ON ALMOST-ANALYTIC FUNCTIONS, TENSORS AND INVARIANT SUBSPACES

SHUN-ICHI TACHIBANA AND SATOSHI KOTO

(Received February 15, 1962)

0. Introduction. In previous papers [2], [6], we introduced the notion of Φ-tensors as a generalization of analytic tensors. The main purpose of this paper is to introduce the notion of almost-analytic function and almost-analytic submanifold and to define an operator acting on tensor fields defined on an invariant subspace.

In § 1 and § 2 we define almost-analytic functions and almost-analytic submanifolds in an almost-complex space. A new Φ -operator on an invariant subspace of the manifold admitting a tensor fields of type (1, 1) is defined in § 4, after preliminary facts are given in § 3. Some formulas about the Φ -operator are given in § 5 and we devote § 6 to Kählerian spaces. The results of all sections except § 6 are independent from connection or metric.

1. Almost-analytic functions. Consider an n-dimensional differentiable manifold admitting a tensor field whose components with respect to local coordinates $\{x^{\lambda}\}$ are $\varphi_{\mu}^{\lambda 2}$. A tensor field $T_{(\mu)}^{(\lambda)} \equiv T_{\mu_q...\mu_1}^{\lambda_p...\lambda_1}$ is called to be pure in λ_i , μ_j or briefly to be $\mathfrak{p}(\lambda_i, \mu_j)$ if it commutes with φ_{μ}^{λ} in λ_i , μ_j i. e. it holds that

$$\varphi_{\mu_i}{}^{\sigma} T_{\mu_q...\sigma..\mu_1}{}^{(\lambda)} = \varphi_{\sigma}{}^{\lambda_i} T_{(\mu)}{}^{\lambda_p...\sigma..\lambda_1}$$

Analogously $T_{(\mu)}^{(\lambda)}$ is called to be $\mathfrak{p}(\lambda_i, \lambda_j)$ or $\mathfrak{p}(\mu_i, \mu_j)$ if

$$\varphi_{\sigma}^{\lambda_{i}}T_{(\mu)}^{\lambda_{p}\ldots\sigma\ldots\lambda_{j}\ldots\lambda_{1}}=\varphi_{\sigma}^{\lambda_{j}}T_{(\mu)}^{\lambda_{p}\ldots\lambda_{i}\ldots\sigma\ldots\lambda_{1}}$$

or

$$\varphi_{\mu_i}^{\ \sigma} T_{\mu_q,\ldots\sigma\ldots\mu_j\ldots\mu_1}^{\ \alpha}(\lambda) = \varphi_{\mu_j}^{\ \sigma} T_{\mu_q\ldots\mu_i\ldots\sigma\ldots\mu_1}^{\ \alpha}(\lambda)$$

is valid respectively. If a tensor is pure in every pair of its indices, then it is called a pure tensor. We consider for convenience sake the covariant vector and the contravariant vector as pure tensors.

A tensor field $T_{(\mu)}^{(\lambda)}$ is called to be hybrid in λ_i , μ_j or briefly to be $\mathfrak{h}(\lambda_i,\mu_j)$ if it anticommutes with φ_{μ}^{λ} in λ_i , μ_j i.e. it holds that

$$\varphi_{\mu_j}^{\ \sigma} T_{\mu_q...\sigma...\mu_1}^{\ (\lambda)} = - \varphi_{\sigma}^{\ \lambda_i} T_{(\mu)}^{\ \lambda_p...\sigma...\lambda_1}.$$

¹⁾ The number in brackets refers to the the Bibliography at the end of the paper.

²⁾ $\lambda, \mu, \nu, \dots = 1, 2, \dots, n$. As to the notations we follow Tachibana, S., [6].

Analogously $\mathfrak{h}(\lambda_i, \lambda_j)$ and $\mathfrak{h}(\mu_i, \mu_j)$ are defined.

The Φ-operator is defined for pure tensors as follows,

$$\begin{split} \Phi_{\nu} T_{(\mu)}^{(\lambda)} &= \varphi_{\nu}^{\sigma} \partial_{\sigma} T_{(\mu)}^{(\lambda)} - \partial_{\nu}^{*} T_{(\mu)}^{(\lambda)} \\ &+ \sum_{i=1}^{q} \left(\partial_{\mu_{i}} \varphi_{\nu}^{\sigma} \right) T_{\mu_{q} \dots \sigma \dots \mu_{1}}^{(\lambda)} \\ &+ \sum_{i=1}^{p} \left(\partial_{\nu} \varphi_{\sigma}^{\lambda_{j}} - \partial_{\sigma} \varphi_{\nu}^{\lambda_{j}} \right) T_{(\mu)}^{\lambda_{p} \dots \sigma \dots \lambda_{1}}, \end{split}$$

where $\partial_{\sigma} = \partial/\partial x^{\sigma}$ and

$$T_{(\mu)}^{*} = \varphi_{\mu}^{\epsilon} T_{\mu_{\sigma} \dots \epsilon_{\sigma} \dots \mu_{\sigma}}^{(\lambda)} = \varphi_{\epsilon}^{\lambda_{J}} T_{(\mu)}^{\lambda_{p} \dots \epsilon \dots \lambda_{1}}.$$

This operator yields from a pure tensor of type (p, q) a tensor of type (p, q + 1). The definition is independent from connection or metric, so it is defined on differentiable manifolds admitting a tensor field of type (1, 1).

