}
-S_{k l}^{h} \equiv C_{[k b}^{b} \partial_{b} C_{l]}^{h}-\phi_{k k l}^{b} C_{b}^{h}=\bar{\nabla}_{{ }_{k} k} C_{l]}^{h}+C_{l k}^{b} \phi_{l] b}^{h} \quad \text { is a tensor. } \tag{6.9}
\end{equation*}
$$

iv) If W is any tensor of type (r, s), $r \geqq 1$, satisfying the equation $W_{\cdots}^{\ldots \ldots . .} C_{a}^{h}=0$ in every $\left(U, u^{i}\right)$, then $W \ldots \omega_{n} \ldots \phi_{a l}^{h}$ is a tensor of type $(r, s+1)$. This can be proved by first verifying it directly for the special case when W is of type $(1,0)$, and then applying the quotient law in tensor calculus.
v) Although we can define a covariant differentiation for the quasi-connection (C, ϕ), there does not exist a tensor which corresponds exactly to the curvature tensor for a linear connection. In fact, a simple computation will show that

$$
\begin{align*}
\nabla_{\iota} k \bar{\nabla}_{l]} X^{i} & =\left(C_{[k}^{a} \partial_{a} C_{l]}^{b}-\phi_{k k l}^{a} C_{a}^{b}\right) \partial_{b} X^{i} \tag{6.10}\\
& +X^{b}\left(C_{[k}^{a} \partial_{a} \phi_{l b}^{i}-\phi_{k b b}^{a} \phi_{l \mid a}^{i}-\phi_{k k l}^{a}, \phi_{a b}^{i}\right) .
\end{align*}
$$

The right side of (6.10) is a tensor. But $\partial_{b} X^{i}$ is not a tensor although its coefficient is. Therefore, the coefficient of X^{b} is in general not a tensor. It is obvious however that if the tensor $-S_{k l}^{i} \equiv C_{[k}^{a} \partial_{a} C_{l_{1}}^{i}-\phi_{l k l}^{a} C_{a}^{i}$ is a zero tensor, then the coefficient

$$
C_{[k}^{a} \partial_{a} \phi_{l] j}^{i}-\phi_{i k}^{a}, \phi_{l] a}^{i}-\phi_{k k l}^{a} \phi_{a j}^{i}
$$

of X^{b} in (6.10) is a tensor, and conversely.
We shall prove in $\S 8$ that under a weaker condition than the above, tensors resembling the curvature tensor for a linear connection can be constructed by using formula (6.10).
7. Consequences of the Structure Equation (1.1) $)_{3}$. We continue the discussion of the general case where no assumption is made on the rank of the tensor C in Theorem 3.1. In this case, equation (1.1) $)_{3}$ may impose a further condition on the vector fields $\overline{E_{\alpha}}$. We shall give a geometric interpretation to this condition.

We first prove
ThEOREM 7.1. The condition imposed on \bar{E}_{α} by (1.1) ${ }_{3}$ is equivalent to that in every coordinate system (U, u^{i}),

$$
\begin{equation*}
C_{[k}^{b} \partial_{a} C_{l]}^{i}=\lambda_{k l}^{a} C_{a}^{i}, \tag{7.1}
\end{equation*}
$$

where $\lambda_{k l}^{a}$ are functoons in $\left(U, u^{i}\right)$.
Proof. Substitute in $(1.1)_{3}$ the local expressions for E_{λ}^{μ} and $\overline{E_{\alpha}}$ given by (2.10) ${ }_{1}$ and (3.5). We obtain

