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Let A be a C*-algebra, ίl the structure space of A, i.e. the space of all
primitive ideals in A with hull-kernel topology. At every point P of ί l we
associate a primitive C^-algebra A/P (which we denote by A(P)) and we may
associate for any element a £ A the function a(P) whose value at P is the
homomorphic image of a in A{P). Then the most difficult parts of the non-
commutative structure theory of C*-algebras are the restrictions such as to
destroy the main feature of the commutative case the Gelfand representation
of A by the continuous function a(P) on ίλ Even if ί l is a Hausdorff space, it
has long been observed hopeless to discuss the continuity of the function a(P)
since Kaplansky [ 7 ] proposed a method to study the structure of general C*-
algebras and instead of these discussions the continuity of the function ||α(P)||
was studied. Unfortunately this property does not give directly the suitable
topological representation of algebras.

On the other hand, in [11], in the case that A satisfies the condition that
any irreducible representation of A is n-dimensional (such a C^-algebra is
called w-dimensionally homogeneous) we have defined a topology in the set

β = \^J A{P) and represented A as the algebra of all ίδ-valued functions a(P)

on Ω with a{P) £ A(P) which is continuous in this topology (we call these
functions the (continuous) cross-sections of β).

Now the above treatment offers a non-commutative model of the classical
Gelfand representation theorem in the case that the structure space Ω is a
Hausdorff space. Is it always possible to define a natural topology in the set

β = \J A{P) so that A is represented as the algebra of all continuous cross-

sections of β vanishing at infinity ? It is the main purpose of this paper to
give a positive answer for this question and to analyse the algebras by their
topological representations.

§1 and §2 are devoted to define a suitable topology in β in somewhat
general situations and to discuss the general structure theory of algebras of
cross-sections. Some fundamental results corresponding to the algebras of
continuous functions are proved here, including the Stone-Weierstrass theorem
and as a direct consequence of their results we can settle the problems rema-
ined unsolved in Kaplansky [ 7 ].

In §3 we treat the above mentioned problem stating our result in rather
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general form so that it may be applicable to the case where Ω is not a Hausdorff

space. Roughly speaking, the result (Theorem 3.1) is the following one if there

exists an appropriate decomposition of Ω (called a continuous decomposition),

then we get a locally compact Hausdorff space X at each point of which a

suitable C^-algebra A(x) is given and, setting β = \^J A(x), A is represented

as the algebra of all cross-sections of β, continuous in a suitable topology in β

and vanishing at infinity on X. The case where Ω is a Hausdorff space is the

one where every classes in the decomposition reduce to one point.

In [ 5 ], Kaplansky denned a class of C*-algebras, central C*~-algebras, to

which commutative methods are applicable to some extent. The structure spaces

of these are always Hausdorff spaces. However, the above result shows that

there are no distinctions between the centrality and the Hausdorff property of

the structure spaces of C^-algebras and we get, as a direct consequence of

our representation theorem, the following: If the center of a C^-algebra A is not

contained in any primitive ideal in A then A is central if and only if the

structure space of A is a Hausdorff space.

In the last section, we show the case where there exists always the non-

trivial (or rather finest) continuous decomposition. Theorem 4.1. is an another

interpretation of the decomposition considered in Glimm [ 3 ] and we prove later

more sharpened results for this decomposition than those of [ 3 ].

The author is indebted to Mr. M. Takesaki. The discussions with him on

the possibility of topological representation of C^-algebras are indispensable for

the preparation of the present paper.

1. Algebras of cross-sections.
Let X be a Hausdorff topological space at each point x of which a Banach

algebra A(x) is given. All A(x)'s are considered to be different each other. Put

β = \^J A(x). We suppose that, for each element b € β, there exists uniquely a
xzX

point x £ X such as b £ A(x). The projection mapping w from β to X is defined by

ττ(b) = x and A(x) is called the fibre over the point x £ X. A function a(x) on X is

called a cross-section of βΌ if a(x) £ A(x) for each x e X.

~Letf(x) be a complex-valued function on X and a(x) a cross-section of β.

We denote by fa the cross-section of β defined by f a(x) =f(x)a(x).

DEFINITION. Let A be a family of cross-sections of β. A is said to be

closed under multiplication by f(x) if fa £ A for every a £ A.

We consider an arbitrary fixed family F 2 ) of cross-sections a(x) of β satisfying
the following condition:2)

1) Operator field in termc of Fell's recent work in Acta Math., 106(1961) (cf. concluding
remark of the present paper).

2) This corresponds to the definition of the continuity structure in FelΓs paper, ibidem.
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( i ) || a{x) || is continuous and bounded on X,
(i i) at each point x £ X, F(x) fills out the algebra A(x),
(iii) F forms an algebra under pointwise operations.
Then we get the following

THEOREM 1.1. The family F defines a Hausdorff topology gfF in & and
the algebra of all bounded %7Vcontinuous cross-sections of β becomes a Banach
algebra, which is closed under multiplication by C(X), the algebra of all
bounded complex-valued continuous functions on X.

PROOF. Take an arbitrary element b0 £ β9 an element a £ F with a(x0) = b0,

a n d a n e i g h b o r h o o d U o f x 0 = π(b0). P u t U(bo,U,€9a(x)) = \ J [bzβ\bz A(x)

a n d \\b - a(x)\\<6} = {bzB\ir(b) = χzU and \\b - a(x)\\<8],

where £ is an arbitrary positive number. Then a straight-forward calculation
shows that the family {U{bo,U,S,a{x))\bQ £ β} forms a neighborhood system of
β and defines a topology '^F in β.