The following equations are known³⁾,

$$egin{aligned} \Phi_{
u}v^{\lambda} &= -\mathop{arphi}_{
u} oldsymbol{arphi}_{
u}^{\lambda}, \qquad \Phi_{
u}\delta_{\mu}^{\lambda} &= 0, \ \Phi_{
u}oldsymbol{arphi}_{
u}^{\lambda} &= N_{
u}^{\lambda}, \end{aligned}$$

where \mathcal{L}_{v} denotes the operator of Lie derivation with respect to v^{λ} and $N_{\nu\mu}{}^{\lambda}$ is the so-called Nijenhuis tensor defined by

$$N_{
u\mu}^{\ \lambda} = oldsymbol{arphi}_{
u}^{\ \sigma} \partial_{\sigma} oldsymbol{arphi}_{\mu}^{\ \lambda} - oldsymbol{arphi}_{\mu}^{\ \sigma} \partial_{\sigma} oldsymbol{arphi}_{
u}^{\ \lambda} + oldsymbol{arphi}_{\sigma}^{\ \lambda} (\partial_{\mu} oldsymbol{arphi}_{
u}^{\ \sigma} - \partial_{
u} oldsymbol{arphi}_{\mu}^{\ \sigma})^{4}.$$

Now we consider an almost-complex space which is a differentiable munifold admitting a tensor field φ_{μ}^{λ} such that $\varphi_{\sigma}^{\lambda}\varphi_{\mu}^{\sigma}=-\delta_{\lambda}^{\mu}$. In the space a pure tensor $T_{(\mu)}^{(\lambda)}$ satisfying $\Phi_{\cdot}T_{\zeta}^{(\lambda)}=0$ is called to be almost-analytic. If there exists a local function g such that $\varphi_{\lambda}^{\varepsilon}\partial_{\varepsilon}f=\partial_{\lambda}g$ for a local function f, then we shall call f an almost-analytic function of x^{λ} or a locally almost-analytic function and call g its associated function. If such a function f is defined globally, then we call it an almost-analytic function. In a complex manifold i. e. an almost-complex space with vanishing Nijenhuis tensor, we say "analytic" instead of "almost-analytic".

For a local function f we have

$$egin{aligned} \Phi_
u \partial_\lambda f &= oldsymbol{arphi}_
u^arepsilon \partial_arepsilon_arepsilon \partial_\lambda f - \partial_
u (oldsymbol{arphi}_\lambda^arepsilon \partial_arepsilon f) + (\partial_\lambda oldsymbol{arphi}_
u^arepsilon) \partial_arepsilon f \ &= \partial_\lambda (oldsymbol{arphi}_
u^arepsilon \partial_arepsilon f) - \partial_
u (oldsymbol{arphi}_\lambda^arepsilon \partial_arepsilon f), \end{aligned}$$

so $\Phi \partial_{\lambda} f = 0$ is equivalent to the existence of a local function g such that $\partial_{\nu} g = \varphi_{\nu}^{\ \epsilon} \partial_{\epsilon} f$.

³⁾ Tachibana, S., [6].

⁴⁾ Nijenhuis, A., [4].

Hence a locally almost-analytic function f is characterized by $\Phi_{\nu} \partial_{\lambda} f = 0$. For any v^{λ} and u_{λ} we have the equation

$$v^{\sigma}\Phi_{\nu}u_{\sigma}+u_{\sigma}\Phi_{\nu}v^{\sigma}=oldsymbol{arphi}_{
u}^{arepsilon}\partial_{arepsilon}(v^{\sigma}u_{\sigma})-\partial_{arphi}(v^{\sigma}u_{\sigma}).$$

Hence if v^{λ} is almost-analytic, then $v^{\tau} \partial_{\sigma} f$ is almost-analytic for any almost-analytic f and if u_{λ} is almost-analytic, then $u_{\sigma} v^{\tau}$ is almost-analytic for any almost-analytic v^{λ} .

We have known much about almost-analytic tensors in almost-Hermitian spaces. In § 1 and § 2 we give some theorems about them which are independent from connection or metric.

First we have known the following

LEMMA 1. (Yano, K.) Let f be a scalar function on a compact almost-complex space. If the form $\eta = \eta_{\nu} dx^{\nu}$ defined by

is closed, then it is constant.

PROOF. As such a space always admits a positive definite Riemannian metric tensor $g_{\mu\lambda}$ which is \mathfrak{h} (λ , μ), we denote by ∇_{ν} the operator of the Riemannian covariant derivation and make use of it. From (1. 1) we have $\nabla_{\lambda} f = -\varphi_{\lambda}^{\varepsilon} \eta_{\varepsilon}$. Applying $g^{\iota\lambda} \nabla_{\mu}$ to this we have

$$g^{\mu\lambda}\nabla_{\mu}\nabla_{\lambda}f = -g^{\mu\lambda}(\nabla_{\mu}\varphi_{\lambda})\eta_{\varepsilon}.$$

Substituting (1. 1) into the right hand side we get

$$y^{\mu\lambda}\nabla_{\mu}\nabla_{\lambda}f + y^{\mu\lambda}(\nabla_{\mu}\varphi_{\lambda}^{\epsilon})\varphi_{\epsilon}^{\nu}\nabla_{\nu}f = 0,$$

which and Hopf's theorem⁵⁾ yield the Lemma.

q. e. d.

This lemma and the definition of almost-analytic function lead us to

THEOREM 1. In a compact almost-complex space an almost-analytic function is constant.

