DIFFERENTIABLE IMBEDDING AND COBORDISM OF ORIENTABLE MANIFOLDS

Yasurô TOMONAGA

(Received June 16, 1961)

Introduction. It is known that if a compact orientable differentiable n-manifold is differentiably imbedded in a euclidean space whose dimension is less than $\frac{3}{2} n$, then some of the dual-Pontryagin classes must vanish. Meanwhile the cobordism coefficients of a manifold are determined by the Pontryagin classes and the Pontryagin classes are explicitly expressed by the dual-Pontryagin classes. Therefore, if a compact orientable differentiable n-manifold is imbedded in a euclidean space whose dimension is less than $\frac{3}{2} n$, then its cobordism decomposition takes a special form. In this paper we shall deal with this problem.

1. A compact orientable differentiable $4 n$-manifold admits the cobordism decomposition of the form :
(1. 1) $\quad M_{4 n} \sim \sum_{i_{1}+\ldots+i_{i}=n} A_{i_{1}}^{n} \cdots \cdots{ }_{i_{4}} P_{2 t_{1}}(c) \cdots \cdots P_{2 l_{i}}(c) \bmod$ torsion,
where $P_{2 i}(c)$ denotes the complex projective space of complex dimension $2 i$ and A 's denote some rational numbers. The torsions have been completely made clear by Wall ([8]).

It is known that
(1. 2)

$$
\tau=\text { index }=\sum_{i_{1}+\ldots+i} A_{i_{1} \cdots \cdots i_{i}}^{n}
$$

$$
\begin{aligned}
A_{2}^{2} & =\frac{1}{5}\left(-2 p_{2}+p_{1}^{2}\right)\left[M_{8}\right], \\
A_{11}^{2} & =\frac{1}{9}\left(5 p_{2}-2 p_{1}^{2}\right)\left[M_{8}\right], \\
\tau & =\frac{1}{45}\left(7 p_{2}-p_{1}^{2}\right)\left[M_{8}\right],
\end{aligned}
$$

(1. 4)

$$
\left\{\begin{aligned}
A_{3}^{3} & =\frac{1}{7}\left(3 p_{3}-3 p_{2} p_{1}+p_{1}^{3}\right)\left[M_{12}\right] \\
A_{21}^{3} & =\frac{1}{15}\left(-21 p_{3}+19 p_{2} p_{1}-6 p_{1}^{3}\right)\left[M_{12}\right] \\
A_{111}^{3} & =\frac{1}{27}\left(28 p_{3}-23 p_{2} p_{1}+7 p_{1}^{3}\right)\left[M_{12}\right] \\
\tau & =\frac{1}{3^{3} \cdot 5 \cdot 7}\left(62 p_{3}-13 p_{2} p_{1}+2 p_{1}^{3}\right)\left[M_{12}\right]
\end{aligned}\right.
$$

(1. 5)

$$
\begin{align*}
A_{1}^{4} & =\frac{1}{9}\left(-4 p_{4}+4 p_{3} p_{1}+2 p_{2}^{2}-4 p_{2} p_{1}^{2}+p_{1}^{4}\right)\left[M_{16}\right], \\
A_{31}^{4} & =\frac{1}{21}\left(36 p_{4}-33 p_{3} p_{1}-18 p_{2}^{2}+33 p_{2} p_{1}^{2}-8 p_{1}^{4}\right)\left[M_{16}\right], \\
A_{22}^{4} & =\frac{1}{25}\left(18 p_{4}-18 p_{3} p_{1}-7 p_{2}^{2}+16 p_{2} p_{1}^{2}-4 p_{1}^{4}\right)\left[M_{1}^{6}\right], \\
A_{211}^{4} & =\frac{1}{45}\left(-180 p_{4}+159 p_{3} p_{1}+80 p_{2}^{2}-150 p_{2} p_{1}^{2}+36 p_{1}^{4}\right)\left[M_{16}\right], \\
A_{1111}^{4} & =\frac{1}{81}\left(165 p_{4}-137 p_{3} p_{1}-70 p_{2}^{2}+127 p_{2} p_{1}^{2}-30 p_{1}^{4}\right)\left[M_{16}\right], \\
\tau & =\frac{1}{3^{4} \cdot 5^{2} \cdot 7}\left(381 p_{4}-71 p_{3} p_{1}-19 p_{2}^{2}+22 p_{2} p_{1}^{2}-3 p_{1}^{4}\right)\left[M_{16}\right], \tag{6}
\end{align*}
$$

