SOME THEOREMS ON THE CROSSED PRODUCTS OF FINITE FACTORS

TEISHIRÔ SAITÔ

(Received July 27, 1962)

1. Let **M** be a finite factor with the invariant C = 1 and G a group of automorphisms¹⁾ of **M**. If G is outer, that is all member of G except the unit element are outer automorphisms, the crossed product (**M**, G) is a finite factor (see [1]). The purpose of this note is to prove the following two theorems.

THEOREM 1. Let **M** be a finite factor with the invariant C = 1 and G a group of outer automorphisms of **M**. Then any subfactor **N** of the crossed product (**M**, G) containing $\widetilde{\mathbf{M}}^{2}$ is isomorphic to the crossed product (**M**, G₀) of **M** by a subgroup G₀ of G.

When G is finite, this theorem is contained in [2:Lemma 9].

THEOREM 2. Let **M** be a finite factor with the invariant C = 1, and both G and H be groups of outer automorphisms of **M**. Then there exists an isomorphism between the crossed product (**M**, G) and (**M**, H) which leaves $\widetilde{\mathbf{M}}$ invariant if and only if the following conditions are true.

(1) There is an automorphism η of **M** such that the correspondence $\alpha (\in G) \rightarrow \sigma (\in H)$ defined by the relation $\eta^{-1}\alpha \eta \equiv \sigma \pmod{\mathbf{I}}$, where **I** is the set of all inner automorphisms of **M**, gives an isomorphism of G onto H.

(2) There exists a family $\{W_{\alpha}\}_{\alpha\in G}$ of unitary operators of \mathbf{M} such that each W_{α} induces the automorphism $\eta^{-1}\alpha\eta\sigma^{-1}$ of \mathbf{M} and for each $\alpha, \beta \in G, W_{\alpha\beta}^{\sigma}$ = $W_{\alpha}^{\sigma}W_{\beta}$.

2. Firstly we shall give a short explanation on the construction and a basic property of the crossed product of a finite factor.

Let **M** be a finite factor with the invariant C = 1 on a Hilbert space **H** and G a group of automorphisms of **M**. Let $\alpha \to U_{\alpha}$ be a faithful unitary representation of G such that $U^*_{\alpha} A U_{\alpha} = A^{\alpha}$ for all $A \in \mathbf{M}$. For each $A \in \mathbf{M}, \beta \in G$ we define the operators \widetilde{A} , \widetilde{U}_{β} on $\mathbf{H} \otimes l_2(G)$ by

$$\widetilde{A}\left(\sum_{\boldsymbol{\alpha}\in G}\varphi_{\boldsymbol{\alpha}}\otimes\boldsymbol{\varepsilon}_{\alpha}\right)=\sum_{\boldsymbol{\alpha}\in G}A\varphi_{\boldsymbol{\alpha}}\otimes\boldsymbol{\varepsilon}_{\boldsymbol{\alpha}}$$
$$\widetilde{U}_{\boldsymbol{\beta}}\left(\sum_{\boldsymbol{\alpha}\in G}\varphi_{\boldsymbol{\alpha}}\otimes\boldsymbol{\varepsilon}_{\boldsymbol{\alpha}}\right)=\sum_{\boldsymbol{\alpha}\in G}U_{\boldsymbol{\beta}}\varphi_{\boldsymbol{\alpha}}\otimes\boldsymbol{\varepsilon}_{\boldsymbol{\beta}\boldsymbol{\alpha}}$$

¹⁾ An automorphism of a factor means a *-automorphism,

²⁾ The definition of $\widetilde{\mathbf{M}}$ will be given in §2.

for all $\sum_{\alpha\in G} \varphi_{\alpha} \otimes \mathcal{E}_{\alpha} \in \mathbf{H} \otimes l_{2}(G)$. The set $\{\widetilde{A}; A \in \mathbf{M}\}$ will be denoted by $\widetilde{\mathbf{M}}$. Then, $\alpha \to \widetilde{U}_{\alpha}$ is a faithful unitary representation of G on $\mathbf{H} \otimes l_{2}(G)$ such as $\widetilde{U}_{\alpha}^{*} \widetilde{A} \widetilde{U}_{\alpha} = \widetilde{A}^{\alpha}$ for $A \in \mathbf{M}$. The W^{*} -algebra on $\mathbf{H} \otimes l_{2}(G)$ generated by $\{\widetilde{\mathbf{M}}, \widetilde{U}_{\alpha}; \alpha \in G\}$ is the crossed product of \mathbf{M} by G in the sense of [1], and is denoted by (\mathbf{M}, G) . Each element $A \in (\mathbf{M}, G)$ is uniquely expressed in the form $A = \sum_{\alpha\in G} \widetilde{A}_{\alpha}\widetilde{U}_{\alpha}$, where $A_{\alpha} \in \mathbf{M}$ and \sum' is taken in the sense of the metrical convergence.

