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0. Introduction. In previous papers |2], [6],” we introduced the notion
of ®-tensors as a generalization of analytic tensors. The main purpose of this
paper is to introduce the notion of almost-analytic function and almost-analytic
submanifold and to define an operator acting on tensor fields defined on an
invariant subspace.

In §1 and 82 we define almost-analytic functions and almost-analytic
submanifolds in an almost-complex space. A new ®-operator on an invariant
subspace of the manifold admitting a tensor fields of type (1, 1) is defined in
§ 4, after preliminary facts are given in §3. Some formulas about the ®-ope-
rator are given in §5 and we devote §6 to Kéihlerian spaces. The results of
all sections except § 6 are independent from connection or metric.

1. Almost-analytic functions. Consider an #n-dimensional differentiable
manifold admitting a tensor field whose components with respect to local coor-
dinates {x'} are @, ®. A tensor field 7,\’= T,,...,'”~'™ is called to be pure in
N, m; or briefly to be p(n, p;) if it commutes with @) in A, p; i.e. it holds
that
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Analogously T'(&" is called to be p(\;, N;) or p(u;, u;) if

or
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is valid respectively. If a tensor is pure in every pair of its indices, then it is
called a pure tensor. We consider for convenience sake the covariant vector

and the contravariant vector as pure tensors.
A tensor field T',§" is called to be hybrid in A;, u; or briefly to be H(A,u;)
if it anticommutes with @,'in A, u; i.e. it holds that

o w A Apereun.
Py Tuq.--a-.-m =T P tT(H)" .

1) The number in brackets refers to the the Bibliography at the end of the papar.
2) Apv,-=1,2,--, n. Ac to the notations we follow Tachibana, S., [6].
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Analogously 9(n;, N;) and §(u;, u;) are defined.
The ®-operator is defined for pure tensors as follows,
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where 9, = 9/0z” and

*
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T(#) = Pu, Tua.-.c...un = @’ T(u) ? .

This operator yields from a pure tensor of type (p, ¢) a tensor of type (¢, ¢ + 1).
The definition is independent from connection or metric, so it is defined on
differentiable manifolds admitting a tensor field of type (1, 1).

The following equations are known?®,

Bt =— £ gl D=0,
Q@ = Ny,
where £”, denotes the operator of Lie derivation with respect to v* and N,* is
the so-called Nijenhuis tensor defined by
N, = @ 9.9 — @ 0@ + @7 (Qup” — 2up)®.

Now we consider an almost-complex space which is a differentiable mini-
fold admitting a tensor field @,' such that @,'@” =— 8. In the space a pure
tensor T, satisfying ®, T §? = 0 is called to be almost-analytic. If there exists
a local function ¢ such that @:°0cf = 9,¢ for a local function f, then we shall call
f an almost-analytic function of x* or a locally almost-analytic function and
call ¢ its associated function. If such a function f is defined globally, then we
call it an almost-analytic function. In a complex manifold i.e. an almost-
complex space with vanishing Nijenhuis tensor, we say “analytic” instead of
“almost-analytic”.

For a local function f we have

(Dua)\ f = q’vsaea}tf - av (¢A€ asf ) + (87\¢05)an
= 9@ 2 f) — 9. (@ O f),
so ® 9, f = 0 is equivalent to the existence of a local function g such that 9,¢

= ‘P»E aif M

3) Tachibana, S., [6].
4) Nijenhuis, A., [4].
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Hence a locally almost-analytic function f is characterized by &, 9,f = 0. For
any v" and u, we have the equation
*
vV OuU, + U, 07 = @, 0(v"U,) — O(vu,).
Hence if v* is almost-analytic, then ©v"0,f is almost-analytic for any almost-
analytic f and if ux is almost-analytic, then #,v” is almost-analytic for any
almost-analytic v*.
We have known much about almost-analytic tensors in almost-Hermitian
spaces. In §1 and § 2 we give some theorems about them which are indepen-

dent from connection or metric.
First we have known the following

LEMMA 1. (Yano, K.) Let f be a scalar function on a compact almost-
complex space. If the form n = ndx’ defined by

1.1 = @O f
is closed, then it is constant.