(1. 6) $\quad \tau\left[M_{20}\right]=\frac{1}{3^{5} \cdot 5^{2} \cdot 7 \cdot 11}\left(5110 p_{5}-919 p_{4} p_{1}-336 p_{3} p_{2}+237 p_{3} p_{1}^{2}\right.$

$$
\begin{equation*}
\left.+127 p_{2}^{3} p_{1}-83 p_{2} p_{1}^{3}+10 p_{1}^{5}\right)\left[M_{20}\right] \tag{3}
\end{equation*}
$$

where p_{i} denotes the Pontryagin class of dimension $4 i$.
It is known that all cobordism coefficients of M_{8} and M_{12} and $3 A_{4}^{4}, A_{31}^{4}$, $A_{22}^{4}, A_{211}^{4}, 3 A_{1111}^{4}$ are integers ([7]). It is also well-known that if a compact orientable differentiable manifold M_{n} is differentiably imbedded in the euclidean space E_{n+q} it must be that

$$
\begin{equation*}
\bar{p}_{k}=0 \quad 2 k \geqq q+1 \tag{1.7}
\end{equation*}
$$

where \bar{p}_{k} denotes the dual-Pontryagin class of dimension $4 k$. Between the Pontryagin classes and the dual-Pontryagin classes there exists a relation such that ([1])

$$
(1.8)
$$

$$
p \cdot \bar{p}=1
$$

where
(1. 9)

$$
p=\sum_{k \geqq 0}(-1)^{k} p_{k} t^{k}
$$

and

$$
\begin{equation*}
\bar{p}=\sum_{k \geq 0} \bar{p}_{k} t^{k} . \tag{1.10}
\end{equation*}
$$

It follows from (1.8) that

$$
\left\{\begin{array}{l}
p_{1}=\bar{p}_{1} \tag{1.11}\\
p_{2}=-\bar{p}_{2}+\bar{p}_{1}^{2} \\
p_{3}=\bar{p}_{3}-2 \bar{p}_{2} \cdot \bar{p}_{1}+\bar{p}_{1}^{3} \\
p_{4}=-\bar{p}_{4}+2 \bar{p}_{3} \cdot \bar{p}_{1}+\bar{p}_{2}^{2}-3 \bar{p}_{2} \cdot \bar{p}_{1}^{2}+\bar{p}_{1}^{4}
\end{array}\right.
$$

2. Hereafter M_{n} always denotes a compact orientable differentiable n-manifold and the imbedding means the differentiable one. We denote by E_{k} the euclidean k-space. It is known that if an M_{n} is imbedded in the E_{n+2}, then it is "bord". Therefore we shall deal with the case where an M_{n} is imbedded in an E_{n+q} ($q \geqq 3$) and $n=4 k$.

The case $M_{8} \subset E_{8+q}$.
We have from (1.3) and (1.11)
(2. 1)

$$
\left\{\begin{aligned}
A_{2}^{2} & =\frac{1}{5}\left(2 \bar{p}_{2}-\bar{p}_{1}^{2}\right)\left[M_{8}\right] \\
A_{11}^{2} & =\frac{1}{9}\left(-5 \bar{p}_{2}+3 \bar{p}_{i}^{2}\right)\left[M_{8}\right] \\
\tau & =\frac{1}{45}\left(-7 \bar{p}_{2}+6 \bar{p}_{1}^{2}\right)\left[M_{8}\right]
\end{aligned}\right.
$$

If the M_{8} is imbedded in the E_{11} we have from (1.7)

$$
\bar{P}_{2}=0 .
$$

Hence we have from (2.1)
(2. 2) $A_{2}^{2}=-\frac{1}{5} \bar{p}_{1}^{2}\left[M_{8}\right], A_{11}^{2}=\frac{1}{3} \bar{p}_{1}^{2}\left[M_{8}\right], \tau=\frac{2}{15} \bar{p}_{1}^{2}\left[M_{8}\right]$,
from which we have

$$
\begin{equation*}
M_{8} \sim-\frac{\tau}{2}\left\{3 P_{4}(c)-5 P_{2}(c)^{2}\right\} \tag{2.3}
\end{equation*}
$$

Hence we have the

THEOREM 1. If an M_{8} is imbedded in the E_{11}, then its index is even and it admits the cobordism decomposition of the form (2.3).