$$
\begin{aligned}
& {\left[\bar{E}_{\alpha}, \bar{E}_{\beta}\right]=\bar{E}_{[\alpha} \bar{E}_{\beta]}} \\
& =x_{a}^{k} x_{\beta}^{l}\left(C_{k k}^{a} \partial_{a} C_{l_{j}}^{i}-\phi_{i k l j}^{a} C_{a}^{i}\right) \frac{\partial}{\partial u^{i}} \\
& -x_{a}^{k} x_{\beta}^{l} x_{\mu}^{\prime}\left(C_{[k}^{a} \partial_{a} \phi_{l j j}^{i}-\phi_{i k}^{a} ; \phi_{l: a}^{l}-\phi_{k k j}^{a} \phi_{a j}^{i}\right) \frac{\partial}{\partial x_{\mu}^{i}}, \\
& -\bar{T}_{\alpha \beta}^{\gamma} \bar{E}_{\gamma}-\bar{R}_{\mu \alpha \beta}^{\lambda} E_{\lambda}^{\mu}=-\bar{T}_{\alpha \beta}^{\gamma} x_{\gamma}^{a}\left(C_{a}^{i} \frac{\partial}{\partial u^{i}}-\phi_{a k}^{i} x_{\mu}^{k} \frac{\partial}{\partial x_{\mu}^{i}}\right)-\bar{R}_{\mu \alpha \beta}^{\alpha} x_{\lambda}^{i} \frac{\partial}{\partial x_{\mu}^{i}} .
\end{aligned}
$$

On account of these, equation (1.1) $)_{3}$ is equivalent to

$$
\begin{gathered}
x_{\alpha}^{k} x_{\beta}^{l}\left(C_{[k}^{a} \partial_{\alpha} C_{l]}^{t}-\phi_{\phi k l}^{a} C_{a}^{i}\right)=-\bar{T}_{\alpha \beta}^{\gamma} x_{\gamma}^{a} C_{a}^{i} \\
x_{\alpha}^{k} x_{\beta}^{l} x_{\mu}^{j}\left(C_{l k}^{a} \partial_{a} \phi_{l] j}^{l}-\phi_{l k}^{a k} \phi_{l] a}^{i}-\phi_{k k l}^{a} \phi_{a j}^{l}\right)=\bar{R}_{\mu \alpha \beta}^{\lambda} x_{\lambda}^{i}-\bar{T}_{\alpha \beta}^{\gamma} x_{\gamma}^{a} \phi_{a j}^{\prime} x_{\mu,}^{j},
\end{gathered}
$$

i. e.

$$
\begin{align*}
& C_{[k}^{a} \partial_{a} C_{l]}^{i}-\phi_{k k l}^{a} C_{a}^{i}=-\bar{T}_{k l}^{a} C_{a}^{i}, \tag{7.2}\\
& C_{[k}^{a} \partial_{a} \phi_{l \mid j}^{i}-\phi_{k k}^{a} \phi_{l \mid a}^{i}-\phi_{k k l}^{a} \phi_{a j}^{i}=\bar{R}_{j k l}^{i}-\bar{T}_{k l}^{a} \phi_{a j}^{i}, \tag{7.3}
\end{align*}
$$

where

$$
\bar{T}_{k l}^{a}=\bar{T}_{\alpha \beta}^{\gamma} x_{\gamma}^{a} x_{j}^{\alpha} x_{k}^{\beta}, \quad \bar{R}_{j k l}^{i}=\bar{R}_{\mu \alpha \beta}^{\lambda} x_{\lambda}^{i} x_{j}^{\mu} x_{k}^{\alpha} x_{i}^{\beta} .
$$

Now (7.2) is a condition on the tensor C which is equivalent to the condition that $C_{k k}^{a} \partial_{a} C_{l_{1}}^{i}$ is of the form $\lambda_{k i}^{a} C_{a}^{i}$. On the other hand, (7.3) merely determines the functions $\bar{R}_{f t l}^{t}$ in terms of C, ϕ and \bar{T}. Hence Theorem 7.1 is proved.

Next we prove
Lemma 7.1. Let C be any tensor of type $(1,1)$ with constant rank m on M. Then the field of image m-planes of C is involutive iff in every coordinate system (U, u^{i})