Besides, one sees that gΓF is a Hausdorff topology and the relative topology
of <?'F in A{x) coincides with the original norm topology of A{x).

Let CF(X, β) be the set of all bounded cross-sections of β continuous in
SΓF-topology. We notice that the function ||α(x)|| is a continuous function on X

for each a £ d{X,β). In fact, let an arbitrary positive number 8 and a point
x0 £ X be given. Take an element a0 £ F with ao(xo) = a(x0). Since each of the
functions of F is norm continuous, we can find a neighborhood U of x0 such as

I \\ao(x)\\ - \\ao(xo)\\ \<€/2 for every x € U.

On the other hand, the continuity of a{x) in gΓF implies that there exists a
neighborhood V of x0 such as

a{x) € U(a(xQ\ U, — , ao(x)) for every x € V.

Hence we have

at eaoh point x € V.

Now, it is not difficult to see that CF(X, β) is closed under pointwise addi-
tion, multiplication and scalar multiplication. Define the norm \\a\\ = sup ||tf(:r)!|

for a £ CF(X, β), then CF(X, β) becomes a Banach algebra. The one non-trivial

point here is the completeness of CF(X, β). Let {an} be a Cauchy sequence in

Ct(X,β). One easily verifies that the sequences {an(x) \χzX} are uniformly
Cauchy sequences and,as A(.r)'s are complete, [an(x) \ x € X} define a cross-section
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a{x) = lim an(x). Clearly a(x) is a bounded cross-section of β. We assert
n-* oo

that this is continuous in %fF. Let x0 be an arbitrary point of X and
U(a(xQ), U0,S,ά(x)) a neighborhood of a(x0) There exists a number n0 such
that

\\a(x)-~an(x)\\<£/3 for every n^n0 and x^X.

Let α" € F be an element with a\x^) — ano(xo). Since

llα'^o) - <z"Oo)ll = |Λ(X0) ~ ano(xo)\\ <ε/3,

there exists a neighborhood Ux of .r0 such as

\a\x) — α"(.r)||<£/3. for every x £ tΛ.

Moreover α"0ro) = ano(xo) and α", αWo € CF(X, β) imply that we can find a
neighborhood U2 of α:0 such as

\a"(x) — αno(j:)||<θ/3 for every x e U2. Then at each point x in the neigh-
borhood U of x0 which is contained in all of UO,UX and U29 we have

\\a(x) - αX^I^IIα^) - an£x)\ + lk«0(^) - ^"(^ll + lk"(^) - Λ'(Λ:) II
<θ/3 + θ/3 + e/3 = e.

That is, a(x) e ίί(^(^o), ^o ? €,a'(x)). Thus the first half part of the theorem is
proved.

Now let f{x) be an arbitrary bounded complex-valued continuous function

on X and take a cross-section a £ CF(X, β). It is clear that / α is a bounded
cross-section of β. Let «r0 be a point of X and consider a neighborhood U(f{xQ)
aix0), U0,€,a0(x)) of /0r o ) <z(.r0). Take an element ax^F with α(^ 0) = tfiC^o). Since
α(x) is continuous in ^.p we can find a neighborhood £Λ of ^τ0 such that

\a(x) — a^x^KS/Sm for every xz Uu

where m = sup \f(x) \. On the other hand, the continuity of fix) implies that

there exists a neighborhood U2 of x such as

\fix) -fixo)\<S/S\\dl\\ for every x e U2.

Finally, as fixo)aλ ^F and fixo)a1ixo) =fixo)aixo) = aoixo) there exists a neigh-
borhood U3 of ^o at each point x of which

\\fixo)aίix)-aoix)\\<ε/3.

Therefore, at each point x of the neighborhood U of x0 which is contained in
all of the above neighborhoods, we have

IΛΦfr) - ao(x)imf(x)a(x) -f{x)aί(x)\
+ \f{x)ai(x) -f(xΰ)aι(x)j + lAxofoix) - aJix)\
< ε/3 + ε/3 + ε/3 = ε.
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Hence f a(x) is a bounded continuous cross-section of β. That is, fa £ CF(X,β).
This completes the proof.

Now we assume, for the rest of the discussions, that X is a locally compact
Hausdorff space and A(x)'s are C '̂"-algebras. We consider a fixed family F of
cross-sections a(x) of β satisfying the following conditions

(a) ||α(α:)|| is continuous on X and vanishes at infinity,
(b) at each point x £ X, F(x) fills out the algebra A(x),
(c) F forms a self-adjoint algebra under pointwise operations.

Denote by CV(X,£i)3) the algebra of all cross-sections of β, continuous in
^Vtopology and vanishing at infinity of X. (Here we mean a cross-section a(x)
vanishing at infinity if the function ||α(^:)|| vanishes at infinity). We notice that
the proof of Theorem 1.1. can be applicable to the algebra CF(X, β) and we
see that CF(X, β) is a C^-algebra. Moreover for any cross-section a(x) in
CF(Xyβ) and any bounded complex-valued continuons function/(.r), the cross-
section fa(x) is ^/--continuous and vanishes at infinity. It follows that CF(X, β)
is closed under multiplication by C(X), the algebra of all bounded complex-valued
continuous function on X.