The case $M_{12} \subset E_{12+q}$.
We have from (1.4) and (1.11)
(2. 4)

$$
\left\{\begin{array}{l}
A_{3}^{3}=\frac{1}{7}\left(3 \bar{p}_{3}-3 \bar{p}_{2} \cdot \bar{p}_{1}+\bar{p}_{1}^{3}\right)\left[M_{12}\right] \\
A_{21}^{3}=\frac{1}{15}\left(-21 \bar{p}_{3}+23 \bar{p}_{2} \bar{p}_{1}-8 \bar{p}_{1}^{3}\right)\left[M_{12}\right] \\
A_{111}^{3}=\frac{1}{27}\left(28 \bar{p}_{3}-33 \bar{p}_{2} \bar{p}_{1}+12 \bar{p}_{1}^{3}\right)\left[M_{12}\right]
\end{array}\right.
$$

We consider the case where $M_{12} \subset E_{15}$. In this case we have from (2.4)
(2. 5) $\quad\left\{\begin{array}{l}A_{3}^{3}=\frac{1}{7} \bar{p}_{1}^{3}\left[M_{12}\right], A_{21}^{3}=-\frac{8}{15} \bar{p}_{1}^{3}\left[M_{12}\right], A_{111}^{3}=\frac{4}{9} \bar{p}_{1}^{3}\left[M_{12}\right] \\ \tau=\frac{17}{7 \cdot 45} \bar{p}_{1}^{3}\left[M_{12}\right]\end{array}\right.$
from which we have

$$
\begin{equation*}
M_{12} \sim \frac{\tau}{17}\left\{45 P_{6}(c)-168 P_{4}(c) P_{2}(c)+140 P_{2}(c)^{3}\right\} \tag{2.6}
\end{equation*}
$$

Hence we have the
THEOREM 2. If an M_{12} is imbedded in the E_{15}, then its index is divisible by 17 and it admits the cobordism decomposition of the form (2.6).

In the case where $M_{12} \subset E_{17}$ we have from (1.7)

$$
\bar{p}_{3}=0 .
$$

Hence we have from (2. 4)
(2. 5)

$$
\left\{\begin{array}{l}
A_{3}^{3}=\frac{1}{7}\left(-3 \bar{p}_{2} \cdot \bar{p}_{1}+\bar{p}_{1}^{3}\right)\left[M_{12}\right] \\
A_{21}^{3}=\frac{1}{15}\left(23 \bar{p}_{2} \cdot \bar{p}_{1}-8 \bar{p}_{1}^{3}\right)\left[M_{12}\right] \\
A_{111}^{3}=\frac{1}{27}\left(-33 \bar{p}_{2} \cdot \bar{p}_{1}+12 \bar{p}_{1}^{3}\right)\left[M_{12}\right]
\end{array}\right.
$$

It follows from (2.5) that
(2. 6)

$$
28 A_{3}^{3}+15 A_{21}^{3}+9 A_{111}^{3}=0
$$

Meanwhile we have
(2. 7)

$$
\tau=A_{3}^{3}+A_{21}^{3}+A_{111}^{3} .
$$

We have from (2.6) and (2.7)

$$
(2.8)
$$

$$
13 A_{21}^{3}+19 A_{111}^{3}=28 \tau .
$$

Solving this equation we have
(2. 9) $A_{3}^{3}=-27 \tau-6 m, A_{21}^{3}=84 \tau+19 m, A_{111}^{3}=-56 \tau-13 m$, where m denotes some integer. Thus we have the

THEOREM 3. If an M_{12} is imbedded in the E_{17}, then it admits the following cobordism decomposition:

$$
\begin{align*}
M_{12} & \sim \tau\left\{-27 P_{6}(c)+84 P_{4}(c) P_{2}(c)-56 P_{2}(c)^{3}\right\} \tag{2.10}\\
& +m\left\{6 P_{6}(c)-19 P_{4}(c) P_{2}(c)+13 P_{2}(c)^{3}\right\}
\end{align*}
$$

where m denotes some integer.
Corollary 1. Neither $P_{4}(c) P_{2}(c)$ nor $P_{2}(c)^{3}$ can be imbedded in the E_{17}.
Next we consider the 12 -dimensional submanifold of $P_{7}(c)$.
Let
(2.11) $\quad p=\left(1+g^{2}\right)^{8} \quad g \in H^{2}\left(P_{7}(c), Z\right)$
be the Pontryagin class of $P_{7}(c)$ and let $v=\lambda g$ (λ; integer) be the cohomology class corresponding to such a submanifold. Then its cobordism coefficients are given by