3. To prove Theorem 1 we shall provide two lemmas. The proof of Lemma 1 is seen in the proof of [1; Theorem 3], and so we omit the proof.

LEMMA 1. Let **M** be a finite factor and α an outer automorphism of **M**. If $A \in \mathbf{M}$ possesses the property that $BA = AB^{\alpha}$ for all $B \in \mathbf{M}$, then A = 0.

Throughout the remainder of § 3 we shall use the symbols \mathbf{M}, \mathbf{N} and G with the meaning attributed to them in the statement of Theorem 1 in § 1. Then each element $A \in \mathbf{N}$ can be uniquely expressed in the form $A = \sum_{\alpha \in G} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha}$ where $A_{\alpha} \in \mathbf{M}$ for each $\alpha \in G$. We denote the set of α -components³) A_{α} of $A \in \mathbf{N}$ by \mathbf{N}_{α} for each $\alpha \in G$. Then it is easily seen that each \mathbf{N}_{α} is a two-sided ideal of \mathbf{M} . Since \mathbf{M} is topologically, and so algebraically simple, either $\mathbf{N}_{\alpha} = (0)$ or $\mathbf{N}_{\alpha} = \mathbf{M}$ for each $\alpha \in G$. Let $G_0 = \{\alpha \in G; \mathbf{N}_{\alpha} \neq (0)\}$. Then G_0 is a subgroup of G and we have the following

LEMMA 2. For each $\alpha \in G_0$, $\widetilde{U}_{\alpha} \in \mathbf{N}$.

PROOF. Let \mathcal{E} be the conditional expectation of (\mathbf{M}, G) relative to \mathbf{N} in the sense of [3]. Fix an arbitrary $\alpha_0 \in G_0$. Since $\widetilde{U}_{\alpha_0}^{\varepsilon} \in \mathbf{N}$, $\widetilde{U}_{\alpha_0}^{\varepsilon}$ is uniquely expressed in the form

$$\widetilde{U}_{a_0}^{\varepsilon} = \sum_{\alpha \in G_0}^{'} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha}, \qquad (*)$$

where $A_{\alpha} \in \mathbf{M}$ for every $\alpha \in G_0$. As $\widetilde{BU}_{\alpha_0} = \widetilde{U}_{\alpha_0}\widetilde{B}^{\alpha_0}$ for any $B \in \mathbf{M}$, we have $\widetilde{BU}_{\alpha_0}^{\varepsilon} = \widetilde{U}_{\alpha_0}^{\varepsilon}\widetilde{B}^{\alpha_0}$ for all $B \in \mathbf{M}$. Hence by (*) and the uniqueness of the expression $BA_{\alpha} = A_{\alpha}B^{\alpha_0 \pi^{-1}}$ for all $B \in \mathbf{M}$ and $\alpha \in G_0$. (**)

Lemma 1 and (**) imply that $A_{\alpha} = 0$ for all $\alpha \in G_0$, $\alpha \neq \alpha_0$ and $\widetilde{U}_{\alpha_0}^{\varepsilon} = \widetilde{A}_{\alpha_0}\widetilde{U}_{\alpha_0}$. Further $BA_{\alpha_0} = A_{\alpha_0} B$ for all $B \in \mathbf{M}$ by (**), and so $A_{\alpha_0} = \lambda I$, $\widetilde{U}_{\alpha_0}^{\varepsilon} = \lambda \widetilde{U}_{\alpha_0}$ where λ is a scalar. Thus $(1 - \lambda)\widetilde{U}_{\alpha_0}^{\varepsilon} = 0$, and either $\lambda = 1$ or $\widetilde{U}_{\alpha_0}^{\varepsilon} = 0$. This shows that either $\widetilde{U}_{\alpha_0}^{\varepsilon} = \widetilde{U}_{\alpha_0} \in \mathbf{N}$ or $\widetilde{U}_{\alpha_0}^{\varepsilon} = 0$. Suppose that $\widetilde{U}_{\alpha_0}^{\varepsilon} = 0$. Since $\mathbf{N}_{\alpha_0} = \mathbf{M}$,