If X is compact and all A(x)9s are isomorphic to a fixed C^-algebra A and
F is a family of so-called constant cross-sections, then CF (X, β) is isomorphic
to the usual Jl-valued continuous function algebra C(X, A). Moreover it is not
difficult to see that in this case the space β with ^Vtopology is homeomorphic
with the product space XxA. But generally the situation is not so simple as
we shall see from the discussions in section 3 and Tomiyama-Takesaki [11].

The next theorem shows that the cross-section algebra CF(X,β) satisfies
the condition corresponding to the regularity in commutative function algebras.

THEOREM 1.2. For any closed set G in X, any point xo<^G and an
arbitrary element b in A(x0), CF(X,β) contains a cross-section a{x) such that
a(xo) = b and a(x) = 0 for every x^G.

PROOF. Let ά{x) be an element of CF(X, β) with a'(x0) = b and fix) a
bounded complex-valued continuous function on X with f(x0) = 1 and f(G) =0.
Then a=f a'ζCF(X,β) satisfies the property.

LEMMA 1.1. Let P be a primitive ideal in CF(X,β). Then there exists
uniquely a point x0 in X and a primitive ideal P(^τ0) ^ A(x0) such that

P={ae C χ X , β ) | ^ 0 ) e P(χ0)}.

PROOF. Let Xo be the one-point compactification of X. Adding new fibre
AίXco) — 0 at the exceptional point x^ CF(X9 β) may be considered to be the
algebra of all cross-sections of &' = β U A(xco) continuous in gΓrtopology.

(3) This definition is the same aε the maximal full algebra of operator fields in Fell's paper
in Acta Math., 106 (1961).
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Hence, by Lemma 3.2 in Kaplansky [7], we see that the algebra CF(X,β) on
Xo satisfies all the conditions (a) to (d) in [7 : p.225]. Thus, coming back to the
algebra CF(X,β) on X one easily see that we can freely use Therem 3.1 in [7]
on X.

By Theorem 3.1 in [7] we have

p = [a € CF(X,β)\a(x) € P(x)for every x € X]

where P(x) means the closed ideal in A(x) consisting of all a(x)'s for a € P.
Suppose that there exist different points xux2 such that P{xλ) and P(x2) are
proper closed ideals in A{xx) and A(x2) respectively. Let U(xλ) and U(x2) be
disjoint neighborhoods of xί and x2, and put

pι = [a € G<X,β) |α(*) € P(^) for c € ί/(^2)
c),

P2= [a z CF(X,β)\a(x) € P(:r) for x € C7(^)c},

where £/0ri)c and U(x2)
c mean the complements of U(xλ) and U(x2). Pi and P2

are proper closed ideals in CF(X,β) and since U(xλ)
c U U(x2)

c = X we have
?! fl ft = -P. On the other hand, by Theorem 1.2. Cp(X, £5) contains a cross-
section α(.x) such that a(x2) ^ P(^2) and α(^:) = 0 for x € U(x2)

c. Hence we
get P^^LP and similarly P2 =2P, which is a contradiction. Therefore there
exists only one point x0 £ X where P(x0) is a proper ideal in A(x0). We have

P = {α € C,(X,β)|Λ(;co) € P(^o)}.

It is not dimcult to see that the ideal P(x0) is a primitive ideal in A(x0). This
completes the proof.

Now let Ω be the structure space of CF(X. β), i.e. the space of all primitive
ideals in Ct(X, β) with hull-kernel topology.

Ix= [a € CF(X,β)\a(x) = 0}.

Clearly Ix is a closed ideal in CF(X,β). We denote by h(Ix) the hull of Ix in
ί2, that is, h(Ix) - { P ί ί l |P=> 7X}.

The following lemma is almost clear, so we omit the proof.

LEMMA. 1.2. h(Ix) is homeomorphic with the structure space of A(x).

Then we get the structure theorem for Ω.

THEOREM 1.3. Ω = \J h(Ix) is a decomposition of Ω into closed sets h(Ix)
areJΓ

and the space X is homeomorphic with the quotient space of this decomposition.
In particular, if all A(x)'s are simple C*-algebras, X is homeomorphic with Ω,
hence in this case Ω is a Hausdorjf space.

PROOF. By Lemma 1. 1 we see that \^J h(lx) is a decomposition of Ω.
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Let O be an open set in X and put O = \J h(Ix). We show that O is an

open set in ίλ Let P be a primitive ideal in CF(X,B) such as P 3 k(Oc), where

k(Oc) means the kernel of the complement of O in ίl. P belongs to some h(IXo)

by Lemma 1.1. Suppose that P € O, then ;r0
 ζ O. By Theorem 1. 2, there

exists a cross-section a{x) in CF(X,β) satisfying the condition that a(x0)^ P(XQ)

and a(x) = 0 for each x € Oc, then α £ £(OC) and a ^ P. This is a contradic-

tion. Hence P £ Oc and O is an open set in 12.

Conversely let O — \J h(Ix) be an open set in ίl and x0 be an arbitrary

point of the closure of Oc, the complement of O in X. We must show that
x0 £ Oc. Suppose on the contrary that x0 € O, then for an ideal P € h(IXo) we

can find a cross-section a € CF(X, β) such as a <Ξ ̂ (OC) and a ^ P because F

does not belong to the closed set Oc. Since Oc = \J h (7X), this means that
a-cθ

α(x) = 0 for every x € Oc and a(x0) 4= 0. However this contradicts the continuity
of a(x). Thus x0 € Oc and O is an open set in X.

