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0. Introduction. In previous papers [ 2 ], [6 I,1* we introduced the notion
of Φ-tensors as a generalization of analytic tensors. The main purpose of this
paper is to introduce the notion of almost-analytic function and almost-analytic
submanifold and to define an operator acting on tensor fields defined on an
invariant subspace.

In § 1 and § 2 we define almost-analytic functions and almost-analytic
submanifolds in an almost-complex space. A new Φ-operator on an invariant
subspace of the manifold admitting a tensor fields of type (1, 1) is defined in
§ 4, after preliminary facts are given in § 3. Some formulas about the Φ-ope-
rator are given in § 5 and we devote § 6 to Kahlerian spaces. The results of
all sections except § 6 are independent from connection or metric.

1. Almost-analytic functions. Consider an ^-dimensional differentiable
manifold admitting a tensor field whose components with respect to local coor-
dinates {xλ} are <p/2). A tensor field 7V*} = Tμg...μi

λp' Λ| is called to be pure in
\, μj or briefly to be p(Xi9 μ5) if it commutes with φλ

μ in λi? μΊ i. e. it holds
that

m <r T (λ) _ λtrp λp...σ...λi

ψβj 1 μQ...σ...μ1 ~ ψσ ± (μ)

Aαalogously T ( μ

(

;

λ ) is called to be φ(\i9 λj) or p(μi9 μ3) if

ψσ J- (μ) — ψσ Ί (μ) ,

or

ψβi * μQ,..σ...μj...μι ψμ} <L μQ. ..μt.. . σ . . . μ,

is valid respectively. If a tensor is pure in every pair of its indices, then it is
called a pure tensor. We consider for convenience sake the covariant vector
and the contravariant vector as pure tensors.

A tensor field T(μ

()λ) is called to be hybrid in Xu μj or briefly to be fjίX,/̂ )
if it anticommutes with φ^ in λf, μj i.e. it holds that

σ Φ (λ) KT1 λT)...σ...λχ
ψμj iμβ...σ...μ, — ~ ψσ ± (μ)

1) The number in brackets refers to the the Bibliography at the end of the paper.
2) λ,μ,v, ••• = 1,2, •••, n. Aε to the notations we follow Tachibana, S., [6].
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Analogously Ϊ)(X, \j) and ΐ)(>ui? μj) are defined.

The Φ-operator is defined for pure tensors as follows,

i - l

where 3 σ = d/dxσ and

_ ε'TH (λ) _ λ}rp λ

— 9>μt ^ μβ...e...μ1 — ^ 6 * (μ)

This operator yields from a pure tensor of type (/>, #) a tensor of type (/>, q + 1).

The definition is independent from connection or metric, so it is defined on

differentiable manifolds admitting a tensor field of type (1, 1).

The following equations are known3),

λ = ~ h φv\ ΦΛλ = 0,
V

where £, denotes the operator of Lie derivation with respect to vλ and Nvμ

λ is

the so-called Nijenhuis tensor defined by

Nvμ

λ = φ/dvψΐ - φμ

σdσφυ

λ + φϊ (dμφv

σ - 3^/) 4 )-

Now we consider an almost-complex space which is a differentiable mini-

fold admitting a tensor field φ* such that ψαψμ = — Sλ

μ. In the space a pure

tensor T (^
λ ) satisfying ΦfΓi >λ) = 0 is called to be almost-analytic. If there exists

a local function g such that φxε/dεf = dλg for a local function f, then we shall call

f an almost-analytic function of .rΛ or a locally almost-analytic function and

call </ its associated function. If such a function / is defined globally, then we

call it an almost-analytic function. In a complex manifold i. e. an almost-

complex space with vanishing Nijenhuis tensor, we say "analytic" instead of

"almost-analytic".

For a local function / we have

so Φdλf= 0 is equivalent to the existence of a local function g such that 2>vg

3) Tachibana, S., [6],
4) Nijenhuis, A., [4].
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Hence a locally almost-analytic function f is characterized by Φv d\f — 0. For
any vλ and u\ we have the equation

vσΦvuσ + uσΦvv
σ = φfdε(vσuσ) - dv(vσuσ).