$$
\left\{\begin{array}{l}
A_{3}^{3}=\frac{1}{7}\left(8 \lambda-\lambda^{7}\right) \tag{2.12}\\
A_{21}^{3}=\frac{8}{15}\left(\lambda^{7}-\lambda^{5}-\lambda^{3}+\lambda\right) \\
A_{111}^{3}=\frac{1}{9}\left(-4 \lambda^{7}+8 \lambda^{5}-4 \lambda^{3}\right) .
\end{array}\right.
$$

Comparing (2.12) and (2.6) we have the
COROLLARY 2. If an M_{12} is a submanifold of the $P_{7}(c)$, it cannot be imbedded in the E_{17}.
3. The case $M_{16} \subset E_{16+q}$.

We have from (1.5) and (1.11)

$$
\left\{\begin{array}{l}
A_{4}^{4}=\frac{1}{9}\left(4 \bar{p}_{4}-4 \bar{p}_{3} \bar{p}_{1}-2 \bar{p}_{2}^{2}+4 \bar{p}_{2} \cdot \bar{p}_{1}^{2}-\bar{p}_{1}^{4}\right)\left[M_{16}\right] \\
A_{31}^{4}=\frac{1}{21}\left(-36 \bar{p}_{4}+39 \bar{p}_{3} \bar{p}_{1}+18 \bar{p}_{2}^{2}-39 \bar{p}_{2} \bar{p}_{1}^{2}+10 \bar{p}_{1}^{4}\right)\left[M_{16}\right]
\end{array}\right.
$$

(3. 1) $\left\{\begin{array}{l}A_{22}^{4}=\frac{1}{25}\left(-18 \bar{p}_{4}+18 \bar{p}_{3} \bar{p}_{1}+11 \bar{p}_{2}^{2}-20 \bar{p}_{2} \cdot \bar{p}_{1}^{2}+5 \overline{p_{1}^{4}}\right)\left[M_{16}\right], \\ A_{211}^{4}=\frac{1}{45}\left(180 \bar{p}_{4}-201 \bar{p}_{3} \bar{p}_{1}-100 \bar{p}_{2}^{2}+212 \bar{p}_{2} \bar{p}_{1}^{2}-55 \bar{p}_{1}^{4}\right)\left[M_{16}\right], \\ A_{1111}^{4}=\frac{1}{81}\left(-165 \bar{p}_{4}+193 \bar{p}_{3} \bar{p}_{1}+95 \bar{p}_{2}^{2}-208 \bar{p}_{2} \bar{p}_{1}^{2}+55 \bar{p}_{1}^{4}\right)\left[M_{16}\right] .\end{array}\right.$

First of all we deal with the case where $M_{18} \subset E_{19}$, In this case we have from (1.7)

$$
\bar{p}_{2}=\bar{p}_{3}=\bar{p}_{4}=0 .
$$

Hence we have from (3.1)
(3. 2) $\left\{\begin{array}{l}A_{4}^{4}=-\frac{1}{9} \bar{p}_{1}^{4}\left[M_{16}\right], A_{31}^{4}=\frac{10}{21} \bar{p}_{1}^{4}\left[M_{16}\right], A_{22}^{4}=\frac{1}{5} \bar{p}_{1}^{4}\left[M_{16}\right], \\ A_{211}^{4}=-\frac{11}{9} \bar{p}_{1}^{4}\left[M_{16}\right], A_{1111}^{4}=\frac{55}{81} \bar{p}_{1}^{4}\left[M_{16}\right], \tau=\frac{62}{5 \cdot 7 \cdot 81} \bar{p}_{1}^{4}\left[M_{16}\right] .\end{array}\right.$

Therefore we have the
THEOREM 6. If an M_{16} is imbedded in the E_{19}, then its index is divisible by 62 and it admits the cobordism decomposition of the form
(3. 3) $M_{16} \sim \frac{\tau}{62}\left\{-315 P_{8}(c)+1350 P_{6}(c) P_{2}(c)+567 P_{4}(c)^{2}\right.$

$$
\left.-3465 P_{4}(c) P_{2}(c)^{2}+1925 P_{2}(c)^{4}\right\} \quad \bmod \text { torsion }
$$