Since there is one-to-one correspondence between X and the quotient space

of the decomposition ί2 = \j h(Ix), we have shown that this correspondence is

bicontinuous.

2. Subalgebras of algebras of cross-sections.

In order to prove the non-commutative Stone-Weierstrass theorem for
cross-section algebras, we need the following theorem which is a direct conse-
quence of Glimm's strengthened non-commutative Stone-Weierstrass theorem of
pure state type (cf. Glimm [3]).

THEREM 2.1. Let A be a C*-algebea and B a C*-sub algebra of A. Sup-
pose that B separates the w*-closure of the pure states of A. Then A = B if
both A and B have a unit or A has no unit. If A has a unit and B has
not, A coincides with the algebra generated by B and a unit.

PROOF. Let Ax be a C*-algebra obtained by adjoining a unit to A, then
the algebra Bx obtained also by adjoining a unit to B is naturally considered
to be a C^sub-algebra of Aλ. Let φ be an element of the ^-closure of the pure
states of Aλ and {φa} a net of pure states of Aί converging weakly to φ. If φ
is a non-zero functional on A, we may suppose that all φ«s are non-zero func-
tionals on A and, since A is a closed ideal in Au this implies that all φa's are
pure states of A by an argument in the proof of Theorem 2 in Tomiyama-
Takesaki [11]. Hence φ \ A, the restriction of φ to A, belongs to the pure states
of A, too. On the other hand, it is clear that the w*-closure of the pure states
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of A contains zero-functional if A has no unit (cf. Glimm [4 Lemma 9]).
Now let φ and ψ be different elements of the w* closure of the pure states of

Ax. Then we have φ4=ψ on A. Since φ \ A and ψ | A belong to the w^-closure of
the pure states of A as mentioned above, we can find an element a € B such
as φ(ά) 4= ψ (a). Hence Bx separates the w*-closure of the pure states of Ax

and we get Ax = Bx by Glimm [3: Theorem 1]. Therefore we can deduce the
conclusion in each case stated in the theorem.

It is not difficult to see that the last case in Theorem 2. 1. really arises
even if A is a CCR algebra. This case corresponds to the case in usual Stone-
Weierstrass theorem that B coincides with the algebra of all continuous functi-
ons vanishing at a single point. Thus the non-commutative Stone-Weierstrass
theorem of CCR algebras stated in Kaplansky [7 : Theorem 7. 2] is generally
insufficient if we do not restrict the case to a certain limit.

Using Theorem 2.1 we can prove the following non-commutative Stone-
Weierstrass theorem for the cross-section algebra CF(X,β) defined in section 1.

THEOREM 2.2. Let C be a self-adjoint subalgebr a of CF{X,β) where β =

\^J A(x). Suppose that for any distinct points x, y £ X, C contains cross-sections
XtX

taking arbitrary pairs of values in A(x), A(y) at x,y. Then C is dense in CF(X, β)-

PROOF. Let ψ be an element of the z£/*-closure of the pure states of
CF(X, β) and {φa} a net of pure states converging weakly to φ. Put

Pa = {a € CV(X, β)\φ* (b*ac) = 0 for every b,c € CF(X, β)}. Then it is

known that Pa € Ω for each a. Suppose that {Pa} is not eventually in any
compact set of ίl. Denote by a(P) the homomorphic image of a € CF(X, β) in
CF(X,β)/P ίoτ an idea] P. Since the sets [P € Ω\\\a(P)\\ ^ £} for S positive
are compact (cf. [7 : Lemma 4. 3]), one easily verifies that φ = 0. Hence if
φ =}= 0, {Pa\ must be eventually in some compact set in ί2 and in this case we
may suppose, without loss of generality, that P converges to some point Po

in O.
Now let φ and ψ be different elements of the w^-closure of the pure states

of CF(X,β) and {φa}, [ψβ] nets of pure states converging to φ and ψ respec-
tively. Put

Pa = [a € Cr(X,β)\φ*(b*ac) = 0 for every b, c € CF(X,β)}

and

Qβ = [a e CF(X,β)\ψβ(b*ac) = 0 for every b,c e CF(X,β)}.

We assume at first that both φ and ψ are non-zero functional on CF(X, β).
Then we may suppose that {Pa} and [Qβ] converge to some points Po and Qo

in O. By Lemma 1.1 for each primitive ideal Pa there exists a point xa € X
and a primitive ideal P(xa) in A(xa) such that
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Pa = {a € CF(X,β)\a(xa) € P(xa)}.

Similarly Q5 may be written as

Qβ = [a € CΊ<X,e)|a(y.O € Qfo)

for some point 3/̂  ^ X and primitive ideal Q(y*) in A(yι3).

Let

and

where P(x0) and Q(y0) mean the primitive ideals in A(x0) and -A(y0) respectiv-
ely. Then, by Theorem 1. 3, xa converges to x0 and y3 to y0. Takea cross-
section a € CF(X,β) with α(x0)

 = 0? then ||α(.rα)|| converges to ||α(.Xo)ll — 0
as

we get ^?(α) = 0. Similarly ψ (a) = 0 for any cross-section a £ CF(X, B) with

α(3>0) = 0. Here we have two cases in question.