Hence if vλ is almost-analytic, then vσdσf is almost-analytic for any almost-
analytic / and if u\ is almost-analytic, then uσv

σ is almost-analytic for any
almost-analytic vλ.

We have known much about almost-analytic tensors in almost-Hermitian
spaces. In § 1 and § 2 we give some theorems about them which are indepen-
dent from connection or metric.

First we have known the following

LEMMA 1. (Yano, K.) Let f be a scalar function on a compact almost-
complex space. If the form η = ηvdxv defined by

(I- 1) Vv = φfdef

is closed, then it is constant.

PROOF. AS such a space always admits a positive definite Riemannian
metric tensor gμλ which is ϊ) (λ, a), we denote by Vv the operator of the Rie-
mannian covariant derivation and make use of it. From (1. 1) we have Vλ/' =
— φ\η:. Applying g'LλVμ to this we have

Substituting (1. 1) into the right hand side we get

<ΛVVVΛ/+ ϊ 1 V ^ ε ) Λ / - 0,

which and Hopf s theorem5) yield the Lemma. q. e. d.
This lemma and the definition of almost-analytic function lead us to

THEOREM 1. In a compact almost-complex space an almost-analytic
function is constant.

The following lemma is also known6)

LEMMA 2. If T^ = TμQ...μι

λ>~'λi of type (/>, q) (+(1,0)) is almost-analytic,
*

then so is T ( μ )

( λ ) .

Now let T ( μ )

( λ ) be pure, p an σ be scalar functions. If we operate Φv to

p T ( μ )

( λ ) + σ T ( μ )

( λ ) , we have easily

Φlp 7V/> + σ T{μf) $ ^>

υ σ ) T (

( , λ )

(μ

(,

5) Yano, K. and S. Bochner, [7].
6) Tachibana,S., [6], Kotδ.S., [3].
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*
Taking account of the fact that T ( μ )

( λ ) and Tiw)

{λ) are linearly independent we
get by virtue of Lemma 1 and Lemma 2 the following

THEOREM 2. Let T ( μ )

( λ ) of type (p, q) (4=(1, 0)) be almost-analytic in a
compact almost-complex space. Then a necessary and sufficient condition for

p T(μ)(λ) + σ T(;J)
(λ) to be almost-analytic is that p and σ are constant.

It is known that for pure tensors V(μ)

<λ) and C/(λ)(α) we have7 )

so we have

THEOREM 3. In an almost-complex space, the scalar function defined by
the inner product of two almost-analytic tensors is almost-analytic.

2. Almost-analytic submanifolds. We consider an almost-complex space
Xn and an ra-dimensional submanifold Xm expressed locally by the equation

& = x\ξ»\ rank (dax
λ) = m,

where Greek indices take the values 1 to n, Latin indices the values 1 to
m(< n) and da = d/dξa.

Now we assume that Xm is an almost-complex space too and denote its
structure tensor by φb

a. Then we can define locally almost-analytic functions
on Xm by φb

a as analogous as in § 1. An almost-complex space Xm will be
called an almost-analytic submanifold, if f(x\ξa)) is always almost-analytic of
ξ a for any almost-analytic function / of xλ. If Xn and Xm are complex mani-
folds, then we call an almost-analytic submanifold an analytic submanifold.

On the other hand a submanifold Xm is called an invariant subspace,8) if
its m-dimensional tangent plane at any point remains invariant under the trans-

*
formation vλ —> vλ = φε

λ ve\
Suppose that Xm be an invariant subspace. Then as m vectors Ba

λ — dxλ/d ξa

(a = 1,2, ,ra) span the tangent plane at each point of Xm, there exists a
tensor field φb

a such that

<PeλBa

ε = φa°Bc

λ.

