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Introduction. It is known that if a compact orientable differentiable 7z-manif-
old is differentiably imbedded in a euclidean space whose dimension is less than

—?2)—71, then some of the dual-Pontryagin classes must vanish. Meanwhile the cobor-

dism coefficients of a manifold are determined by the Pontryagin classes and
the Pontryagin classes are explicitly expressed by the dual-Pontryagin classes.
Therefore, if a compact orientable differentiable #z-manifold is imbedded in a

euclidean space whose dimension is less than% n, then its cobordism decom-

position takes a special form. In this paper we shall deal with this problem.

1. A compact orientable differentiable 47-manifold admits the cobordism
decomposition of the form :

1. 1 M, ~> A} ... o Po,(€)+- - P,,(c) mod torsion,

e +ig=n
where Py(c)denotes the complex projective space of complex dimension 2: and
A’s denote som= rational numbers. The torsions have bzen completely made

clear by Wall ([8]).

It is known that

(1. 2) 7 = index = > AL.... o
i+, +1
A= %— (— 2p0 + P [My),
1. 3) - —3—(5 P — 2 p1) [My],

1 .
= — (7 p — p) [Ms],
=T ) [Ms]
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Al = %(3 b — 3 ooty + POIMisl,

Agl = L(_ 21 ps + 19 Do — 6??)[Mm],

(1. 4)
A?n = ——(28 P3 - 23 pgpl + 7?)[A[12]
T= 3 5 (62P3_ 13 1 +2P)[M124,
A§ = ’é‘(" 4?4 + 4?3?1 + 21)5 - 4P2P'“1, + P‘{) [Mm],
A31 = ——‘(36 b — 33 Do — 18?’ + 33 P2P1 SP‘{) [Mls]a
4 = —z-lg—us P — 18 pp — T3 + 16 puff — 4p1) [M,1],
(1. 5)
o = 755—(— 180ps + 159psp1 + 80p: — 15001 + 36p1) [M,6],
Al = 8%(165_@ — 137 pspr — 7005 + 127 pop? — 3041 [M6],
= ———34 T (381 — T1pspy — 1995 + 22 pupi — 3p1) [M6),
Ce)
1 \
] M;] = ——— (511055 — 919 p,p, — 3 1
(1. 6) T[M,] 571l (5110 p5 pb 336pp2+237p3p
+ 127?1?1 — 83 PzPl + IOP?) [Mﬂo]a . ([3] o 13)

where p, denotes the Pontryagm class of dimension 4:.

It is known that all cobordism coefficients of My and M,, and 3 Ai, A%,
Al Ab, 3 Aty are integers ([7]). It is also well-known that if @ compact
orientable differentiable manifold M, is differentiably imbedded in the euclidean
space E,., it must be that

1. 7 2=0 2k=>q + 1,

where p, denotes the dual-Pontryagin class of dimension 4 k. Between the
Pontryagin classes and the dual-Pontryagin classes there exists a relation such

that ([1])
(1. 8) rp=1

where
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1. 9) p=2_(—1)ps
and
(1.10) =2 bt

k=0

It follows from (1.8) that

=0,

p=—pt+p

=D — 2Pp1 + P,

Pi=— P+ 2Pp +Pi— 3PPl + PL

(1.11)

17

2. Hereafter M, always denotes a compact orientable differentiable 7#-manifold
and the imbedding means the differentiable one. We denote by E, the euclidean
k-space. It is known that if an M, is imbedded in the E,.,, then it is “bord’.
Therefore we shall deal with the case where an M, is imbedded in an E,.,

(g =3) and n = 4k.
The case My C Ey.,.
We have from (1.3) and (1.11)

Af = %(2@ ~ ) [M,],

@ 1) Al = %(— 5p + 350 [M,],

T= ﬁ(— 75 + 667 [M;].

If the M, is imbedded in the E,; we have from (1.7)
—52 = O.

Hence we have from (2.1)

(2. 2) A= — %7,3 [M,], A= %F‘f [M,], v = %5% [M,],

from which we have
2. 3) My~ — % {3 Py(c) — 5 Pyc)}.