1. the case x0 = y0. Let a be an element of CV(X, (8) such as φ(a) 4= ̂ K#)-

We can find an element a in C with α( r 0) = a'(x0). Then α(x0) — ^(^0) =

2. the case io=|=3/o. Let

p ' = {a € C.<X,6) |^(^W) = 0 for every 6, c € CF(X, β)}

and

;) = 0 for every b,c * CF(X,β)}.

P{) and QQ are not contained in each other, for Po contains the ideal [α € CF

(X, β)\α(x0) = 0} and Qo the ideal [α z CF(X, β)\α(y0) = 0}. Hence there exists

an element α £ Cf(X,β) such as α £ PQ and α ^ Qό, so that we get some

elements b, c in CF(X,β) such as φφ*αc) = 0 and ψ(b*αc)= 0. Take an element

ά £ C with (/(.To) = b*αc(x0) and α'(y0) = b*αc(y0). We have,

<:) = 0, and ψ(α) = ψ(b*αc) + 0.

On the other hand, if one of φ and 'ψ1 is zero, say φ, then ψ1 determines a
point x0

 € X and >K<z) = 0 whenever α(x0) = 0. Hence one verifies easily that
the restriction of ψ to C is a nonzero functional, too.

Now let C be the closure of C in CF(X, β). We must show that C = CF(X, β).

Clearly C is a C*-subalgebra of CF(X> β) and the above discussion shows that
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C separates the zc*-closure of the pure states of CF(X, β). Hence if CF(X, β) has

no unit we get directly C = CV(X, β) by Theorem 2.1. In the case that CV(X, β)
has a unit, it is sufficient to show that C has a unit, too. Otherwise, C is a maximal
ideal in CV(X, β) whose quotient algebra is one-dimensional but this is a contradic-
tion as it is easily seen from [7: Theorem 3.1] and the condition for C There-
fore in any case C = CF(X, β). This completes the proof.

Theorem 2. 2. offers the affirmative answer to the question in Kaplansky
[7], that is, Theorem 3.3 and 3. 4 in [7] can be proved without any restriction
on the fibre A{x). Both Corollary 1 and 2 are readily deduced from Theorem
2. 2.

COROLLARY 2.1.1. Let X be a locally compact Hausdorff space at each

point of which a C*-algebra A(x) is given. Let A be a C*-algebra of cross-

sections aix) of (S(= \J A(x)) satisfying the postulate that \a(x)\ is continuous

and vanishing at infinity. Suppose further that for any distinct points x,y £ X, A
contains functions taking arbitrary pairs of values in A(x), A(y) at x,y. Then
A is closed under multiplication by C(X), the algebra of all bounded continu-
ous functions on X.

COROLLARY 2. 2. 2. Let X be a locally compact Hausdorff space, D a
C*-algebra and A the C*-algebra of all continuous functions vanishing at infinity
from X to D. Let B be a C*-subalgebra of A, which contains functions taking
arbitrary prescribed pairs of values in D at every distinct points x, y £ X.
Then A = B.

Let C be a self-adjoint subalgebra of CV(X, β). As in the case of commuta-
tive function algebras the weakest topology in X for which each a(x) £ C is
norm continuous (that is, the function || a (x) \\ is continuous) is called the
C- topology in λ".

THEOREM 2.3. If C is a self-adjoint subalgebra ofCF(X, β) which contains
cross-sections taking arbitrary pairs of values in A (x), A(y) at any distinct
points x, y in X, then the given topology in X is equivalent to the C-topology.

PROOF. Since the function ||α(x)|| is continuous in the original topology in
X for any cross-section a(x) £ C, it is clear that the original topology is
stronger than the C-topology. Hence any closed set in C-topology is closed in the
original topology, too. Conversely, let G be a closed set X in the original
topology. We assert that

G= {x

In fact, it is clear t h a t G £= {x £ X\IX ZD f\Iy}. T a k e a point x0 in the r ight

member.If xQ does not belong to G,then w e c a n find a cross-section a(x) in CF(X, β)
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such that a(x) = 0 on G and a(x0) =j= 0, a contradiction. Let x0 be a point in the

closure of G in the C-topology and take a cross-section a £ (~\ Ix. Clearly a(x) =
xaG

0 for every x £ G. Since C is dense in CF(X, B) by Theorem 2.2, all cross-sections
in CF(X, B) are norm continuous in the C-topology. Therefore a(x0) = 0, hence

IXo ZD f~\ Ix. We have x0 £ G and G is closed in the C-topology. This COmp-

letes the proof.

THEOREM 2.3. Let G be closed set in X. Then any *fF' continuous cross-
section a(x) defined on G and vanishing at infinity can always be extended
to the whole space X.

PROOF. Let

1= {a e CF(X,B)\a(x) = 0 for x € G}

and Co the algebra of all ^-continuous cross-section on G vanishing at infinity.
Consider the factor algebra CF(X, B/I, then the mapping [a] —> a(x) \ G is the
natural embedding of CF(X, B)/I into Co where [a] means the class to which
a{x) belongs and a(x)\G the restriction of a(x) to G. By Theorem 2.2 this
embedding is onto. Hence any <ίΓV-continuous cross-section on G vanishing at
infinity is the restriction of an element in CF(X, β).

3. Topological representation of C*-algebras as algebras of cross-
sections.

Let A be a C^-algebra and ίl the structure of A, that is, the space of all
primitive ideals in A with hull-kernel topology. We denote by a(P) the homo-
morphic image of a £ A in the quotient algebra A/P by an ideal P in A. Let

Ω = \J Ωx be a decomposition into closed sets of ίl and put xa = k(Ωa) (kernel
αsΓ

of Ωx). Then there is a one-to-one correspondence between the set of ideals
X= {xΛ\a £ Γ} and the quotient space of ίl with respect to this decomposi-
tion, so that we can consider on X the quotient topology of this decomposition.