PROOF. As such a space always admits a positive definite Riemannian
metric tensor ¢, which is § (A, u), we denote by V, the operator of the Rie-
mannian covariant derivation and make use of it. From (1. 1) we have Vif =
— @in.. Applying g*'v, to this we have

yMVuV/\f = !/M(V#¢/\ )77~
Substituting (1. 1) into the right hand side we get
PV + ¢H(Vp®) @V =0,

which and Hopf's theorem® yield the Lemma. q.e.d.
This lemma and the definition of almost-analytic function lead us to

THEOREM 1. In a compact almost-complex space an almost-analytic
Sfunction is constant.

The following lemma is also known®
LEMMA 2. If TSV =T, . " of type (p, q) (+(1,0)) is almost-analytic,
then so is Yt(,,)‘“.
Now let T, be pure, p an ¢ be scalar functions. If we operate ®, to
p Ty + o Y*’(u)("), we have easily
BT + 0 Tuf) = p OIS + 0 B, TS
+ (@0 p + 2T + (2.0 —3,0) T,

5) Yano, K. and S.Bochner, [7].
6) Tachibana,S., [6], Kots,S., [3].
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*
Taking account of the fact that T,y™ and T, are linearly independent we
get by virtue of Lemma 1 and Lemma 2 the following

THEOREM 2. Let T of type (p,q) (F=(1,0)) be almost-analytic in a
compact almost-complex space. Then a necessary and sufficient condition for

*
p Tw® + a Ty to be almost-analytic is that p and o are constant.

It is known that for pure tensors V™ and Un* we have?”

A A
V(n\) ) (IJVU(A()M’ + U(Agu)q)vv(#() )
*
— & MTT (1) M7 W
= @y as(V(u) U(h)u ) — a»(V(u) U(A)u 5
so we have

THEOREM 3. In an almost-complex space, the scalar function defined by
the inner product of two almost-analytic tensors is almost-analytic.

2. Almost-analytic submanifolds. We consider an almost-complex space
X, and an m-dimensional submanifold X, expressed locally by the equation

xt = aXEY), rank (0,2 = m,

where Greek indices take the values 1 to n, Latin indices the values 1 to
m(< n) and 0, = O/E".

Now we assume that X, is an almost-complex space too and denote its
structure tensor by @,. Then we can define locally almost-analytic functions
on X, by % as analogous as in §1. An almost-complex space X,, will be
called an almost-analytic submanifold, if f{£ (&%) is always almost-analytic of
£° for any almost-analytic function f of 2. If X, and X, are complex mani-
folds, then we call an almost-analytic submanifold an analytic submanifold.

On the other hand a submanifold X,, is called an invariant subspace,® if
its m-dimensional tangent plane at any point remains invariant under the trans-

formation v* — v;“ = @ v

Suppose that X,, be an invariant subspace. Then as m vectors B,* = ox}/0 &
(a=1,2,...,m) span the tangent plane at each point of X, there exists a
tensor field @,* such that

¢EABQE — wachh'

From this equation we can see 2.%@,° = — §,% so an invariant subspace becomes
an almost-complex space by virtue of the induced tensor @,*. Let f and ¢ be a
locally almost-analytic function and its associated function, respectively. Putting

F(g") = flx'(E") and G(§") = ¢(«'(¢*)) we have

7) Tachibana,S., [6].
8) Schouten,J. A. and K. Yano, [5].



ON ALMOST-ANALYTIC FUNCTIONS 181

¢cbabF = ¢chI§a?f = ¢iBCAaff
= Bclalg = acG>

which means that F is an almost-analytic function of &. Thus we get the
following

THEOREM 4. An invariant subspace in an almost-complex space is an
almost-analytic submanifold by wvirtue of the induced almost-complex structure.

For a locally almost-analytic £ and its associated fnuction ¢ we consider the
equations
AxY) = const,, g(x") = const..