Hence we have the
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THEOREM 1. If an My is imbedded in the E,,, then its index is even and it
admits the cobordism decomposition of the form (2. 3).

The case Mlg c E12+q-

We have from (1.4) and (1.11)
A= (3P — 355 + BN M),

(2. 4) AL = 1—15 (— 21 + 235:B: — 839 [Mys],

in = —217(28 ?’3 - 337’2}1 + 12}?) [Mlzl

We consider the case where M,, C E,;. In this case we have from (2.4)

Ag = l—?i [Mm], A;l = - _8‘_?1 [Mm], A?u = _4"?? [Mw]
2. 5) 7 15 9
17 —;
= M,
LTS s DM
from which we have
2. 6) M, “'TTE {45 Py(c) — 168 P(c)Py(c) + 140 Py(c)}.

Hence we have the

THEOREM 2. If an M,, is imbedded in the E,s, then its index is divisible
by 17 and it admits the cobordism decomposition of the form (2.6).
In the case where M,, C E,; we have from (1. 7)

p:=0.

Hence we have from (2. 4)
Al = %(— 3PPy + pY) [Myo],

2. 5) Ay = —115—<23 Bopn — 850 [Mys),

A?u = —517(_ 33 Z)z-?l + 12??) [Mlz]-

It follows from (2.5) that
2. 6) 28A + 1545 + 9 A4 = 0.

Meanwhile we have
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(2- 7) T = Ag + Agl + A?]].
We have from (2. 6) and (2. 7)
(2- 8) 13 Agl + 19 A?u = 28 T.

Solving this equation we have
2.9 Al=—-27r—6m, AL, =847 +19m, A, = — 567 — 13m,
where m denotes some integer. Thus we have the

THEOREM 3. If an M,, is imbedded in the E,,, then it admits the follow-
ing cobordism decom position :

(2.10) My, ~7 §{— 27 Py(c) + 84 P,(c) Py(c) — 56 Py(c)*}
+ m {6 Py(c) — 19 Pic)P:(c) + 13 Py(c)*}
where m denotes some integer.
COROLLARY 1. Neither P(c)Py(c) nor Py(c)® can be imbedded in the E;.

Next we consider the 12-dimensional submanifold of Py(c).
Let

(2.11) p=0+ ¢ 9 € H(Pc), Z)

be the Pontryagin class of P.(c) and let v = Ag (\; integer) be the cohomology
class corresponding to such a submanifold. Then its cobordism coeflicients are
given by

A3 = %(sx — A7),

2.12) A= 00— = ),
3 1

(— 4\ 4+ 8% — 42A%). ([6])

111 — 7
Comparing (2.12) and (2.6) we have the

COROLLARY 2. If an M,, is a submanifold of the P:(c), it cannot be
imbedded in the Ey.

3. The case M,; C Eq4,.
We have from (1.5) and (1.11)

Al= % (4B« — 45,5 — 288 + AT B} — B) [Mis],

4 = 2%(—3624 + 3955, + 1851 — 39551 + 1059 [M),
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(3. 1) A4 = 21—5(— 187 + 185p, + 1171 — 2057 + 5p8) [Mio],
4= é(wo;‘ — 20155 — 100 3% + 212 3,5 — 55 5% [Ms),
Ay = Sil(— 165 5, + 193 5,5, + 9552 — 208 75t + 555%) [Miq].

First of all we deal with the case where M,s © E;,, In this case we have
from (1. 7)

Ez = ;3 = ;4 =0.
Hence we have from (3. 1)
at= = Lpmg, an = st A= LRI
3. 2)
4= — iglfﬁ; [My,], b= —2%;: [M], 7 = 5—‘732—8; 2 IM,].

Therefore we have the

THEOREM 6. If an M,y is imbedded in the E,,, then its index is divisible
by 62 and it admits the cobordism decomposition of the form

(3. 3) M, ~—6% {— 315 Py(c) + 1350 Py(c)Py(c) + 567 Pi(c)?

— 3465 P,(c)Py(c)? + 1925 Py(c)*} mod torsion.
Next we consider the case where M, € E,;. In this case we have from (1.7)
Ps=ps=0.
Eliminating 23, 2.7 and 2 from (3. 1) we have
9 A; -2 4 -1
@ 4 rank [ 9144 18 — 39 10 | =3
25 A, 11 — 20 5
45 A3; —100 212 — 55
81 Al 95 — 208 55
i e.