DEFINITION. Let ί l = \J Oα be a Hausdorjf decomposition^ of ίl and

put X = {xa\a£ Γ} where xcx = k(O«). We call X the decomposition space of
ίl. If we have

S={x z X\x

for any subset S in X where S means' the closure of S in the quotient topo-
logy, this decomposition is called a continuous decomposition of ίl.

(4) A decomposition is called a Hausdorff decomposition if the quotient space of the decom-
position is a Hausdorff space.
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With this definition we get the following topological representation theorem
of C^-algebras.

THEOREM 3.1. Let A be a C*-algebra and Ω = \J ί2Λ a continuous de-
αeΓ

composition of the structure space Ω of A. Then the decomposition space X =
{xa IOL £ Γ] with quotient topology is a locally compact Hausdorff space on
which each element a € A is represented as the cross-section a {x) satisfying
the postulate that \a(x)\ is continuous on X and vanishing at infinity. Put

β = \^J A(x). Then A is represented as CA{X, β) the algebra of all cross-

sections of β continuous in ^Ά-topology and vanishing at infinity of X.

PROOF. From the definition of X, X is a Hausdorff space. Let a be an
element of A and £ a positive number. Put K = {x € X\ ||α(;r)|| i^£}. Then K
is an image of the set [P € Ω\ \\a(P)\\ §= £} in Ω by the quotient map, for it is
clear that the latter is mappped into K and moreover for any point x € X
there exists a primitive ideal P which contains x and ||<z(P)|| = | |Λ(^)| | (cf.
Kaplansky [7 : p. 234]). Since the set [P e β | \\a(P)\\ ^ £} is compact by [7:
Lemma 4. 3], K is a compact subset of X. Hence K is closed in X because X
is a Hausdorff space. Therefore the function ||<z(.z)|| is upper semi-continuous
in X.

In order to prove the lower semi-continuity of ||<zθr)|| we must show that
the sets [x £ X\ ||<z(.z)|| ^ £} for £ positive are closed in X. Because of the
identity ||<Λz|| = ||α||2, we need consider only the case where a is self-adjoint.
Suppose that x0 is in the closure of the set S = [x £ X | ||α(:r)|| ^ £} and
||α(xo)ll = P > £• Let y(x) be a real-valued continuous function defined as follows :
y((— °°>€]) — 0, γ([/o, + oo]) = 1 and y(x) is linear on [£, ρ\. Then γ(α)(.r) =
γ (α(x)) = 0 for every x e S hence y(a) <= ̂ (*S), the kernel of S and y(a) (x0)
=h 0, that is, γ(α) ̂  Λ:0 However this contradicts the definition of a continuous
decomposition. Hence x0 £ S.

Therefore, ||α(:r)|| is a continuous function on X and X is a locally com-
pact space.

Now put β = y^J A(x), then the above argument shows that we can

associate with any a £ A the cross-section a(x) of β such as ||α(x)|| is contin-
uous and vanishing at infinity. Moreover one easily see that ||α|| = sup ||α(:r)||.

a eΛ'

Hence we may identify A with the represented algebra of cross-sections of β.
Consider the topology gfΆ in β and let CA(X, β) be the algebra of all cross-
sections of β continuous in ^Vtopology and vanishing at infinity of X. We
assert that A contains cross-sections taking arbitrary pairs of values in A (x),
A(y) at distinct points x, y £ X. In fact, consider the ideal

x + y — {a + b\a € x, b £ y}.
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Then x + y is dense in A, for otherwise there exists a primitive ideal P in A
containing x + y, that is, P € h(x) Π h(y). However, since the decomposition

Ω = \^J Ωx is a Hausdorff decomposition, each class ΩΛ is closed in Ω and

Ω* = hk(ΩΛ) which implies that h(x) Π ̂ Cv) = Φ whenever x 4= y, a contradic-
tion. Thus .r + 3/ is dense in A and by Lemma 8.1 in [5] we have A = x + y.
Let aλ(x\ a2(y) be an arbitrary pair of values in A(x\ A(y) at distinct points x,
y € X. We can find an element a\ £ x and an element αj ^ 3 ; such that aλ — a2

= d\ — a2. Let

a0 = aλ — a\ = a2 — az.

Then clearly ao(x) — aλ(x) and ao(y) = a2(y).

Therefore, by Theorem 2. 2, the represented algebra A coincides with
CA(X, β). This completes the proof.

REMARK. It is to be noticed that the decomposition in Theorem 1. 3 is a
continuous decomposition of the structure space of CF(X, β). Thus Theorem
3. 1 is considered as the converse of Theorem 1. 3.

As a direct consequence of this theorem we get the following representation
theorem of C^-algebras whose structure spaces are Hausdorff.

COROLLARY 3.1.1. Let A be a C*-algebra and Ω the structure space of

A. Suppose that Ω is a Hausdorff space and put β = \J A (P). Then A is

represented as C/ίl, &), the algebra of all cross-sections of β continuous in gΓA-
topology and vanishing at infinity of Ω.