Next we consider the case where $M_{16} \subset E_{21}$. In this case we have from (1.7)

$$
\bar{p}_{3}=\bar{p}_{4}=0
$$

Eliminating $\bar{p}_{2}^{2}, \bar{p}_{2} \cdot \bar{p}_{1}^{2}$ and \bar{p}_{1}^{4} from (3.1) we have
(3. 4)

$$
\operatorname{rank}\left(\begin{array}{rrrr}
9 A_{4}^{4} & -2 & 4 & -1 \\
21 A_{31}^{4} & 18 & -39 & 10 \\
25 A_{22}^{4} & 11 & -20 & 5 \\
45 A_{211}^{4} & -100 & 212 & -55 \\
81 A_{1111}^{4} & 95 & -208 & 55
\end{array}\right) \leqq 3
$$

i. e.
(3. 5) $\quad\left\{\begin{array}{l}\text { (i) } 165 A_{4}^{4}+56 A_{31}^{4}+50 A_{22}^{4}+15 A_{211}^{4}=0, \\ \text { (ii) } 110 A_{4}^{4}+28 A_{31}^{4}+25 A_{22}^{4}-9 A_{111}^{4}=0, \\ \text { (iii) }-55 A_{4}^{4}+15 A_{211}^{4}+18 A_{1111}^{4}=0, \\ \text { (iv) } 30 A_{211}^{4}+27 A_{111}^{4}+28 A_{31}^{4}+25 A_{21}^{4}=0 .\end{array}\right.$

Two of these equations are independent. From (iii) we see that A_{4}^{4} is an integer which is divisible by 3 and hence A_{111}^{4} is also an integer. We put as follows :
(3. 6) $\quad A_{4}^{4}=3 \alpha \quad(\alpha$:integer).

We have from (iii)
(3. 7)

$$
\left\{\begin{aligned}
A_{1111}^{4} & =55 \alpha+5 \beta \\
A_{211}^{4} & =-55 \alpha-6 \beta \quad(\beta: \text { integer }) .
\end{aligned}\right.
$$

Hence (iv) becomes
(3. 8)

$$
28 A_{31}^{4}+25 A_{22}^{4}=165 \alpha+45 \beta
$$

Solving (3.8) we have
(3. 9) $\quad\left\{\begin{array}{l}A_{22}^{4}=9(165 \alpha+45 \beta)+28 \gamma, \\ A_{31}^{4}=-8(165 \alpha+45 \beta)-25 \gamma \quad \text { (} \boldsymbol{\gamma} \text { : integer). }\end{array}\right.$

Thus we have the
THEOREM 7. If an M_{16} is imbedded in the E_{21}, then it admits the cobordism decomposition of the form:

$$
\text { (3. 10) } \begin{aligned}
M_{16} & \sim \alpha\left\{3 P_{8}(c)-8 \times 165 P_{6}(c) P_{2}(c)+9 \times 165 P_{4}(c)^{2}-55 P_{4}(c) P_{2}(c)^{2}\right. \\
& \left.+55 P_{2}(c)^{4}\right\}+\beta\left\{-360 P_{6}(c) P_{2}(c)+405 P_{4}(c)^{2}-6 P_{4}(c) P_{2}(c)^{2}\right. \\
& \left.+5 P_{2}(c)^{4}\right\}+\gamma\left\{-25 P_{6}(c) P_{2}(c)+28 P_{4}(c)^{2}\right\} \quad \bmod \text { torsion }
\end{aligned}
$$

where α, β and γ denote some integers.
In the case where $M_{16} \subset E_{23}$ we have from (1.7)

$$
\bar{p}_{4}=0 .
$$

Hence we have from (3. 1)
(3.11) $\left|\begin{array}{rrrrr}9 A_{1}^{4} & -4 & -2 & 4 & -1 \\ 21 A_{31}^{4} & 39 & 18 & -39 & 10 \\ 25 A_{2 Z}^{4} & 18 & 11 & -20 & 5 \\ 45 A_{211}^{4} & -201 & -100 & 212 & -55 \\ 81 A_{111}^{4} & 193 & 95 & -208 & 55\end{array}\right|=0$
i. e.

$$
\begin{equation*}
55 A_{4}^{4}+28 A_{31}^{4}+25 A_{22}^{4}+15 A_{211}^{4}+9 A_{1111}^{4}=0 \tag{3.12}
\end{equation*}
$$

Hence we have the

THEOREM 8. If an M_{16} is imbedded in E_{23}, then its cobordism coefficients must satisfy (3.12), in particular A_{4}^{4} and A_{1111}^{4} are integers.