$$
C_{[k}^{a} \partial_{a} C_{l]}^{i}=\lambda_{k l}^{a} C_{a}^{i},
$$

where $\lambda_{k l}^{a}$ are functions in $\left(U, u^{i}\right)$.
PROOF. This is an easy consequence of the definition of the field of image m-planes of C and the following condition for a field D of m-planes on M to be involutive : If in any neighborhood, $Y_{\xi}(1 \leqq \xi, \eta, \zeta \leqq r)$ are a set of $r(r \geqq m)$ vector fields which locally span the field D, then $\left[Y_{\xi}, Y_{\eta}\right]=\mu_{\xi \eta}^{\zeta} Y_{\zeta}$, or, in local
coordinates, $Y_{[\xi}^{b} \partial_{b} Y_{\eta]}^{i}=\mu_{\xi \eta}^{\zeta} Y_{\zeta}^{i}$, where $\mu_{\xi \eta}^{\zeta}$ are functions.
Combining Theorem 7.1 with Lemma 7.1, we have
THEOREM 7.2. Let \bar{E}_{α}, given by (3.5), be any set of n vector fields on B satisfying equation (1.1) . If the tensor C is of constant rank $m(\leqq n)$ on M, or, what amounts to the same thing, if at every point z of B, exactly the same number $n^{2}+m$ of the vectors $\left(E_{\lambda}^{\mu}\right)_{z},\left(E_{\alpha}\right)_{z}$ are linearly independent, then equation (1.1) $)_{3}$ expresses the following two equivalent conditions:
a) The field of $\left(n^{2}+m\right)$-planes on B spanned by E_{λ}^{μ} and $\overline{E_{\alpha}}$ is involutive.
b) The field of image m-planes of the tensor C on M is involutive.

Theorem 7.2 becomes trivial if C is of full rank everywhere on M.
8. Curvature tensors for a quasi-connection. Let us now return to $\S 6$ and prove that if the tensor C is of constant rank m on M and if the field of image m-planes of C is involutive, then with respect to the quasi-connection (C, ϕ) there exist 'curvature' tensors on M resembling the curvature tensor for a linear connection.

For this purpose, we need the following key lemma:
Lemma 8.1. Let C, S be respectively tensors of type $(1,1)$ and $(1,2)$ on M. If C is of constant rank m on M and if in every ccordinate system $\left(U, u^{i}\right)$, there exist n^{3} functions $\psi_{k l}^{i}$ such that

$$
\begin{equation*}
C_{n}^{i} \psi_{k l}^{h}=S_{k l}^{i}, \tag{8.1}
\end{equation*}
$$

then there exists on M a globally defined tensor T of type $(1,2)$ such that in every (U, u^{i})

$$
\begin{equation*}
C_{h}^{i} T_{k l}^{h}=S_{k l .}^{i} \tag{8.2}
\end{equation*}
$$

PROOF. Let u be an arbitrary but fixed point in $U \subset M$. Then the system of n linear equations

$$
\begin{equation*}
C_{l l}^{l}(u) \tau_{k l}^{h}=S_{k l}^{i}(u) \quad(k, l \text { fixed } ; i=1, \ldots \ldots, n) \tag{8.3}
\end{equation*}
$$

admits a solution $\boldsymbol{\tau}_{k l}^{h}=\boldsymbol{\psi}_{k l}^{h}(u)$. Consequently, since $C_{j}^{h}(u)$ is of rank $m(\leqq n)$, the solutions of (8.3) for $\tau_{k l}^{h}(h=1, \ldots \ldots, n)$ span a linear space R^{n-m} of dimension $(n-m)$. Thus, the solutions of

$$
\begin{equation*}
C_{n}^{i}(u) \tau_{k l}^{h}=S_{k l}^{i}(u) \quad(1 \leqq i, k, l \leqq n) \tag{8.4}
\end{equation*}
$$

for $\boldsymbol{\tau}_{k l}^{h}$ span a linear space isomorphic to the product space $R^{n-m} \times \ldots \ldots \times R^{n-m}$ (n^{2} times), i.e. to $R^{n^{2}(n-m)}$. Now for any solution $\tau_{k l}^{h}$ of (8.4), we can define a tensor of type $(1,2)$ at u by putting $T_{k l}^{h}(u)=\boldsymbol{\tau}_{k l}^{h}$.