³⁾ For $A = \sum_{\alpha \in G} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha} \in (\mathbf{M}, G)$, $A_{\alpha} \in \mathbf{M}$ is called the α -component of A.

there exists an element $B = \sum_{\alpha \in \mathcal{G}_0} \widetilde{B}_{\alpha} \widetilde{U}_{\alpha} \in \mathbf{N}$ such as $B_{\alpha_0} \neq 0$. Then

where G'_0 is a subset of G_0 which does not contain α_0 . This contradicts the uniqueness of the expression of each element of **N**. Hence $\widetilde{U}_{\alpha} \in \mathbf{N}$ for all $\alpha \in G$.

PROOF OF THEOREM 1. By Lemma 2, $R(\widetilde{\mathbf{M}}, \widetilde{U}_{\alpha}; \alpha \in G_0) \subseteq \mathbf{N}$. On the other hand, it is obvious that $R(\widetilde{\mathbf{M}}, \widetilde{U}_{\alpha}; \alpha \in G_0) \supseteq \mathbf{N}$ by the definition of G_0 . Thus $\mathbf{N} = R(\widetilde{\mathbf{M}}, \widetilde{U}_{\alpha}; \alpha \in G_0)$. By Corollary of Theorem 5 in [1], (\mathbf{M}, G_0) is isomorphic to $R(\widetilde{\mathbf{M}}, \widetilde{U}_{\alpha}; \alpha \in G_0)$ and the theorem is proved.

4. In this section we shall prove Theorem 2 and use the notations \mathbf{M} , G, H and \mathbf{I} with the same meaning as those in the statement of Theorem 2.

Let $\alpha \to U_{\alpha}$ (resp. $\sigma \to V_{\sigma}$) be the unitary representation of G (resp. H) which appears in the construction of the crossed product (**M**, G) (resp. (**M**, H)).

PROOF OF NECESSITY. Let Φ be an isomorphism between (\mathbf{M}, G) and (\mathbf{M}, H) which leaves $\widetilde{\mathbf{M}}$ invariant. Then Φ induces an automorphism η of $\widetilde{\mathbf{M}}$ defined by $\widetilde{A}^{\eta} = \Phi(\widetilde{A})$ for all $A \in \mathbf{M}$. For each $\alpha \in G$ and $A \in \mathbf{M}$, we have

$$\Phi(\widetilde{U}_{\alpha})^* \widetilde{A} \Phi(\widetilde{U}_{\alpha}) = \Phi(\widetilde{U}_{\alpha}^*) \Phi(\widetilde{A}^{\eta^{-1}}) \Phi(\widetilde{U}_{\alpha}) = \Phi(\widetilde{U}_{\alpha}^* \widetilde{A}^{\eta^{-1}} \widetilde{U}_{\alpha}) = \widetilde{A}^{\eta^{-1} \alpha \eta}$$

and so $\Phi(\widetilde{U}_{\alpha})$ induces an automorphism $\eta^{-1}\alpha\eta$ of $\widetilde{\mathbf{M}}$. Putting $\Phi(\widetilde{U}_{\alpha}) = \sum_{\sigma \in U} \widetilde{A}_{\sigma}\widetilde{V}_{\sigma} \in (\mathbf{M}, H)$, we have

$$(\sum_{\sigma\in H}'\widetilde{A}_{\sigma}\widetilde{V}_{\sigma})\ \widetilde{A}^{\eta^{-1}\alpha\eta}=\widetilde{A}(\sum_{\sigma\in H}'\widetilde{A}_{\sigma}\widetilde{V}_{\sigma})$$

for all $A \in \mathbf{M}$. Thus we have for each $\sigma \in H$

 $A_{\sigma} A^{\eta^{-1} \alpha \eta \sigma^{-1}} = A A_{\sigma}$ for all $A \in \mathbf{M}$.