Though the above defined topology is slightly different from the bundle
space topology defined in Tomiyama-Takesaki [11] in the case that A is an
n-homogeneous C*-algebra, one may easily see that they are equivalent. Therefore
Corollary 3.1.1 is a natural generalization of Theorem 5 in [11].

Now the above result shows that the commutative method is always applicable
to the class of C*-algebras whose structure spaces are Hausdorff. Hence there
is no reason to distinguish the central C^-algebras from the C*"-algebras whose
structure spaces are Hausdorff spaces and we get naturally the following

COROLLARY 3.1.2. Let A be a C*-algebra and Ω the structure space of
A. Suppose that any PzΩ does not contain the center Z of A. Then A is
central if and only if Ω is a Hausdorff space.

PROOF. It is sufficient to prove the "if" part of this corollary. Suppose that Ω
is a Hausdorff space. Let P and Q be different primitive ideals in A and take
an element z in Z such as z(F)4s0. Let / be a bounded complex-valued contin-
uous function on Ω such as f(F) = 1 and f(Q) = 0, then by Corollary 3.1.1 we
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have fize A. Since fiz(P) = z(P)=^0 and fz(Q) = 0, one sees that fizίξ.Pf]Z
and fizz QΓiZ. Thus P[\Z^Q[\Z, hence 4̂ is a central C*-algebra.

REMARK. A Hausdorff decomposition is not necessarily a continuous
decomposition though, in the whole space Ω, the Hausdorff property is equi-
valent to the continuity property of ||α(JP)||.

4. Topological representation of W^-algebras and their pure state
spaces. In this section we prove that there exists always the finest continuous
decomposition in the structure space of a W*-algebra A. As we see below, this
is an another interpretation of the decomposition considered by Glimm [3]. We
shall make clear the situation of Glimm's theorems by [3] on the pure state
spaces of W*-algebras and give more sharpened results for them.

Let A be a C^-algebra and Ω the structure space of A. A decomposition

Ω = \^J Ω* is called finer than the decomposition Ω = \^J ΩA if each Ω« is cont-
αeΓ λeA

ained in some class Ωl.

THEOREM 4.1. Let A be a W*-algebra, Ω the structure space of A and

Ωo the structure space of the center Z of A, Then Ω = \^J h(ξ) is the finest

continuous decomposition of Ω whose decomposition space X with quotient
topology is homeomorphic with Ωo.

Thus, setting β — \j A(x\ A is represented as CA(X, β), the algebra of all
xzX

bounded ^i-continuous cross-sections of β. Notice that in this case a continuous
function f on X is considered to be a continuous function on Ωo, hence an element
in Z and fa{a € A) coincides with the usual product of the central element f
and a in A.

PROOF OF THEOREM 4.1. Since the map : Pz Ω-+P[) Zz Ωo is a continuous

map from Ω to Ωo, it is not difficult to see that the decomposition Ω = \^J h(ζ)

is a Hausdorff decomposition. Let O = \^J h(t) be an open set in Ω. We assert
ζeO

that O is an open set of Ωo, so let f0 be a point of O and Po a primitive ideal

in h(ζQ). Since Oc, the complement of O, is closed in Ω we can find an element

a£ A such as a(P0) 4=0 and a(P) = 0 for every P^OC. Let X be the decompo-

sition space of Ω = \J h(ζ), that is, X = {x(ξ) = kh(ξ)\ξzΩ0}, then one easily

see that a(x(ζo))^O and a(x(ζ)) — 0 for every ζ € O , the compplement of O in
Ωo. Hence, by Lemma 10 in Glimm [3], there exists a neighborhood U of ζQ

contained in O and this implies that O is an open set in Ωo,
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Now it is clear that there is a one-to-one correspondence between X and
ίl0, and the above discussion shows that this correspondence is bicontinuous
where the set X is endowed with the quotient topology with respect to the

decomposition Ω = \^J h(ζ).
ζ<Ωo

Next, let S be an arbitrary subset of X and S the closure of S in X. Put

S= [x € X\χz>k(S)}.

Then, by the definition of quotient topology, it is not difficult to see that

S C S. Conversely suppose that a is in k(S), the kernel of S. Then a{x) = 0

on S and by [3 : Lemma 10] a(x) — 0 on S, hence a^x for every x £ S. That

is, S a S and we get, S — S. Therefore the above decomposition is a contin-
uous one.

We shall show that the above decomposition is the finest continuous deco-

mposition of Ω. Suppose on the contrary that there exists a continuous decom-

position Ω = yj Ω* exactly finer than the decomposition Ω = \J h(ξ). Then

we get at least two distinct class ΩΛ and Ωβ in some class h(ξ). Let x = k(Ωa)
and y = k(Ωβ). As x ^β Z, there exists an element z € Z such as z(x) 4= 0 hence
taking a bounded continuous function f on the decomposition space of the

decomposition Ω = \J Ωα such as f{x) — 1 and f(y) = 0 we have, by Theorem

3.1, fz € Z and fz έξΞ x, fz € 3;. This is a contradiction.

By the pure state space of a C^algebra A with unit, we mean the zv*-
closure of the pure states of A and denote it by $ (^4). © (̂ 4) means the state
space of A.

We keep the above notations in Theorem 4.1 for the rest of this section.
Next lemma concerns with the first half part of Theorem 4 in Glimm [3].

LEMMA 4.1. If A(x) has a non-zero GCR ideal, then A(x) is a primitive
algebra and contains a minimal projection.