Let B^{T} be the bundle of tensors of type $(1,2)$ at all the points of M. The fiber F_{u} over each point $u \in M$ is isomorphic to $R^{n^{3}}$. The set of tensors $T_{k_{i}}^{h}(u)$
of type (1,2) which arise from the solutions of (8.4) forms a linear subspace $\widetilde{F_{u}}$ of dimension $n^{2}(n-m)$ of F_{u}. Moreover, \widetilde{F}_{u} is stationary in F_{u}, i. e., if $u \in$ $U \cap U^{*}$, the \widetilde{F}_{u} defined for $u \in U$ coincides with the \widetilde{F}^{*} defined for $u \in U^{*}$. In fact, if $u \in U \cap U^{*}$ and $T_{k i}^{h}(u) \in \widetilde{F}_{u}$, then since

$$
T_{k^{*} k^{*}}^{k_{*}^{*}}(u)=p_{n}^{h_{n}^{*}} p_{k^{*} *}^{k} p_{l^{*}}^{l} T_{k l}^{h}(u)
$$

satisfies

$$
C_{n^{2}}^{i *}(u) T_{k^{*} v}^{k^{*}}(u)=S_{k^{*} v^{*}}^{(*)}(u),
$$

we have that $T_{k^{*} v^{*}}^{l^{*}}(u) \in \widetilde{F_{u}^{*}}$. Thus, the totality of tensors of type $(1,2)$ at all the points of M which are constructed from the solutions of (8.4) form a subbundle $\widetilde{B^{T}}$ of B^{T}. Since the fiber \widetilde{F} of $\widetilde{B^{T}}$ being isomorphic to $R^{n^{2}(n-m)}$ is solid, differentiable cross-sections of \widetilde{B}^{r} exist (Steenrod [4] p. 55). Any such cross-section is a tensor of type $(1,2)$ on M satisfying the conditions of Lemma 8. 1.

We note that the tensor $T_{k l}^{h}$ which satisfies the condition of Lemma 8.1 need not be skew-symmetric with respect to the indices k and l even when $\psi_{k l}^{h}, S_{k l}^{i}$ are. But, it is easy to see that the proof of Lemma 8.1 can be slightly modified to furnish a proof of

LEMMA 8.2. If, in Lemma 8.1, $\psi_{k l}^{h}$ and $S_{k l}^{i}$ are both skew-symmetric with respect to the indices k and l, then there exists on M a globally defined tensor T of type $(1,2)$ such that in every coordinate system $\left(U, u^{i}\right)$,

$$
C_{n}^{i} T_{k l}^{h}=S_{k l}^{i}=C_{h}^{i} \boldsymbol{\psi}_{k i}^{h}, \quad T_{k l}^{h}+T_{l k}^{h}=0
$$

We are now ready to prove the following
THEOREM 8.1. Let (C, ϕ) be any quasi-connection on M. Assume that the tensor C is of constant rank m on M and its field of image m-planes is involutive, so that (by Lemma 7.1) $C_{[k}^{a} \partial_{a} C_{l]}^{d}=\lambda_{k k}^{a} C_{a}^{t}$ in every coordinate system (U, u^{i}). Then there exists on M a tensor \bar{T} of type $(1,2)$ satisfying the equation

$$
\bar{T}_{k l}^{k} C_{h}^{h}=\left(\phi_{\mid k l}^{h}-\lambda_{k l}^{h}\right) C_{l}^{i}
$$

in every $\left(U, u^{i}\right)$. Moreover, for any such tensor \bar{T},

$$
\bar{R}_{j k l}^{i}=C_{l k}^{a} \partial_{a} \phi_{l j j}^{i}-\phi_{i k j}^{a} \phi_{l] a}^{i}-\phi_{k l l}^{a} \phi_{a j}^{i}+\bar{T}_{k l}^{a} \phi_{a j}^{i}
$$

are the components in $\left(U, u^{i}\right)$ of a tensor \bar{R} of type $(1,3)$ on M.
Proof. We have shown in $\S 6$ that $S_{k l}^{i}=\phi_{[k l]}^{a} C_{a}^{i}-C_{[k}^{a} \partial_{u} C_{l]}^{i}$ is a tensor. Now because $C_{[k}^{a} \partial_{a} C_{l]}^{i}=\lambda_{k i}^{a} C_{a}^{i}$,

$$
S_{k l}^{i}=\left(\phi_{k k l}^{a}-\lambda_{k l}^{a}\right) C_{a .}^{i} .
$$

Application of Lemma 8.1 to the above equation shows that there exists on M a tensor \bar{T} of type $(1,2)$ such that in every $\left(U, u^{i}\right)$

$$
\bar{T}_{k l}^{a} C_{a}^{i}=\left(\phi_{k k l]}^{a}-\lambda_{k l}^{a}\right) C_{a}^{i}=\phi_{\mid k l]}^{a} C_{a}^{i}-C_{[k}^{a} \partial_{a} C_{l l}^{i} .
$$