The following lemma is also known⁶⁾

LEMMA 2. If $T_{(\mu)}^{(1)} \equiv T_{\mu_q...\mu_1}^{\lambda_p...\lambda_1}$ of type (p,q) $(\neq (1,0))$ is almost-analytic, then so is $T_{(\mu)}^{(\lambda)}$.

Now let $T_{(\mu)}^{(\lambda)}$ be pure, ρ an σ be scalar functions. If we operate Φ_{ν} to ρ $T_{(\mu)}^{(\lambda)} + \sigma$ $T_{(\mu)}^{(\lambda)}$, we have easily

$$\begin{split} \Phi_{\nu}(\rho\,T_{(\mu)}^{\ (\lambda)} + \sigma\,\overset{*}{T}_{(\mu)}^{\ (\lambda)}) &= \rho\,\Phi_{\nu}T_{(\iota)}^{\ (\lambda)} + \sigma\,\Phi_{\nu}\,\overset{*}{T}_{(\mu)}^{\ (\lambda)} \\ &+ (\varphi_{\nu}^{\varepsilon}\,\partial_{\varepsilon}\,\rho + \partial_{\nu}\,\sigma)T_{(\mu)}^{\ (\lambda)} + (\varphi_{\nu}^{\varepsilon}\partial_{\varepsilon}\,\sigma - \partial_{\nu}\rho)\,\overset{*}{T}_{(\iota)}^{\ (\lambda)}. \end{split}$$

⁵⁾ Yano, K. and S. Bochner, [7].

⁶⁾ Tachibana, S., [6], Kotō, S., [3].

Taking account of the fact that $T_{(\mu)}^{(1)}$ and $T_{(\mu)}^{(1)}$ are linearly independent we get by virtue of Lemma 1 and Lemma 2 the following

THEOREM 2. Let $T_{(\mu)}^{(\lambda)}$ of type (p,q) $(\ne(1,0))$ be almost-analytic in a compact almost-complex space. Then a necessary and sufficient condition for $\rho T_{(\mu)}^{(\lambda)} + \sigma T_{(x)}^{(\lambda)}$ to be almost-analytic is that ρ and σ are constant.

It is known that for pure tensors $V_{(\mu)}^{(\lambda)}$ and $U_{(\lambda)}^{(\mu)}$ we have⁷⁾

$$\begin{split} V_{(\mu)}^{(\lambda)} \Phi_{\nu} U_{(\lambda)}^{(\mu)} + U_{(\lambda)}^{(\mu)} \Phi_{\nu} V_{(\mu)}^{(\lambda)} \\ &= \varphi_{\nu}^{\varepsilon} \partial_{\varepsilon} (V_{(\mu)}^{(\lambda)} U_{(\lambda)}^{(\mu)}) - \partial_{\nu} (V_{(\mu)}^{(\lambda)} U_{(\lambda)}^{(\mu)}), \end{split}$$

so we have

THEOREM 3. In an almost-complex space, the scalar function defined by the inner product of two almost-analytic tensors is almost-analytic.

2. Almost-analytic submanifolds. We consider an almost-complex space X_n and an m-dimensional submanifold X_m expressed locally by the equation

$$x^{\lambda} = x^{\lambda}(\xi^{a}), \quad \text{rank } (\partial_{a}x^{\lambda}) = m,$$

where Greek indices take the values 1 to n, Latin indices the values 1 to m(< n) and $\partial_a = \partial/\partial \xi^a$.

Now we assume that X_m is an almost-complex space too and denote its structure tensor by $\varphi_b{}^a$. Then we can define locally almost-analytic functions on X_m by $\varphi_b{}^a$ as analogous as in § 1. An almost-complex space X_m will be called an *almost-analytic submanifold*, if $f(x^{\lambda}(\xi^a))$ is always almost-analytic of ξ^a for any almost-analytic function f of x^{λ} . If X_n and X_m are complex manifolds, then we call an almost-analytic submanifold an analytic submanifold.

On the other hand a submanifold X_m is called an invariant subspace,⁸⁾ if its m-dimensional tangent plane at any point remains invariant under the transformation $v^{\lambda} \to v^{\overset{*}{\lambda}} = \varphi_{\varepsilon}^{\lambda} v^{\varepsilon}$.

Suppose that X_m be an invariant subspace. Then as m vectors $B_a^{\ \lambda} = \partial x^{\lambda}/\partial \xi^a$ $(a=1,2,\ldots,m)$ span the tangent plane at each point of X_m , there exists a tensor field φ_b^a such that

$$\varphi_{\varepsilon}^{\lambda}B_{\sigma}^{\ \varepsilon}=\varphi_{\sigma}^{\ c}B_{c}^{\ \lambda}.$$

From this equation we can see $\varphi_c{}^a\varphi_b{}^c=-\delta_b{}^a$, so an invariant subspace becomes an almost-complex space by virtue of the induced tensor $\varphi_b{}^a$. Let f and g be a locally almost-analytic function and its associated function, respectively. Putting $F(\xi^a)=f(x^{\lambda}(\xi^a))$ and $G(\xi^a)=g(x^{\lambda}(\xi^a))$ we have

⁷⁾ Tachibana, S., [6].