From this equation we can see φc

aφb

c = — Sb

a, so an invariant subspace becomes
an almost-complex space by virtue of the induced tensor φb

a. Let f and g be a
locally almost-analytic function and its associated function, respectively. Putting
F(ξa) =f(Λξa)) and G(£») = g(x\ξa)) we have

7) Tachibana, S., [6].
8) Schouten,J.A. and K. Yano, [5].
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φc

hdb

hdbF =

= Bc

λdλg = 3CG,

which means that F is an almost-analytic function of ξa. Thus we get the
following

THEOREM 4. An invariant subspace in an almost-complex space is an
almost-analytic submanifold by virtue of the induced almost-complex structure.

For a locally almost-analytic / and its associated fnuction g we consider the
equations

f(xλ) — const., g(xλ) = const..

As f and g are functionally independent, they define locally an {n — 2)-dimen-

sional subspace. Since vλdλf = vκdλg = 0 imply vλdχf = vλ o\g = 0, the subspace
is invariant. Thus we have

THEOREM 5. In an almost-complex space if an (n — 2)-dimensional
submanifold is re presentable locally by the equations f(xλ)~ const., g(xλ)= const.,
vohere f and g be a locally almost-analytic function and its associated function
respectively, then it is an almost-analytic submanifold by virtue of the induced
almost-complex structure.

Let vλ be a (contravariant) vector field, then vλ and vλ span an invariant
plane at each point such that vλ--j=0. We call this field of 2-planes the distribution
associated to vλ. Now we suppose vλ is almost-analytic, then we have £, φμ

λ — 0

and

[V, Vf = tvλ = t (<PεV) = φ£

λ £.^ = 0.
v ?> v

This equation means that the distribution is involutive.9) As its plane elements
are invariant we get

THEOREM 6. The 2-dimensional distribution associated to an almost-
analytic vector field vλ is involutive and its integral manifolds are almost-
analytic by virtue of the induced structure.

3. Tensors of mixed kind on subspaces. We consider an ^-dimensional
differ en tiable manifold Xn and m-dimensional submanifold Xm expressed locally
by xλ = x\ξa). We assume the existence of φ\ and φb

a which are tensors of
type (1, 1) in Xn and Xm respectively. By a tensor of mixed kind T ( 6 ) C μ )

( α ) ( λ )

= TbQ...bιβs....μι

a-J'"aiλr"Λl we mean a quantity defined on Xm that it is a tensor
field of type (r, s) in Xn for fixed indices (a) and (b) and is a tensor field of
type (p, q) in Xm for fixed indices (λ) and (μ). For simplicity we call it a tensor
of type (r, s; p, q).

9) Chevally,C, [1].
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If T(/»(μ)

(α)(Λ) commutes with φμ

λ and φb

a in its two indices, then we say that

it is pure in the indices. More precisely speaking it is pure in bu bh for simpl-

icity we denote it p(bu bό), if

rr,1 ' T C*Kλ) _ „ ί T (Ί)(λ)

and is p(bj, μt) if

ψbj i b,...f...6,(μ) — ψμt J- (δ)μ,...ε. .μ, ,

and is p(αj? //*) if

and so on.

If a tensor is pure in all pairs of its indices, then it is called a pure tensor.

The vector vb or wc on Xm or F λ or Uμ restricted to Xm is considered to be

pure, by convention.

The tensor fields δμ

λ, φμ

λ, hb

a and ̂ 6

α are pure. If T(?>)(μ)

(α)(λ) anti-commutes

with φλ

β and 9?0

a in its two indices, then we say it is hybrid in the indices.

For instance if

m t rp (α)(λ) _ πϊϊT (3)λ r...e...λi
ψb} 1 bβ...r...6,ίμ) — — ψs J- (6)(μ)

hold good, then it is hybrid in bh \. We denote this fact by fy(bj, λz).

The following facts are easily seen.10)

If T6μ

αλ is p(α, b) (or ΐ) (Λ, *)) and also p (λ, 6) (or f) (λ, &)), then it is p(α, λ)

etc..

If Tb μ

t t λ is p(α, 6) and ΐ) (λ, έ), then it is ί) (Λ, λ), etc..

If 7 V λ and ϋαλ
cifc are p (a, λ) (or ΐ)^, λ)), then Tbι

a'Ua»
cκ is p(λ, ̂ λ etc..