Hence, by Lemma 1, except for $\sigma \in H$ such as $\eta^{-1}\alpha\eta \equiv \sigma \pmod{I}$ $A_{\sigma} = 0$. On the other hand, if there exist σ_1 , σ_2 such as $\eta^{-1}\alpha\eta \equiv \sigma_1 \pmod{I}$, $\eta^{-1}\alpha\eta \equiv \sigma_2 \pmod{I}$, $\sigma_1\sigma_2^{-1} = (\eta^{-1}\alpha\eta\sigma_1^{-1})^{-1}(\eta^{-1}\alpha\eta\sigma_2^{-1}) \in H$ is inner, and so $\sigma_1 = \sigma_2$ by our assumption on H. If all $\eta^{-1}\alpha\eta\sigma^{-1}$ are outer, $A_{\sigma} = 0$ for all $\sigma \in H$ and $\Phi(\widetilde{U}_{\alpha}) = 0$, which is a contradiction. Therefore, for each $\alpha \in G$ there exists a unique $\sigma \in H$ and a unique unitary operator $W_{\alpha} \in \mathbf{M}$ such that $\eta^{-1}\alpha\eta \equiv \sigma \pmod{I}$, $\Phi(\widetilde{U}_{\alpha}) = \widetilde{W}_{\alpha}\widetilde{V}_{\sigma}$ and W_{α} induces and inner automorphism $\eta^{-1}\alpha\eta\sigma^{-1}$ of \mathbf{M} . Next we shall prove that the mapping $\alpha \to \sigma$ defined above gives an isomorphism of G onto H. To prove that the mapping $\alpha \to \sigma$ is onto, let $\widetilde{V}_{\sigma} = \Phi\left(\sum_{\alpha \in G} \widetilde{A}_{\alpha}\widetilde{U}_{\alpha}\right)$, then we have

314

$$\begin{split} \widetilde{A}\widetilde{V}_{\sigma} &= \Phi(\widetilde{A}^{\eta^{-1}})\Phi\left(\sum_{\boldsymbol{\alpha}\in G}^{\prime}\widetilde{A}_{\boldsymbol{\alpha}}\widetilde{U}_{\boldsymbol{\alpha}}\right) = \Phi\left(\sum_{\boldsymbol{\alpha}\in G}^{\prime}\widetilde{A}^{\eta^{-1}}\widetilde{A}_{\boldsymbol{\alpha}}\widetilde{U}_{\boldsymbol{\alpha}}\right) \\ &= \widetilde{V}_{\sigma}\widetilde{A}^{\sigma} = \Phi\left(\sum_{\boldsymbol{\alpha}\in G}^{\prime}\widetilde{A}_{\boldsymbol{\alpha}}\widetilde{U}_{\boldsymbol{\alpha}}\right)\Phi(\widetilde{A}^{\sigma\eta^{-1}}) \\ &= \Phi\left(\sum_{\boldsymbol{\alpha}\in G}^{\prime}\widetilde{A}_{\boldsymbol{\alpha}}\widetilde{A}^{\eta^{-1}\alpha^{-1}}\widetilde{U}_{\boldsymbol{\alpha}}\right), \end{split}$$

for all $A \in \mathbf{M}$, and for each $\alpha \in G$, $AA^{\eta}_{\alpha} = A^{\eta}_{\alpha} A^{\sigma_{\eta}-i_{\alpha}-i_{\eta}}$ for all $A \in \mathbf{M}$. By the same reason as before, there is a unique $\alpha \in G$ such as $\eta^{-1}\alpha\eta \equiv \sigma \pmod{\mathbf{I}}$. Thus the mapping is onto. Since $\Phi(\widetilde{U}_{\alpha}) = \widetilde{W}_{\alpha}\widetilde{V}_{\sigma}$, $\Phi(\widetilde{U}_{\beta}) = \widetilde{W}_{\beta}\widetilde{V}_{\tau}$ for each pair $\alpha,\beta \in G$.