⁸⁾ Schouten, J. A. and K. Yano, [5].

$$egin{aligned} oldsymbol{arphi}_{c}^{\ b}\partial_{b}F &= oldsymbol{arphi}_{c}^{\ b}B_{b}^{st}\partial^{st}f &= oldsymbol{arphi}_{\lambda}^{\ \lambda}\partial_{c}f \ &= B_{c}^{\ \lambda}\partial_{\lambda}g &= \partial_{c}G, \end{aligned}$$

which means that F is an almost-analytic function of ξ^a . Thus we get the following

THEOREM 4. An invariant subspace in an almost-complex space is an almost-analytic submanifold by virtue of the induced almost-complex structure.

For a locally almost-analytic f and its associated function g we consider the equations

$$f(x^{\lambda}) = \text{const.}, \qquad g(x^{\lambda}) = \text{const.}.$$

As f and g are functionally independent, they define locally an (n-2)-dimensional subspace. Since $v^{\lambda} \partial_{\lambda} f = v^{\lambda} \partial_{\lambda} g = 0$ imply $v^{\lambda} \partial_{\lambda} f = v^{\lambda} \partial_{\lambda} g = 0$, the subspace is invariant. Thus we have

THEOREM 5. In an almost-complex space if an (n-2)-dimensional submanifold is representable locally by the equations $f(x^{\lambda}) = const.$, $g(x^{\lambda}) = const.$, where f and g be a locally almost-analytic function and its associated function respectively, then it is an almost-analytic submanifold by virtue of the induced almost-complex structure.

Let v^{λ} be a (contravariant) vector field, then v^{λ} and v^{λ} span an invariant plane at each point such that $v^{\lambda} \neq 0$. We call this field of 2-planes the distribution associated to v^{λ} . Now we suppose v^{λ} is almost-analytic, then we have $f_{v} \varphi_{\mu}^{\lambda} = 0$ and

$$[v, \stackrel{*}{v}]^{\lambda} = \mathop{\pounds}\limits_{\stackrel{*}{v}} \mathop{v}\limits_{\lambda}^{*} = \mathop{\pounds}\limits_{\stackrel{*}{v}} (oldsymbol{arphi}_{arepsilon}^{\lambda} v^{arepsilon}) = oldsymbol{arphi}_{arepsilon} \mathop{\wp}\limits_{\stackrel{*}{v}}^{\lambda} v^{arepsilon} = 0.$$

This equation means that the distribution is involutive. 9) As its plane elements are invariant we get

THEOREM 6. The 2-dimensional distribution associated to an almostanalytic vector field v^{λ} is involutive and its integral manifolds are almostanalytic by virtue of the induced structure.

3. Tensors of mixed kind on subspaces. We consider an n-dimensional differentiable manifold X_n and m-dimensional submanifold X_m expressed locally by $x^{\lambda} = x^{\lambda}(\xi^a)$. We assume the existence of φ_{λ}^{k} and φ_{b}^{a} which are tensors of type (1, 1) in X_n and X_m respectively. By a tensor of mixed kind $T_{(b)(\mu)}^{(a)(\lambda)} \equiv T_{b_a...b_1\mu_s...\mu_1}^{a_s...a_1\lambda_r...\lambda_1}$ we mean a quantity defined on X_m that it is a tensor field of type (r, s) in X_n for fixed indices (a) and (b) and is a tensor field of type (p, q) in X_m for fixed indices (λ) and (μ) . For simplicity we call it a tensor of type (r, s; p, q).

⁹⁾ Chevally, C., [1].

If $T_{(b)(\mu)}^{(a)(\lambda)}$ commutes with φ_{μ}^{λ} and φ_{b}^{a} in its two indices, then we say that it is pure in the indices. More precisely speaking it is pure in b_i , b_j , for simplicity we denote it $\mathfrak{p}(b_i, b_j)$, if

$$\varphi_{b_i}^t T_{b_g...b_i...t...b_1(\mu)}^{(a)(\lambda)} = \varphi_{b_i}^t T_{b_g..t...b_i...b_1(\mu)}^{(a)(\lambda)}$$

and is $\mathfrak{p}(b_i, \mu_i)$ if

$$\varphi_{b_j}^{t} T_{b_q...t...b_l(\mu)}^{(a)}^{(a)} = \varphi_{\mu_i}^{\epsilon} T_{(b)\mu_s...\epsilon...\mu_1}^{(a)(\lambda)},$$

and is $\mathfrak{p}(a_i, \mu_i)$ if

$$\boldsymbol{\varphi}_{t}^{a_{j}}T_{(b)(a)}^{a_{p}\ldots \cdot \ldots \cdot a_{l}(\lambda)} = \boldsymbol{\varphi}_{u}^{\varepsilon}T_{(b)(a,\ldots \varepsilon \ldots u)}^{(a)(\lambda)},$$

and so on.

If a tensor is pure in all pairs of its indices, then it is called a pure tensor. The vector v^b or u_c on X_m or V^{λ} or U_{μ} restricted to X_m is considered to be pure, by convention.

The tensor fields δ_{μ}^{λ} , φ_{μ}^{λ} , δ_{b}^{a} and φ_{b}^{a} are pure. If $T_{(v)(\mu)}^{(a)(\lambda)}$ anti-commutes with φ_{λ}^{μ} and φ_{b}^{a} in its two indices, then we say it is hybrid in the indices. For instance if

$$\varphi_{b}^{t} T_{b,\ldots,t,\ldots,b_{r}(u)}^{(a)(\lambda)} = -\varphi_{\varepsilon}^{\lambda_{l}} T_{(b)(u)}^{(a)\lambda_{r}\ldots\varepsilon\ldots\lambda_{1}}$$

hold good, then it is hybrid in b_i , λ_l . We denote this fact by $\mathfrak{h}(b_i, \lambda_l)$.