If T & / λ is p(a,\) and f/αλ

c/£ is ί)(α, λ), then Tbμ

aλUa,
cκ is ΐ)(λ, i;), etc..

If Tbμ

aλ is pure in some indices, then so is Tbμ

aλ = Tμ

xφb', and so on.

4. Φ-operator. Let Xn be a differentiable manifold admitting a tensor field

<pμ

λ and Xm be a submanifold represented locally by xλ = x\ξa). An m-plane in

the tangent space at a point of Xn is called invariant if it contains its image

under the transformation vλ —> vλ = φε

λvε. If the tangent m-plane at any point

of Xm is invariant, we call Xm an invariant subspace.

Let Xm be an invariant subspace. As m vectors Ba

λ = 3^λ/9Jα (α = l, 2, ,

m) in Xn span the tangent w-plane of Xmy their images are linear combinations

of themselves. Hence there exists a tensor field φb

a on Xm such that

(4. 1) φϊBl = φa

cBc

λ.

Conversely if there exists a tensor field φb

a satisfying (4.1), then Xm is invariant.

We shall call φb

a satisfying (4. 1) the induced φb

a or the induced structure.

10) cf. Tachibana,S., [6]. Kotδ,S., [3].
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The equation (4. 1) means that Ba

λ of an invariant subspace is pure with
respect to φβ

λ and the induced φb

a.

In the following we introduce an operator Φ on an invariant Xm which is
associated to φf and the induced φb

a. This operator will yield from a pure
tensor of type (r, 5; p, q) a new tensor of type (r, s; p, q + 1).

Now we define an operator Φ acting on a pure tensor T(?>)(μ)

(α)(λ) by the
following equation,

(4. 2) Φ e 7 W > : λ ) = φfrτmM™» - aer(t)(μ)< ><»

j - l

where we put

rp (&)(λ) _ ^7^ (α)(λ) _ ,-λ/r (α)λr.
^ (βt)(μ) — φ δ j ^ 6 β....Z...6 1(μ) — £>ε ^ ( 6 ) ( )

etc., on taking account of the purity.
We must prove the tensor property of the operator. To do it we introduce

any affine connections Tμv

λ and Tbc

a in Xn and Xm respectively and denote by
Vυ and Vc the corresponding operators of covariant derivation. Of course Vc

operates on, for instance, as follows,

vjr = 9J7 + Tyrv - Tfvj,
Vc^δμ = ^cΓbi ~ Tjμ Tcb + Bc\±bσ Γε μ

σ 1 bβ^εσ )•

Denoting the torsion tensors by

Svμ

λ= (1/2) (Γ^ λ - I V ) , Scb

a = (1/2) (Γ c 6

B - Γδc

α)

we have

φc

ιTu

a< + 2φt

a'Scl\

j' + 2φτ

λ'Sj.

Substituting these relations into (4. 2) and taking account of the purity of Ba

λ
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a n d T ( ί ) ) ( μ )

( α κ λ > w e have

*
(A Vi Φ T WW — m ιA T <α> ( λ ) — T7 T ( α ) ( V )

J-l

J=ι

This shows that ΦcTWiμ)

{a){λ) is a tensor and hence the Φ-operator has the
tensor property.

5. Some formulas. From (4. 2) we have

for a pure tensor T ( b )

( α ) in Xmy which corresponds to the Φ^-operator in Xn in
§ 1. If we consider a pure tensor T(μ )

( λ ) of Xn on Xm and operate Φc to it, then
we have

Φ T (λ) _ r> ε ( ΐ ) 7" (λ)

We can also prove the following formula

ΦlVfUϊ) = (ΦcVb

ε)Uε* + Vb

εΦcW\

whose analogous formula is valid for pure tensors of the most general type
too.

As Ba

λ is pure we can operate Φc to it and then we have

If we differentiate φiBf — φε

λBc

e with respect to ξa, then we have

(5. 1) dJfrc'B?)