PROOF. Let Ix be a non-zero GCR ideal in A(x), then Ix has no ideal
divisors of zero because A(x) has no ideal divisors of zero (cf. [3: Lemma 11]).
Hence, by Kaplansky [7 : Lemma 7. 4], Ix is primitive and there exists a primitive
ideal Px in A(x) such as Px Π Ix = {0}, which implies Px = {0}, Therefore A(x)
is a primitive algebra. On the other hand, Ix contains a minimal projection and,
as Ix is an ideal in A(x), this is also a minimal projection of A(x).

LEMMA 4.2. Every projection in A(x) is the image of some projection
in A.

PROOF, Let eXQ be a projection in A(x0). By the proof of Lemma 12 in
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Glimm [3], we can find an element a £ A and a neighborhood U of x0 such
that a(x) is a non-zero projectionin A(x) for every x £ U and α(r0) = £.ro

Moreover as X is homeomorphic with Ωo which is known to be a totally dis-
connected space, there exists an open and closed neighborhood V of x0 contained
in U. hetf be the characteristic function of V and put e = fa, then it is not
difficult to see that e is a projection of A and e(x0) = eXo.

Now we get

THEOREM 4.2 . Lei A be a W*-algebra. Then the following statements
are equivalent:

(1) A is of continuous type, that is, A has no type I portion,

(2) A has no non-zero GCR ideal,

(3) A(x) has no non-zero GCR ideal for every x € X,

(4) φ(A(x)) = <5(A(x)) for every x € X,

(5) $(.A) = [tψx(φ)\φ € <5(A(x)), x £ X},

canonical map from A to A(x).

The implications (1) «=» (2) •=£ (5) were established in Glimm [3] but we prove
here all implications for the completeness.

PROOF. (1) => (3). Suppose that there exists a point x e X such that A(x)
has a non-zero GCR ideal. Then, by Lemma 4.1. A(x) contains a minimal
projection ex, which is the image of a projection e in A. Since A is of contin-
uous type it is well known that e is the sum of two equivalent orthogonal
projections eλ, e2 in A. Hence, ex = e(x) = eγ(x) + e2(x) and both of ex(x) and
e2(x) are non-zero projections in A(x). This contradicts the minimality of ex.
Therefore every A(x)'s have no non-zero GCR ideals.

(3) <=Φ (4). Since A{x) has no ideal divisors of zero, (3) implies (4) by [11:
Theorem 2]. The implication (4) •=» (5) is clear.

(5) =£ (1). Suppose that A has a non-zero type I portion Az where z is a
central projection of A. By [3 : Theorem 4], we have

- {Tψx(φ)\φ € $(,40r)) for * € X with φ ) + 0}

and 5)8(A(Λ:)) 4= ®(A(x)) for all such x's where ^ x means the restriction of ψx

to ^4z. Take a functional £> € &(A(x)) and ?̂ ̂  5)3 (A(x)) for some point x £ X

with 2:(J:) 4= 0. Then ιψx(φ) £ ^β(A) by the assumption, hence ιψx(φ) £ ?β(Az), a
contradiction. Therefore A has no type I portion.

The implication (3) •=> (2) •=* (1) is clear.

It is perhaps worth to notice that though we can not generally conclude
that the weak closure of a C^-algebra having no non-zero GCR ideal is of
continuous type, it is true in the case of a W^'-algebra.
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THEOREM 4. 3. Let A be a W*-algebra. Then the following statements
are equivalent

(1) A is of type I,

(2) A(x) has a non-zero GCR ideal for everx x € X.

PROOF. The implication (1)=^(2) is due to [3]. Roughly speaking, the
discussion is as follows : the canonical image of an abelian projection in A by
ψx is a minimal projection in A(x) or zero and as A has stufficiently many
abelian projections this means that each of A(x)'s has a minimal projecion,
hence a non-zero GCR ideal.

The converse is clear from Theorem 4. 2.

Combining (4) of Theorem 4. 2 and Theorem 4 in [3] we can easily show
that the pure state space of a W^"-algebra is determined completely by the pure
state spaces of its component algebras.

THEOREM 4.4. Let A be a W*-algebra. Then

%{A) = VΨx(φ)\φ * WA(χ))for x * X).

REMARK. One might suspect that Theorem 4.4 is valid for any cross-
section algebras, but this is not the case. Generally speaking, the weak closure
of the pure states of an algebra CF(X,β) is not determined by those of component
algebras though an element in the weak closure of the pure states of CF(X, B)
determines a linear functional on some component algebra. We can find a counter
example by Glimm [4: Theorem 6] or Tomiyama-Tαkesaki [11: Theorem 1],

After having prepared the manuscript of this paper, Fell's paper, "The
structure of operator fields, Ada Math., 106 (1961), 233-280", has appeared.
Although our research has been done quite independently from Fell, there are
several similar results; for examples, our Theorem 2. 2 and its Corollary 2. 2.1
correspond to Theorem 1. 4 and its Corollary in Fell's paper. However, in stead

of the dual space A of a C"*f-algebra A as in Fell's paper, we employed mainly
the ideal dual space ί l of A through our paper and this makes differences such
as we see, for example, in our Theorem 1. 3 and Corollary of Theorem 1. 2 in
Fell's paper.

In our § 3, we have treated the topological representation of C* algebras
in this case, our method is quite different from Fell, however incidently our
Corollary 3.1.1 corresponds to Theoreml 2. 3 in Fell's paper.
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