The following facts are easily seen. 10)

If $T_{b\mu}^{a\lambda}$ is $\mathfrak{p}(a,b)$ (or $\mathfrak{h}(a,b)$) and also $\mathfrak{p}(\lambda,b)$ (or $\mathfrak{h}(\lambda,b)$), then it is $\mathfrak{p}(a,\lambda)$

If $T_{b\mu}^{a\lambda}$ is $\mathfrak{p}(a,b)$ and $\mathfrak{h}(\lambda,b)$, then it is $\mathfrak{h}(a,\lambda)$, etc..

If $T_{b\mu}^{a\lambda}$ and $U_{a\lambda}^{ck}$ are $\mathfrak{p}(a,\lambda)$ (or $\mathfrak{h}(a,\lambda)$), then $T_{b\mu}^{a}U_{a\nu}^{ck}$ is $\mathfrak{p}(\lambda,\mu)$, etc..

If $T_{b,\iota}^{a\lambda}$ is $\mathfrak{p}(a,\lambda)$ and $U_{a\lambda}^{c\kappa}$ is $\mathfrak{h}(a,\lambda)$, then $T_{b\mu}^{a\lambda}U_{a,\iota}^{c\kappa}$ is $\mathfrak{h}(\lambda,\nu)$, etc..

If $T_{b\mu}{}^{a\lambda}$ is pure in some indices, then so is $T_{b\mu}{}^{a\lambda} = T_{\mu}{}^{a\lambda} \varphi_b{}^t$, and so on.

4. Φ -operator. Let X_n be a differentiable manifold admitting a tensor field φ_{μ}^{λ} and X_m be a submanifold represented locally by $x^{\lambda} = x^{\lambda}(\xi^a)$. An m-plane in the tangent space at a point of X_n is called invariant if it contains its image under the transformation $v^{\lambda} \to v^{\lambda} = \varphi_{\varepsilon}^{\lambda} v^{\varepsilon}$. If the tangent m-plane at any point of X_m is invariant, we call X_m an invariant subspace.

Let X_m be an invariant subspace. As m vectors $B_a^{\lambda} = \partial x^{\lambda}/\partial \xi^a$ $(a=1, 2, \ldots, m)$ in X_n span the tangent m-plane of X_m , their images are linear combinations of themselves. Hence there exists a tensor field φ_b^a on X_m such that

$$\varphi_{\sigma}^{\lambda}B_{a}^{\tau}=\varphi_{a}{}^{c}B_{c}{}^{\lambda}.$$

Conversely if there exists a tensor field $\varphi_b{}^a$ satisfying (4.1), then X_m is invariant. We shall call $\varphi_b{}^a$ satisfying (4.1) the induced $\varphi_b{}^a$ or the induced structure.

¹⁰⁾ cf. Tachibana, S., [6]. Kotō, S., [3].

The equation (4. 1) means that $B_a^{\ \lambda}$ of an invariant subspace is pure with respect to $\varphi_{\mu}^{\ \lambda}$ and the induced $\varphi_{b}^{\ a}$.

In the following we introduce an operator Φ on an invariant X_m which is associated to $\varphi_{\mu}{}^{\lambda}$ and the induced $\varphi_{b}{}^{a}$. This operator will yield from a pure tensor of type (r, s; p, q) a new tensor of type (r, s; p, q + 1).

Now we define an operator Φ acting on a pure tensor $T_{(b)(\mu)}^{(a)(\lambda)}$ by the following equation,

$$(4. 2) \qquad \Phi_{c}T_{(b)(\mu)}^{(a)(\lambda)} = \varphi_{c}^{\ l}\partial_{l}T_{(b)(\mu)}^{(a)(\lambda)} - \partial_{c}^{\ r}T_{(b)(\mu)}^{(a)(\lambda)}$$

$$+ \sum_{j=1}^{q} (\partial_{b_{j}}\varphi_{c}^{\ l})T_{b_{q}...l...b_{l}(\mu)}^{(a)(\lambda)} + \sum_{i=1}^{p} (\partial_{c}\varphi_{l}^{a_{i}} - \partial_{l}\varphi_{c}^{a_{i}}) T_{(b)(\mu)}^{a_{p}...l...a_{l}(\lambda)}$$

$$+ \sum_{j=1}^{s} (\partial_{\mu_{j}}\varphi_{\varepsilon}^{\ \sigma})B_{c}^{\ \varepsilon}T_{(b)\mu_{s}...\sigma...\mu_{l}}^{(a)(\lambda)}$$

$$+ \sum_{j=1}^{r} (\partial_{\varepsilon}\varphi_{\sigma}^{\lambda_{i}} - \partial_{\sigma}\varphi_{\varepsilon}^{\lambda_{i}})B_{c}^{\ \varepsilon}T_{(b)(\mu)}^{(a)(\lambda_{r}...\sigma...\lambda_{l})},$$

where we put

$$\overset{*}{T}_{(a)(\mu)}{}^{(b)(\lambda)} = \varphi_{b_j}{}^l T_{b_q,\ldots,l\ldots b_1(\mu)}{}^{(a)(\lambda)} = \varphi_{\varepsilon}{}^{\lambda_j} T_{(b)(\mu)}{}^{(a)\lambda_j\ldots\varepsilon\ldots\lambda_1},$$

etc., on taking account of the purity.