(i) 165A4% + 56 A + 50 Az + 15 Al = 0,
(ii) 110 Af + 28 A4 + 25 A% — 9 A4y, = 0,
(iii) — 55 A% + 15 A4, + 18 A4y = 0,

v (iv) 3045 + 27 Al + 28 AL + 25 A5, = 0.

3. 5)
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Two of these equations are independent. From (iii) we see that A} is an
integer which is divisible by 3 and hence A% is also an integer. We put as
follows :

3. 6) A = 3a (a: integer).
We have from (iii)

A?lll= 55 a + Sﬁ

3. 7

( ) m=—56a—68 (B : integer).
Hence (iv) becomes

3. 8 28 A; + 25A5 = 165a + 458.

Solving (3.8) we have

(A}, = 9(165 a + 45 8) + 28y,

3. 9
( ) 1= —-8(065a+458)— 25¢ (y: integer).
Thus we have the

THEOREM 7. If an M, is imbedded in the E,,, then it admits the cobor-
dism decomposition of the form :

(3.10) Mo~ a {3Pg(c)—8 X 165 Py(c)Py(c) + 9 X 165 Py(c)*—55 P,(c)Py(c)?
+ 55 Py(c)'} + Bf— 360 Py(c)Py(c) + 405 P,(c)* — 6P(c)Py(c)*
+ 5 Pyc)*} + v{— 25 Py(c)Pyc) + 28P(c)?}  mod torsion
where o, B and ©y denote some integers.

In the case where M), C E,; we have from (1.7)

7= 0.
Hence we have from (3. 1)
9 A} —4 -2 4 -1
21 A4 39 18 -39 10
(3.11) 25 As, 18 11 - 20 5 |=0
45 A3 — 201 — 100 212 — 55
81 Al 193 95 — 208 55
1. e.
(3.12) 55 A% + 28 A4 + 25 Al + 15 Afy + 9 Aty = 0.

Hence we have the
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THEOREM 8. If an M,y is imbedded in E,;, then its cobordism coefficients
maust satisfy (3. 12), in particular Ai and Al are integers.

COROLLARY 1. Pyc)Py(c), Pic)?, Py(c)Py(c)® and Ps(c)* cannot be imbedded
in the E,;.

Next we consider the Cayley plane W = F,/Spin (9) ([5], p. 534). Its cobordism
coefficients are as follows : ([6])

(3.13) Al =— 238_ Af = 36, Al = 18, Ab = — 92, Aty = 1‘3‘—5 :
Thus the A of W is not an integer. Hence we have the
COROLLARY 2. The Cayley plane cannot be imbedded in the E,,.
Next we consider the submanifolds of Py(c). Its Pontryagin class is given by
.19 p=1 + g g € H(P(o), Z).

Let v =N g(\: integer) correspond to the submanifold. Then we have from the
formula given in [7]

‘ 5
Al = _7“_.(10 — A%, Aiy = — l)ﬁ + A + _1_6_)\,7 — _11_7\9,
9 3 9 9 9
3
(3, 15) §1 = 102 (1 - )Vg) (1 - 7\‘6), Ailll = _52\'—(117\.2 - 2) (7\.2 - 1)2,
21 81
Al = —15—(x — 22% + ).
We have from (3. 15) and (3. 12)
(3.16) —3—(715 — 2202%) = 0.

This equation has no integral solution other than A = 0.
Hence we have the

COROLLARY 3. If an M, is a submanifold of Pyc), then it cannot be
imbedded in the E,;.

The case My, C Ey,,.

Though we have no concrete knowledge about the cobordism coefficients
of M,,, the expression for the index of M,, is known ((1. 6)).
Hence, if M,, C E;; we have from (1.7)

Dr=ps =P =ps=0.
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Therefore we have from (1. 6) and (1. 8)

1382

(3.17) = "2 Pt [M,].

3*.5%-7-11

Thus we have the

THEOREM 9. If an M,, is imbedded in the E,,, then its index is divisible

by 1382.

[81
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