$$\begin{split} \Phi(\widetilde{U}_{\alpha\beta}) &= \Phi(\widetilde{U}_{\alpha}) \Phi(\widetilde{U}_{\beta}) = (\widetilde{W}_{\alpha}\widetilde{V}_{\sigma})(\widetilde{W}_{\beta}\widetilde{V}_{\tau}) = \widetilde{W}_{\alpha}\widetilde{W}_{\beta}^{\sigma^{-1}}\widetilde{V}_{\sigma\tau} \\ &= \widetilde{W}_{\alpha\beta}\widetilde{V}_{\omega}, \text{ where } \eta^{-1}\beta\eta \equiv \tau (\text{mod } \mathbf{I}), \ \eta^{-1}\alpha\beta\eta \equiv \omega (\text{mod } \mathbf{I}), \end{split}$$

and $\widetilde{W}^*_{\alpha\beta}\widetilde{W}^{\sigma^{-1}}_{\omega} = \widetilde{V}_{\omega}\widetilde{V}^*_{\sigma\tau} \in \mathbf{M}$. Thus $\omega = \sigma\tau$ and $W^{\sigma}_{\alpha\beta} = W^{\sigma}_{\omega}W_{\beta}$ for each α , $\beta \in G$. Hence the necessity of (1), (2) is proved.

PROOF OF SUFFICIENCY. Suppose that the conditions (1), (2) are satisfied. We define a mapping Φ of (\mathbf{M}, G) into (\mathbf{M}, H) by

$$\Phi\left(\sum_{\alpha\in G}'\widetilde{A}_{\alpha}\widetilde{U}_{\alpha}\right) = \sum_{\sigma\in H}'\widetilde{B}_{\sigma}\widetilde{V}_{\sigma} \text{ for each } \sum_{\alpha\in G}'\widetilde{A}_{\alpha}\widetilde{U}_{\alpha} \in (\mathbf{M}, G),$$

where $\sigma \equiv \eta^{-1} \alpha \eta \pmod{\mathbf{I}}$ and $\widetilde{B}_{\sigma} = \widetilde{A}_{\alpha}^{\eta} \widetilde{W}_{\alpha}$ for $\alpha \in G$.

If $\Phi\left(\sum_{\alpha\in G} \widetilde{A}_{\alpha}\widetilde{U}_{\alpha}\right) = 0$, we have $A_{\alpha}^{\eta}W_{\alpha} = 0$ for each $\alpha \in G$, and $A_{\alpha} = 0$ for all $\alpha \in G$. Thus the mapping Φ is one-to-one. Further, for any $\sum_{\sigma\in H} \widetilde{A}_{\sigma}\widetilde{V}_{\sigma}$ $\in (\mathbf{M}, H)$

$$\Phi\left(\sum_{\alpha\in G}\widetilde{B}^{\eta^{-1}}_{\alpha}\widetilde{W}^{*\eta^{-1}}_{\alpha}\widetilde{U}_{\alpha}\right)=\sum_{\sigma\in II}\widetilde{A}_{\sigma}\widetilde{V}_{\sigma},$$

where $\eta^{-1}\alpha\eta \equiv \sigma \pmod{\mathbf{I}}$ and $B_{\alpha} = A_{\sigma}$ for all $\alpha \in G$, and thus the mapping Φ is onto.

To complete the proof we need only to prove that

and

$$\Phi\left(\left(\sum_{\alpha\in G}'\widetilde{A}_{\alpha}\widetilde{U}_{\alpha}\right)^{*}\right) = \left(\Phi\left(\sum_{\alpha\in G}'\widetilde{A}_{\alpha}\widetilde{U}_{\alpha}\right)\right)^{*}$$
$$\Phi\left(\left(\sum_{\alpha\in G}'\widetilde{A}_{\alpha}\widetilde{U}_{\alpha}\right)(\sum_{\alpha\in G}'\widetilde{B}_{\alpha}\widetilde{U}_{\alpha})\right) = \Phi\left(\sum_{\alpha\in G}'\widetilde{A}_{\alpha}\widetilde{U}_{\alpha}\right)\Phi\left(\sum_{\alpha\in G}'\widetilde{B}_{\alpha}\widetilde{U}_{\alpha}\right),$$
$$\left[\left[\Phi\left(\sum_{\alpha\in G}'\widetilde{A}_{\alpha}\widetilde{U}_{\alpha}\right)\right]\right] = \left[\left[\sum_{\alpha\in G}'\widetilde{A}_{\alpha}\widetilde{U}_{\alpha}\right]\right]$$

for any $\sum_{\alpha \in G} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha}$, $\sum_{\alpha \in G} \widetilde{B}_{\alpha} \widetilde{U}_{\alpha} \in (\mathbf{M}, G)$. Since we have $W_{\alpha}^* = W_{\alpha^{-1}}$ by condition (2),

$$\Phi\left(\left(\sum_{\alpha\in G}'\widetilde{A}_{\alpha}\widetilde{U}_{\alpha}\right)^{*}\right)=\Phi\left(\sum_{\alpha\in G}'\widetilde{A}_{\alpha}^{*\alpha}\widetilde{U}_{\alpha^{-1}}\right)=\sum_{\sigma\in H}'\widetilde{B}_{\sigma^{-1}}\widetilde{V}_{\sigma^{-1}},$$