As f and g are functionally independent, they define locally an (# — 2)-dimen-

sional subspace. Since v"oif = v*0,g = 0 imply 9'0)f = 9" Sg = 0, the subspace
is invariant. Thus we have

THEOREM 5. In an almost-complex space if an (n — 2)-dimensional
submanifold is representable locally by the equations f{x")= const., g(x)= const.,
where f and g be a locally almost-analytic function and its associated function
respectively, then it is an almost-analytic submanifold by virtue of the induced
almost-complex structure.

Let v* be a (contravariant) vector field, then v* and ?* span an invariant
plane at each point such that v*==0. We call this field of 2-planes the distribution
associated to v*. Now we suppose v* is almost-analytic, then we have £ @}=0

v

and
v, ;;]A =£ ;}/\ =% (%Avs) = %A £ ve=0.

This equation means that the distribution is involutive.” As its plane elements
are invariant we get

THEOREM 6. The 2-dimensional distribution associated to an almost-
analytic wvector field v* is involutive and its integral manifolds are almost-
analytic by virtue of the induced structure.

3. Tensors of mixed kind on subspaces. We consider an #z-dimensional
differentiable manifold X, and m-dimensional submanifold X,, expressed locally
by x!' = x'(¢%). We assume the existence of @\ and @,* which are tensors of
type (1, 1) in X, and X, respectively. By a tensor of mixed kind 7 g, @™
= Ty ™™™ we mean a quantity defined on X, that it is a tensor
field of type (7, s) in X, for fixed indices (a) and () and is a tensor field of
type (p, q) in X,, for fixed indices (A) and (u). For simplicity we call it a tensor
of type (7, s; p, @)

9) Chevally,C., [1].
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If T, ™™ commutes with @u* and @,% in its two indices, then we say that
it is pure in the indices. More precisely speaking it is pure in &;, &;, for simpl-
icity we denote it p(b,, b;), if

t M)Ay — t (1))
Py, Thq..‘b)...f...bl(p) ) =P, Tb,,..z...b,...h,(m )

and is p(b;, ;) if

(@) —

t 3 (@)()
P, Tb,,.,.f...b,(u) = Py, T(b)u,...a...u, ,

and is P(a;, u;) if
a Ap.. o a(A) __ € a)(A)
@ Toyw™ D= T oo™,

and so on.
If a tensor is pure in all pairs of its indices, then it is called a pure tensor.

The vector v® or u, on X,, or V* or U, restricted to X,, is considered to be
pure, by convention.

The tensor fields 3.}, @, 8,* and @,* are pure. If T, ™ anti-commutes
with @ and @,* in its two indices, then we say it is hybrid in the indices.
For instance if

t ay(A) __ A (DA .6
D, Tty PN = — @I T gy P8 M

hold good, then it is hybrid in b;, »,. We denote this fact by §(&;, ).

The following facts are easily seen.'®

If 7, is p(a, b) (or §(a, b))and also p (A, b) (or H (A, b)), then it is pla, A)
etc..

If T, is p(a,d) and § (A, b), then it is §(a, A), etc..

If T, and Ua®* are p(a, A) (or 9la, N)), then T,.* Un™ is p(A, u), etc..

If T, is pla,n) and Un™ is H(a, N), then T, » U, is H(A, v), etc..

*
If T, is pure in some indices, then so is 7%, = T /“@,!, and so on.

4. P-operator. Let X, be a differentiable manifold admitting a tensor field
@, and X,, be a submanifold represented locally by x* = x'(¢*). An m-plane in
the tangent space at a point of X, is called invariant if it contains its image

under the transformation v* — 9" = @, v*. If the tangent m-plane at any point
of X,, is invariant, we call X,, an invariant subspace.

Let X,, be an invariant subspace. As m vectors B,' = ox'/2¢" (a=1,2,.....,,
m) in X, span the tangent m-plane of X,, their images are linear combinations
of themselves. Hence there exists a tensor field @, on X, such that

4. 1) ®,'Bi = @.'B.".

Conversely if there exists a tensor field @, satisfying (4. 1), then X, is invariant.
We shall call @,* satisfying (4. 1) the induced @,* or the induced structure.