Corollary 1. $P_{6}(c) P_{2}(c), P_{4}(c)^{2}, P_{4}(c) P_{2}(c)^{2}$ and $P_{2}(c)^{4}$ cannot be imbedded in the E_{23}.

Next we consider the Cayley plane $W=F_{4} /$ Spin (9) ([5], p. 534). Its cobordism coefficients are as follows: ([6])

$$
\begin{equation*}
A_{1}^{4}=-\frac{28}{3}, A_{31}^{4}=36, A_{22}^{4}=18, A_{21}^{4}=-92, A_{1111}^{4}=\frac{145}{3} \tag{3.13}
\end{equation*}
$$

Thus the A_{4}^{4} of W is not an integer. Hence we have the
Corollary 2. The Cayley plane cannot be imbedded in the E_{23}.
Next we consider the submanifolds of $P_{9}(c)$. Its Pontryagin class is given by

$$
\begin{equation*}
p=\left(1+g^{2}\right)^{10}, g \in H^{2}\left(P_{9}(c), Z\right) \tag{3.14}
\end{equation*}
$$

Let $v=\lambda g(\lambda$: integer $)$ correspond to the submanifold. Then we have from the formula given in [7]

$$
\left\{\begin{array}{l}
A_{4}^{4}=\frac{\lambda}{9}\left(10-\lambda^{8}\right), A_{211}^{4}=-\frac{2}{3} \lambda^{3}+\frac{\lambda^{5}}{9}+\frac{16}{9} \lambda^{7}-\frac{11}{9} \lambda^{9} \tag{3.15}\\
A_{31}^{4}=\frac{10 \lambda}{21}\left(1-\lambda^{2}\right)\left(1-\lambda^{6}\right), A_{1111}^{4}=\frac{5 \lambda^{3}}{81}\left(11 \lambda^{2}-2\right)\left(\lambda^{2}-1\right)^{2} \\
A_{22}^{4}
\end{array}=\frac{1}{5}\left(\lambda-2 \lambda^{5}+\lambda^{9}\right) .\right.
$$

We have from (3.15) and (3.12)

$$
\begin{equation*}
\frac{\lambda}{9}\left(715-220 \lambda^{2}\right)=0 . \tag{3.16}
\end{equation*}
$$

This equation has no integral solution other than $\lambda=0$.
Hence we have the
COROLLARY 3. If an M_{18} is a submanifold of $P_{9}(c)$, then it cannot be imbedded in the E_{23}.

The case $M_{20} \subset E_{20+q}$.
Though we have no concrete knowledge about the cobordism coefficients of M_{20}, the expression for the index of M_{20} is known ((1.6)).
Hence, if $M_{20} \subset E_{23}$ we have from (1.7)

$$
\bar{p}_{2}=\bar{p}_{3}=\bar{p}_{4}=\bar{p}_{5}=0 .
$$

Therefore we have from (1. 6) and (1.8)

$$
\begin{equation*}
\tau=\frac{1382}{3^{4} \cdot 5^{2} \cdot 7 \cdot 11} \bar{p}_{1}^{5}\left[M_{20}\right] \tag{3.17}
\end{equation*}
$$

Thus we have the
THEOREM 9. If an M_{20} is imbedded in the E_{23}, then its index is divisible by 1382.

REFERENCES

[1] S.S.ChERN, Topics in differential geometry.
[2] S.S.ChERN, On curvature and characteristic classes of a Riemann manifold, Abh. Math. Sem Univ. Hamburg, 20 (1955), 117-126.
[3」 F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, 1956.
[4] F.Hirzebruch, Some problems on differentiable and complex manifolds, Ann. of Math., 60(1954), 213-236.
[5] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, Amer. Journ. of Math. 80(1958) 458-538.
[6] Y.TOMONAGA, Coefficients of cobordism decomposition, this Journ. 13(1961)75-93.
[7] Y. Tomonaga, Generalized Hirzebruch polynomials, to appear in this Journ.
[8] C.T.C. WALL, Determination of the cobordism ring, Ann. of Math. 72(1961), 292-311.
Utsunomiya University, Japan.