We must prove the tensor property of the operator. To do it we introduce any affine connections $\Gamma_{\mu\nu}^{\lambda}$ and Γ_{bc}^{a} in X_{n} and X_{m} respectively and denote by ∇_{ν} and ∇_{c} the corresponding operators of covariant derivation. Of course ∇_{c} operates on, for instance, as follows,

$$\nabla_{c}T_{b}{}^{a} = \partial_{c}T_{b}{}^{a} + T_{b}{}^{l}\Gamma_{cl}{}^{a} - T_{l}{}^{a}\Gamma_{cb}{}^{l},$$

$$\nabla_{c}T_{bu}{}^{\lambda} = \partial_{c}T_{br}{}^{\lambda} - T_{tu}{}^{\lambda}\Gamma_{cb}{}^{l} + B_{c}{}^{\epsilon}(T_{b\tau}{}^{\lambda}\Gamma_{\epsilon u}{}^{\sigma} - T_{bu}{}^{\sigma}\Gamma_{\epsilon \sigma}{}^{\lambda}).$$

Denoting the torsion tensors by

$$S_{\nu\mu}^{\ \lambda} = (1/2) \, (\Gamma_{\nu\mu}^{\ \lambda} - \Gamma_{\mu\nu}^{\ \lambda}), \quad S_{cb}^{\ a} = (1/2) (\Gamma_{cb}^{\ a} - \Gamma_{bc}^{\ a})$$

we have

$$\begin{split} \partial_{b,}\varphi_{c}{}^{l} &= \nabla_{b,}\varphi_{c}{}^{l} - \varphi_{c}{}^{t}\Gamma_{b,t}{}^{l} + \varphi_{t}{}^{l}\Gamma_{b,c}{}^{t}, \\ \partial_{c}\varphi_{l}{}^{a_{i}} - \partial_{l}\varphi_{c}{}^{a_{i}} &= \nabla_{c}\varphi_{l}{}^{a_{i}} - \nabla_{l}\varphi_{c}{}^{a_{i}} - \varphi_{l}{}^{t}\Gamma_{ct}{}^{a_{i}} \\ &+ \varphi_{c}{}^{t}\Gamma_{lt}{}^{a_{i}} + 2\varphi_{t}{}^{a_{i}}S_{ct}{}^{t}, \\ \partial_{\mu,j}\varphi_{\varepsilon}{}^{\sigma} &= \nabla_{\mu,j}\varphi_{\varepsilon}{}^{\sigma} + \varphi_{\tau}{}^{\sigma}\Gamma_{\mu,\varepsilon}{}^{\tau} - \varphi_{\varepsilon}{}^{\tau}\Gamma_{\mu,\tau}{}^{\sigma}, \\ \partial_{\varepsilon}\varphi_{\sigma}{}^{\lambda_{i}} - \partial_{\sigma}\varphi_{\varepsilon}{}^{\lambda_{i}} &= \nabla_{\varepsilon}\varphi_{\sigma}{}^{\lambda_{i}} - \nabla_{\sigma}\varphi_{\varepsilon}{}^{\lambda_{i}} - \varphi_{\sigma}{}^{\tau}\Gamma_{\varepsilon\tau}{}^{\lambda_{i}} \\ &+ \varphi_{\varepsilon}{}^{\tau}\Gamma_{\sigma}{}^{\lambda_{i}} + 2\varphi_{\tau}{}^{\lambda_{i}}S_{\varepsilon\sigma}{}^{\tau}. \end{split}$$

Substituting these relations into (4.2) and taking account of the purity of B_a^{λ}

and $T_{(b)(\mu)}^{(a)(\lambda)}$ we have

$$(4. 3) \qquad \Phi_{c}T_{(b)(\mu)}^{(a)(\lambda)} = \varphi_{c}^{\ l}\Delta_{l}T_{(b)(\mu)}^{(a)(\lambda)} - \nabla_{c}T_{(b)(\mu)}^{*}^{(a)(\lambda)}$$

$$+ \sum_{j=1}^{q} \left[\nabla_{b_{j}}\varphi_{c}^{\ l} + 2(S_{b_{j}c}^{\ l}\varphi_{t}^{\ l} - S_{b_{j}}^{\ l}\varphi_{c}^{\ l})\right]T_{b_{q}...l...b_{1}(\mu)}^{(a)(\lambda)}$$

$$+ \sum_{l=1}^{p} \left[\nabla_{c}\varphi_{l}^{a_{l}} - \nabla_{l}\varphi_{c}^{a_{l}} + 2(S_{c_{l}}^{\ l}\varphi_{t}^{a_{l}} - S_{l}^{\ l}\varphi_{c}^{\ l})\right]T_{(b)(\mu)}^{(a)(\lambda)}$$

$$+ \sum_{j=1}^{s} \left[\nabla_{\mu_{j}}\varphi^{\sigma} + 2(S_{\mu_{j}\varepsilon}^{\ r}\varphi_{\tau}^{\sigma} - S_{\mu_{j}\tau}^{\ \sigma}\varphi_{\varepsilon}^{\tau})\right]B_{c}^{\varepsilon}T_{(b)\mu_{s}...\sigma...\mu_{1}}^{(a)(\lambda)}$$

$$+ \sum_{j=1}^{r} \left[\nabla_{\varepsilon}\varphi_{\sigma}^{\lambda_{l}} - \nabla_{\sigma}\varphi_{\varepsilon}^{\lambda_{l}} + 2(S_{\varepsilon\tau}^{\ r}\varphi_{\tau}^{\lambda_{l}} - S_{\tau\sigma}^{\lambda_{l}}\varphi_{\varepsilon}^{\tau})\right]B_{c}^{\varepsilon}T_{(b)(\mu)}^{(a)(\lambda_{r}...\sigma..\lambda_{l})}.$$

This shows that $\Phi_c T_{(b)(\mu)}^{(a)(\lambda)}$ is a tensor and hence the Φ -operator has the tensor property.