Interchanging a and c in (5. 1) and substracting the equation thus obtained
from (5.1) we get
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This corresponds to ΦvSμ

λ = 0 in § 1.
Next as the both hand members of φc

aBa

λ = ψsλBc

ε are pure, we have
Ba

λΦbφo

a = Bc

εBb

aΦσψeλ. From which we get

i V ^ β α

λ = NJBb

σBc

ε,

where iVόc

α and Nσε

λ are the Nijenhuis tensors of φb

a and <pμ

λ respectively. Thus
we have

THEOREM 7.n ) In a differentiable manifold admitting a tensor field φμ

λ,
let φb

a be the induced structure on an invariant subspace. Then if the Nijen-
huis tensor of φμ

λ vanishes, the Nijenhuis tensor of φb

a vanishes too.

REMARK. In the definition of Φ-operator we need not assume that m < n.
In the case n = m, xλ = x\ξa) is considered as a transformation of local
coordinates.

6. Kahlerian spaces. An almost-complex space is called a complex man-
ifold if the Nijenhuis tensor vanishes identically. About such a space we get
from Theorem 4 and Theorem 7 the following

THEOREM 8. An invariant subspace in a complex manifold is an analytic
submanifold by virtue of the induced structure.

An almost-complex space is called almost-Hermitian if it is a Riemannian
space and that the Riemannian metric gμλ is hybrid with respect to the almost-
complex structure φμ. In such a space since the tensor field φμ\ — φnεgεκ is anti-
symmetric we have the so-called fundamental form φ — φμ\dxμ f\dxλ. A Kahlerian
space is an almost-Hermitian space in which Vvφμ

κ — 0 is valid, where V*
denotes the operator of the Riemannian covariant derivation. It is characterized
as the almost-Hermitian space such that it is a complex manifold and that the
fundamental form is closed.12)

In the following we shall only consider a Kahlerian space Xn and its inv-
ariant subspace Xm. We denote by gcb the induced Riemannian metric defined
by (Jcb — (/β\Bb

βBc

κ. As gμλ is hybrid and Bb

β is pure, we see that gcb is hybrid,
on account of the arguments in § 3. Hence Xm becomes almost-Hermitian. By
the relation φcb — φc

rgrb = φμ\Bc

μBb

λ we know that the fundamental form of
Xm is closed. Thus if we take account of Theorem 7 we get the well known

THEOREM 9.13) An invariant subspace in a Kahlerian space is itself Kah-
lerian by virtue of the induced structure.

11) cf. Schouten,J.A.and K. Yano, [5].
12) SchoutenJ.A.and K.Yano, [5], Koto, S., [2].
13) SchoutenJ.A. and K. Yano, [5].
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As we have Vb<Pca = 0 in an invariant Xm in a Kahlerian Xn, the equation
(4. 3) turns into the following simple form,

*
φ Ύ (α)O) _ φlπ Ύ («)(λ) _ y j 1 WO)

Hence Φ c T w ( i )

( α ) ( λ ) = 0 for a pure tensor is equivalent to that Vc7V)(μ)

(α)(λ) is

also pure.
An infinitesimal conformal transformation vλ in Xn is a vector field such that

£, <7μλ = 2pgβK, where p is a scalar function. An infinitesimal projective transform-
V

ation is a vector field vλ such that £,] [= pμhv

κ-JtpvSμ

λ, where] [ means the

Christoffel symbols and pμ is necessarily gradient. Recently Y.Tashiro14) showed
that ρv = dvρ is (covariant) almost-analytic for these transformations. This
means by our terminology that p is an almost analytic function. So there exists
a family of its associated functions {σ} and if two functions of the family have
a common domain of definition, then their difference is constant. Now we
assume that the transformation in consideration is not homothetic i.e. that p is
not constant. We consider a family of local submanifolds σ — const., so they
define globally a family of (n — l)-dimensional submanifolds. The intersection of
p — const, and a submanifold of the family is invariant by accordance of the
argument in §2. Thus we have

THEOREM 10. If a Kahlerian space admits a non-homothetic infinitesimal
conformal {or projective) transformation, then there exist oo2 (n — 2)-dimensional
invariant subspaces, each of which is an analytic submanifold and Kahlerian
by virtue of the induced structure.
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