10) cf. Tachibana,S., [6]. Kots,S., [3].
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The equation (4. 1) means that B,* of an invariant subspace is pure with
respect to @* and the induced @,

In the following we introduce an operator ® on an invariant X,, which is
associated to @' and the induced @,° This operator will yield from a pure
tensor of type (r,s; p,q) a new tensor of type (7,s; p,q + 1).

Now we define an operator ® acting on a pure tensor 7', ® by the
following equation,

*
Ay Ay 14 a)(A V(A
(4- 2) q’cT< b)(u)( "= Pe asz)rm( w — acT(b)(u)(a'( )

q 4
+ 3 @@ )T oty ®® + 2- @™ — 01.™) Ty ™" ™D
q

j=1 i=1

s
+ Z (au.,q)sa)BcsT(b)u,. Y PN #l(a)(/\)

J=1
,
+ Z(aﬂ’a Ay a@sh)BcsT(b)m)(a)\,...a...i\,,
i=1
where we put

*
M) — 2 (@)(A) by (@)Ar...Eee
T(am) = P, qu----l--.b,m = @e ’T(b)(u) !

b

etc., on taking account of the purity.

We must prove the tensor property of the operator. To do it we introduce
any affine connections I',;' and T,.* in X, and X,, respectively and denote by
Vv, and V, the corresponding operators of covariant derivation. Of course V.
operates on, for instance, as follows,

v.1T,* = 2,1,* + T,'T.,* — T,°T,
v.T,)=3.T,} — T T + BT, T’ — TolTe).
Denoting the torsion tensors by
Syt= (1/2) (T, = T.Y,  Su® = (1/2)(Te® — Tue?)
we have
O@ = Vi@ — @' Tt + @',
o™ — 0™ = Vep" — Vip™ — @' T™
+ @ T\* + 29S¢,
0w @’ = Vupd + @'l — @ T,
0, — Do = Vep — Vot — @ T
+ @ T, + 208, .

Substituting these relations into (4.2) and taking account of the purity of B
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and T(b)(‘,,)(aﬂh we haVe

*
A — A 18}
(4- 3) (I)CT('»}(;L)«I)\ ) = ¢clALT(b)(lt)(a)( b — VcT(b)(u)(a)(

q
+ Z[Vb,(Pcl + Z(Sb:ct‘?’tl - Sb;‘ll%t)] To,,...l..,b,(u)(a)m

J=1

)
+ Z[Vc@a‘ - Ve + 2S. e — SuMec)] T(b)(u)a""l"'a‘m

{=1

$
+ Z [V“7¢ ‘+ Z(S#JST¢"U_ SM;T(T?’ET)]BCE T(b)#:.-.a.. .Mx(a)()\)
J=1

»
+ Z[V&¢0A‘ . ng)sh + 2(Ssy7¢rh _ STUM¢ET)] BCETU; (M)(a))‘,...m..h.

i=1

This shows that ®, T, ™™ is a tensor and hence the ®-operator has the
tensor property.

5. Some formulas. From (4. 2) we have
*
¢ET(I))(u) — ¢clalT(';)<a) — acT(b)(a)

»

q
+ Z(abj¢cl)Toq...z...b.(a) + Z(ac¢za' - 8t¢’ca')71(l))a"'"l"'al
=1

i=1

for a pure tensor T,y in X,, which corresponds to the ®,-operator in X, in
§ 1. If we consider a pure tensor T,* of X, on X,, and operate @, to it, then
we have

q)cT(n)m = Bce‘l’eTm)m-

We can also prove the following formula

(VLU = (@, VUL + Vi U,
whose analogous formula is valid for pure tensors of the most general type
too.

As B,* is pure we can operate ®, to it and then we have
®.B.* = @.'0,B — 9d@a'B") + (S.p.)B}
+ (Ce@." — Sop") BB,
= Ou(@.'B") — 0@, B} + (Oeps* — S0 )BB,°.