5. Some formulas. From (4. 2) we have

$$\begin{split} \Phi_{c}T_{(b)}{}^{(a)} &= \varphi_{c}{}^{l}\partial_{l}T_{(b)}{}^{(a)} - \partial_{c}\overset{*}{T}_{(b)}{}^{(a)} \\ &+ \sum_{l=1}^{q} (\partial_{b_{l}}\varphi_{c}{}^{l})T_{b_{l}...l...b_{l}}{}^{(a)} + \sum_{l=1}^{p} (\partial_{c}\varphi_{l}{}^{a_{l}} - \partial_{l}\varphi_{c}{}^{a_{l}})T_{(b)}{}^{a_{p}...l...a_{l}} \end{split}$$

for a pure tensor $T_{(\nu)}^{(a)}$ in X_m , which corresponds to the Φ_{ν} -operator in X_n in § 1. If we consider a pure tensor $T_{(\mu)}^{(\lambda)}$ of X_n on X_m and operate Φ_c to it, then we have

$$\Phi_c T_{(\mu)}^{(\lambda)} = B_c^{\epsilon} \Phi_{\epsilon} T_{(\mu)}^{(\lambda)}$$

We can also prove the following formula

$$\Phi_c(V_b{}^{\varepsilon}U_{\varepsilon}^{\lambda}) = (\Phi_cV_b{}^{\varepsilon})U_{\varepsilon}^{\lambda} + V_b{}^{\varepsilon}\Phi_cU_{\varepsilon}^{\lambda},$$

whose analogous formula is valid for pure tensors of the most general type too.

As $B_a{}^{\lambda}$ is pure we can operate Φ_c to it and then we have

$$\begin{split} \Phi_{c}B_{a}{}^{\lambda} &= \varphi_{c}{}^{l}\partial_{l}B_{a}{}^{\lambda} - \partial_{c}(\varphi_{a}{}^{l}B_{l}{}^{\lambda}) + (\partial_{a}\varphi_{c}{}^{l})B_{l}{}^{\lambda} \\ &+ (\partial_{\varepsilon}\varphi_{\sigma}{}^{\lambda} - \partial_{\sigma}\varphi_{\varepsilon}{}^{\lambda})B_{c}{}^{\varepsilon}B_{a}{}^{\sigma} \\ &= \partial_{a}(\varphi_{c}{}^{l}B_{l}{}^{\lambda}) - \partial_{c}(\varphi_{a}{}^{l}B_{l}{}^{\lambda}) + (\partial_{\varepsilon}\varphi_{\sigma}{}^{\lambda} - \partial_{\sigma}\varphi_{\varepsilon}{}^{\lambda})B_{c}{}^{\varepsilon}B_{a}{}^{\sigma}. \end{split}$$

If we differentiate $\varphi_c^{\ l}B_l^{\ \lambda}=\varphi_\epsilon^{\ \lambda}B_c^{\ \epsilon}$ with respect to ξ^a , then we have

$$(5. 1) \partial_a(\varphi_c^l B_l^{\lambda}) - (\partial_{\sigma} \varphi_{\varepsilon}^{\lambda}) B_c^{\varepsilon} B_a^{\sigma} = \varphi_{\varepsilon}^{\lambda} \partial_a B_c^{\varepsilon}.$$

Interchanging a and c in (5.1) and substracting the equation thus obtained from (5.1) we get

$$\Phi_c B_a{}^{\lambda} = \Phi_c \left(\frac{\partial x^{\lambda}}{\partial \xi^a} \right) = 0.$$

This corresponds to $\Phi_{\nu}\delta_{\mu}{}^{\lambda}=0$ in §1.

Next as the both hand members of $\varphi_c{}^a B_a{}^{\lambda} = \varphi_{\varepsilon}{}^{\lambda} B_c{}^{\varepsilon}$ are pure, we have $B_a{}^{\lambda} \Phi_b \varphi_c{}^a = B_c{}^{\varepsilon} B_b{}^{\sigma} \Phi_{\sigma} \varphi_{\varepsilon}{}^{\lambda}$. From which we get

$$N_{bc}{}^{a}B_{a}{}^{\lambda}=N_{\sigma\varepsilon}{}^{\lambda}B_{b}{}^{\sigma}B_{c}{}^{\varepsilon},$$

where $N_{bc}{}^a$ and $N_{\sigma\varepsilon}{}^{\lambda}$ are the Nijenhuis tensors of $\varphi_b{}^a$ and $\varphi_\mu{}^{\lambda}$ respectively. Thus we have

THEOREM 7.¹¹⁾ In a differentiable manifold admitting a tensor field φ_{μ}^{λ} , let φ_{b}^{a} be the induced structure on an invariant subspace. Then if the Nijenhuis tensor of φ_{μ}^{λ} vanishes, the Nijenhuis tensor of φ_{b}^{a} vanishes too.

REMARK. In the definition of Φ -operator we need not assume that m < n. In the case n = m, $x^1 = x^1(\xi^a)$ is considered as a transformation of local coordinates.