On account of this, equation (6.10) can be written

$$
\begin{aligned}
\bar{\nabla}_{[k} \bar{\nabla}_{l l} X^{i} & =-\bar{T}_{k k}^{a} C_{a}^{b} \partial_{b} X^{i}+X^{b}\left(C_{l k}^{a} \partial_{a} \phi_{l b}^{i}-\ldots \ldots\right) \\
& =-\bar{T}_{k k}^{a}\left(C_{a}^{b} \partial_{b} X^{i}+X^{b} \phi_{a b}^{i}\right)+X^{b}\left(C_{k k}^{a} \partial_{a} \phi_{l: b}^{i}-\ldots \ldots+\bar{T}_{k}^{a} \phi_{a b}^{i}\right) \\
& \left.=-\bar{T}_{k k}^{a} \bar{\nabla}_{a} X^{i}+X^{b}\left(C_{k k}^{a} \partial_{a} \phi_{l l b}^{i}-\phi_{k b}^{a} \phi_{l l a}^{i}-\phi_{k k l}^{a}\right\rangle \phi_{a b}^{i}+\bar{T}_{k l}^{a} \phi_{a b}^{i}\right) \\
& =-\bar{T}_{k k}^{a} \bar{\nabla}_{a} X^{i}+X^{b}{\overline{R_{b k l}}}_{b} .
\end{aligned}
$$

Since X^{i} is an arbitrary vector, it follows from this that $\bar{R}_{j k l}^{l}$ is a tensor. Hence Theorem 8.1 is proved.

If \widetilde{T} is another tensor on M satisfying $\widetilde{T}_{k l}^{a} C_{a}^{i}=\left(\phi_{i k, l]}^{a}-\lambda_{k l}^{a}\right) C_{a}^{i}$, and \widetilde{R} is the tensor on M arising from it, then

$$
\widetilde{R}_{j k l}^{i}-\bar{R}_{j k l}^{\prime}=\left(\widetilde{T}_{k l}^{a}-\bar{T}_{k l}^{a}\right) \phi_{a j}^{i}
$$

is a tensor. But $\widetilde{T_{k l}^{a}}-\bar{T}_{k l}^{a}=W_{k l}^{a}$ may be any tensor satisfying the condition $W_{k l}^{a} C_{a}^{\prime}=0$. Hence, if W is any tensor of type $(1,2)$ on M satisfying the condition $W_{k l}^{a} C_{a}^{t}=0$, then $W_{k l}^{a} \phi_{a j}^{\prime}$ is a tensor of type (1,3). This is a special case of (iv) in § 6.

We remark that the tensors \bar{T} and \bar{R} in Theorem 8.1 need not be skewsymmetric with respect to the indices k and l. However, on account of Lemma 8. 2, tensors \bar{T} exist on M which saitsfy the condition stated in Theroem 8.1 and the additional condition that $\bar{T}_{k l}^{h}+\bar{T}_{l k}^{h}=0$. For any such tensor \bar{T}, the corresponding tensor \bar{R} is also skew-symmetric with respect to the indices k and l.
9. Linear connection as a particular case of quasi-connection. Let us consider the case when the tensor C is of rank n everywhere on M. Then on the one hand, we have the quasi-connection (C, ϕ) studied in $\S \S 6$ and 8 ; on the other hand, we have the linear connection studied in $\S 5$. The link between the two is (cf. (5.1))

$$
\begin{equation*}
\Gamma_{j k}^{i}=\overline{C_{j}^{a}} \phi_{a k}^{i} \tag{9.1}
\end{equation*}
$$

where \bar{C} is the reciprocal of the tensor C. We note that in this case, the tensor $\bar{T}_{k l}^{k}$ is uniquely determined:

$$
\begin{equation*}
\bar{T}_{k l}^{k}=\phi_{\mid k l]}^{h}-C_{\left[k \partial_{a}\right.}^{a} \partial_{a} C_{l]}^{b} \bar{C}_{b}^{k} \tag{9.2}
\end{equation*}
$$

and is skew-symmetric with respect to the indices k, l. Consequently, the tensor
$\bar{R}_{j k l}^{i}$ is also unique and is skew-symmetric with respect to the indices k, l.
Let us denote by ∇, T, R the covariant differentiation, the torsion tensor and the curvature tensor with respect to the linear connection Γ. Then we easily find that

$$
\begin{equation*}
\nabla_{l} X^{i}=\bar{C}_{l}^{a} \bar{\nabla}_{a} X^{i} \tag{9.3}
\end{equation*}
$$

$$
\begin{align*}
\nabla_{[k} \nabla_{l i} X^{i} & =\bar{C}_{[k}^{b} \bar{\nabla}_{b}\left(\bar{C}_{l]}^{a} \bar{\nabla}_{a} X^{i}\right) \tag{9.4}\\
& =\bar{C}_{[k}^{b}\left(\bar{\nabla}_{b} \bar{C}_{l]}^{a}-\bar{C}_{l]}^{c} \bar{T}_{b c}^{a}\right) \bar{\nabla}_{a} X^{i}+X^{b} \bar{C}_{[k}^{c} \bar{C}_{l l}^{a} \bar{R}_{b c a}^{b}
\end{align*}
$$

But we also have

$$
\begin{equation*}
\nabla_{l k} \nabla_{l j} X^{i}=-T_{k l}^{h} \nabla_{h} X^{i}+X^{j} R_{j k l}^{i}, \tag{9.5}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{k l}^{k}=\Gamma_{[k k j,}^{k}, R_{j k l}^{i}=\partial_{l k} \Gamma_{l \mid j}^{i}-\Gamma_{l k j}^{a} \Gamma_{l] a}^{i} . \tag{9.6}
\end{equation*}
$$

Comparison of (9.5) with (9.4) gives

$$
\left\{\begin{array}{l}
T_{k l}^{h}=\overline{C_{k}^{b}} \bar{C}_{l}^{c} \bar{T}_{b c}^{a} C_{a}^{k}-\overline{C_{i k}^{b}} \overline{\nabla_{b}} \bar{C}_{l j}^{a} C_{a}^{h}, \tag{9.7}\\
R_{j k l}^{l}=\bar{C}_{k}^{b} C_{l}^{c} \bar{R}_{j b c}^{c},
\end{array}\right.
$$

which can also be verified diriectly.
On account of (9.1) and (9.6) , the tensor defined by (6.8) now reduces to $-C_{k}^{a} C_{l}^{b} T_{a b}^{h}$, so that equation (6.9) is equivalent to the relation between T and \bar{T} given in (9.7). There is no tensor of the kind described in iv) of $\S 6$.

REFERENCES

[1] Ambrose W. and Singer, I. A theorem on holonomy, Transactions Amer. Math. Soc., 75(1953), 429-443.
[2] S.S.CHERN, Differentiable manifolds, mimeographed notes, University of Chicago, 1959.
[3] Nomizu, K. Lie groups and differential geometry, Math. Soc. Japan, 1956.
[4] STEENROD, N. The topology of fiber bundles, Princeton, 1951.
[5] YUNG-Chow WONG, On recurrent tensors on a linearly connected differentiable manifold, Transactions Amer. Math. Soc., 99(1961), 325-341.

University of Hong Kong, Hong Kong.

[^0]: 1) For simplicity and following the convention in tensor calculus, we refer to a tensor field T on M simply as a tensor T on M, and we sometimes even call $T_{j k}^{i}$ (for example) a tensor, meaning by it a tensor T of type $(1,2)$ on M whose components in the coordinate system $\left(U, u^{i}\right)$ are $T_{j k}^{i}$.
[^1]: 2) For a discussion of a natural correspondence between tensors of type (r, s) on M and certain sets of n^{r+s} functions on B, see Wong [5].
[^2]: 3) See Footnote 2).