If we differentiate @,'B* = @.*B, with respect to &%, then we have
6. 1) 8a(¢clBll) - (aﬂq)ﬁl)BcsBaG = (pEAauBcE-

Interchanging a and ¢ in (5. 1) and substracting the equation thus obtained
from (5.1) we get
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i _a_xk_) _
®,B,} = cpc( e ) =0
This corresponds to ®,8,* =0 in §1.
Next as the both hand members of @,°B,' = @.'B,° are pure, we have
B, ¥p,* = B B/ ®,¢". From which we get

lvbcaBa,)L = NGEABbJBce,
where N,,* and N,* are the Nijenhuis tensors of @, and @,* respectively. Thus
we have

THEOREM 7.'V In a differentiable manifold admitting a tensor field @.*,
let @) be the induced structure on an invariant subspace. Then if the Nijen-
huis tensor of @, vanishes, the Nijenhuis tensor of @," vanishes too.

REMARK. In the definition of ®-operator we need not assume that m < n.
In the case n=m, x'= (&) is considered as a transformation of local
coordinates.

6. Kahlerian spaces. An almost-complex space is called a complex man-
ifold if the Nijenhuis tensor vanishes identically. About such a space we get
from Theorem 4 and Theorem 7 the following

THEOREM 8. An invariant subspace in a complex manifold is an analytic
submanifold by virtue of the induced structure.

An almost-complex space is called almost-Hermitian if it is a Riemannian
space and that the Riemannian metric g, is hybrid with respect to the almost-
complex structure @,*. In such a space since the tensor field @u = @.°¢e\ is anti-
symmetric we have the so-called fundamental form @ = @udx* Adx*. A Kihlerian
space is an almost-Hermitian space in which V,@* =0 is valid, where Vv,
denotes the operator of the Riemannian covariant derivation. It is characterized
as the almost-Hermitian space such that it is a complex manifold and that the
fundamental form is closed.!'®

In the following we shall only consider a K#hlerian space X, and its inv-
ariant subspace X,,. We denote by g¢. the induced Riemannian metric defined
by ¢s = guBy"B.. As gu is hybrid and B/ is pure, we see that g, is hybrid,
on account of the arguments in § 3. Hence X,, becomes almost-Hermitian. By
the relation @4 = @./ 95 = @uB/B,* we know that the fundamental form of
X, is closed. Thus if we take account of Theorem 7 we get the well known

THEOREM 9.'® An invariant subspace in a Kdhlerian space is itself Kiih-
lerian by virtue of the induced structure.

11) cf. Schouten, J.A.and K. Yano, [5].
12) Schouten, J. A.and K. Yano, [5], Koto,S., [2].
13) Schouten,J.A. and K. Yano, [5].
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As we have V,p.* = 0in an invariant X, in a Kéhlerian X,, the equation
(4. 3) turns into the following simple form,

*
@) — ¢ ay(r ‘Q
DT 0y = @'V T 4y iy — VT tyoy .

Hence ®,T )., ®™ = 0 for a pure tensor is equivalent to that V.7 oy @™ is
also pure.

An infinitesimal conformal transformation v*in X, isa vector field such that
fv, Jur = 2pgun, where p is a scalar function. An infinitesimal projective transform-

A
ation is a vector field v* such that £{ }: pud,+p,8., where
wv

v

» } means the
uv
Christoffel symbols and p, is necessarily gradient. Recently Y.Tashiro'® showed
that p, = 9,0 is (covariant) almost-analytic for these transformations. This
means by our terminology that pis an almost analytic function. So there exists
a family of its associated functions {o} and if two functions of the family have
a common domain of definition, then their difference is constant. Now we
assume that the transformation in consideration is not homothetic i.e. that p is
not constant. We consider a family of local submanifolds o=const., so they
define globally a family of (n—1)-dimensional submanifolds. The intersection of
p = const. and a submanifold of the family is invariant by accordance of the
argument in § 2. Thus we have

THEOREM 10. If a Kdihlerian space admits a non-homothetic infinitesimal
conformal (or projective) transformation, then there exist oo® (n — 2)-dimensional
invariant subspaces, each of which is an analytic submanifold and Kdihlerian
by wvirtue of the induced structure.
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