6. Kählerian spaces. An almost-complex space is called a complex manifold if the Nijenhuis tensor vanishes identically. About such a space we get from Theorem 4 and Theorem 7 the following

THEOREM 8. An invariant subspace in a complex manifold is an analytic submanifold by virtue of the induced structure.

An almost-complex space is called almost-Hermitian if it is a Riemannian space and that the Riemannian metric $g_{\mu\lambda}$ is hybrid with respect to the almost-complex structure $\varphi_{\mu}{}^{\lambda}$. In such a space since the tensor field $\varphi_{\mu\lambda} = \varphi_{\mu}{}^{\varepsilon}g_{\varepsilon\lambda}$ is antisymmetric we have the so-called fundamental form $\varphi = \varphi_{\mu\lambda}dx^{\mu} \wedge dx^{\lambda}$. A Kählerian space is an almost-Hermitian space in which $\nabla_{\nu}\varphi_{\mu}{}^{\lambda} = 0$ is valid, where ∇_{ν} denotes the operator of the Riemannian covariant derivation. It is characterized as the almost-Hermitian space such that it is a complex manifold and that the fundamental form is closed.¹²⁾

In the following we shall only consider a Kählerian space X_n and its invariant subspace X_m . We denote by g_{cb} the induced Riemannian metric defined by $g_{cb} = g_{\mu\lambda}B_b^{\mu}B_c^{\lambda}$. As $g_{\mu\lambda}$ is hybrid and B_b^{μ} is pure, we see that g_{cb} is hybrid, on account of the arguments in § 3. Hence X_m becomes almost-Hermitian. By the relation $\varphi_{cb} = \varphi_c^{\ r}g_{rb} = \varphi_{\mu\lambda}B_c^{\ \mu}B_b^{\ \lambda}$ we know that the fundamental form of X_m is closed. Thus if we take account of Theorem 7 we get the well known

THEOREM 9.¹³⁾ An invariant subspace in a Kählerian space is itself Kählerian by virtue of the induced structure.

¹¹⁾ cf. Schouten, J. A. and K. Yano, [5].

²⁾ Schouten, J. A. and K. Yano, [5], Kotō, S., [2].

¹³⁾ Schouten, J. A. and K. Yano, [5].

As we have $\nabla_b \varphi_c^a = 0$ in an invariant X_m in a Kählerian X_n , the equation (4. 3) turns into the following simple form,

$$\Phi_c T_{(b)(\mu)}^{(a)(1)} = \varphi_c^l \nabla_l T_{(b)(\mu)}^{(a)(\lambda)} - \nabla_c^* T_{(b)(\mu)}^{(a)(1)}.$$

Hence $\Phi_c T_{(b)(\iota)}^{(a)(\lambda)} = 0$ for a pure tensor is equivalent to that $\nabla_c T_{(b)(\mu)}^{(a)(\lambda)}$ is also pure.

An infinitesimal conformal transformation v^{λ} in X_n is a vector field such that $\mathcal{L}_{\mu\lambda} = 2\rho g_{\mu\lambda}$, where ρ is a scalar function. An infinitesimal projective transform-

ation is a vector field v^{λ} such that $\oint_{v} \left\{ \frac{\lambda}{\mu \, v} \right\} = \rho_{\mu} \delta_{\nu}^{\lambda} + \rho_{\nu} \delta_{\mu}^{\lambda}$, where $\left\{ \frac{\lambda}{\mu \, v} \right\}$ means the Christoffel symbols and ρ_{μ} is necessarily gradient. Recently Y.Tashiro¹⁴⁾ showed that $\rho_{\nu} = \partial_{\nu} \rho$ is (covariant) almost-analytic for these transformations. This means by our terminology that ρ is an almost analytic function. So there exists a family of its associated functions $\{\sigma\}$ and if two functions of the family have a common domain of definition, then their difference is constant. Now we assume that the transformation in consideration is not homothetic i.e. that ρ is not constant. We consider a family of local submanifolds σ =const., so they define globally a family of (n-1)-dimensional submanifolds. The intersection of ρ = const. and a submanifold of the family is invariant by accordance of the argument in § 2. Thus we have

THEOREM 10. If a Kählerian space admits a non-homothetic infinitesimal conformal (or projective) transformation, then there exist ∞^2 (n-2)-dimensional invariant subspaces, each of which is an analytic submanifold and Kählerian by virtue of the induced structure.

BIBLIOGRAPHY

- [1] CHEVALLY, C., Theory of Lie groups I, Princeton Univ. Press., 1946.
- [2] Koto, S., Some theorems on almost Kählerian spaces, Jour. Math. Soc. Japan, 12(1960), 422-433.
- [3] KOTŌ, S., On almost analytic tensors in almost complex spaces, to appear in Tensor.
- [4] NIJENHUIS, A., X_{n-1} -forming sets of eigenvectors, Indag. Math., 13(1951), 200-212.
- [5] SCHOUTEN, J. A. AND K. YANO, On invariant subspaces in the almost complex X_{2n} , Indag. Math., 17 (1955), 261-269.
- [6] TACHIBANA, S., Analytic tensor and its generalization, Tôhoku Math. Jour., 12 (1960), 208-221.
- [7] YANO, K. AND S. BOCHNER, Curvature and Betti numbers, Annals of Math. Studies, 32 (1953).

OCHANOMIZU UNIVERSITY, TOKYO AND NIIGATA UNIVERSITY.

¹⁴⁾ Personal communication.