T. SAITÔ

where $\sigma \equiv \eta^{-1} \alpha \eta \pmod{\mathbf{I}}$ and $\widetilde{B}_{\sigma^{-1}} = \widetilde{A}_{\alpha}^{*\alpha\eta} \widetilde{W}_{\alpha^{-1}}$, and so $\widetilde{B}_{\sigma^{-1}} \widetilde{V}_{\sigma^{-1}} = \widetilde{V}_{\sigma^{-1}} (\widetilde{A}_{\alpha}^{*\alpha\eta} \widetilde{W}_{\alpha}^{*\sigma})^{\sigma^{-1}} = \widetilde{V}_{\sigma^{-1}} (\widetilde{W}_{\alpha}^{\sigma} \widetilde{A}_{\alpha}^{*\alpha\eta\eta^{-1}\alpha^{-1}\eta\sigma})^{\sigma^{-1}}$ $= \widetilde{V}_{\sigma^{-1}} \widetilde{W}_{\alpha}^{*} \widetilde{A}_{\alpha}^{*\eta}.$ Thus, $\Phi\left(\left(\sum_{\alpha \in \mathcal{G}}^{\prime} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha}\right)^{*}\right) = \left(\Phi\left(\sum_{\alpha \in \mathcal{G}}^{\prime} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha}\right)\right)^{*}.$

Moreover,

$$\Phi\left(\sum_{\alpha\in G}'\widetilde{A}_{\alpha}\widetilde{U}_{\alpha}\right)\Phi\left(\sum_{\alpha\in G}'\widetilde{B}_{\alpha}\widetilde{U}_{\alpha}\right)=\sum_{\sigma,\tau\in H}'\widetilde{C}_{\sigma}\widetilde{D}_{\tau}^{\sigma-i}\widetilde{V}_{\sigma\tau}$$

where $\sigma \equiv \eta^{-1} \alpha \eta \pmod{\mathbf{I}}$, $\tau \equiv \eta^{-1} \beta \eta \pmod{\mathbf{I}}$, $\widetilde{C}_{\sigma} = \widetilde{A}^{\eta}_{\alpha} \widetilde{W}_{\alpha}$ and $\widetilde{D}_{\tau} = \widetilde{B}^{\iota}_{\beta} \widetilde{W}_{\beta}$, and so $\widetilde{C}_{\sigma} \widetilde{D}^{\sigma^{-1}}_{\tau} \widetilde{V}_{\sigma\tau} = (\widetilde{A}^{\eta}_{\alpha} \widetilde{W}_{\alpha}) (\widetilde{B}^{\eta}_{\beta} \widetilde{W}_{\beta})^{\sigma^{-1}} \widetilde{V}_{\sigma\tau} = \widetilde{A}^{\eta}_{\alpha} \widetilde{B}^{\sigma^{-1}\eta}_{\beta} \widetilde{W}_{\alpha} \widetilde{W}^{\sigma^{-1}}_{\beta} \widetilde{V}_{\sigma\tau}$ $= \widetilde{A}^{\eta}_{\alpha} \widetilde{B}^{q^{-1}\eta}_{\alpha} \widetilde{W}_{\alpha\beta} \widetilde{V}_{\sigma\tau}.$

Hence,

$$\begin{split} \Phi \Big(\sum_{\alpha \in G}' \widetilde{A}_{\alpha} \widetilde{U}_{\alpha} \Big) \Phi \Big(\sum_{\alpha \in G}' \widetilde{B}_{\alpha} \widetilde{U}_{\alpha} \Big) \\ &= \Phi \Big(\sum_{\alpha, \beta \in G}' \widetilde{A}_{\alpha} \widetilde{B}_{\beta}^{\alpha^{-1}} \widetilde{U}_{\alpha\beta} \Big) \\ &= \Phi \Big(\Big(\sum_{\alpha \in G}' \widetilde{A}_{\alpha} \widetilde{U}_{\alpha} \Big) \Big(\sum_{\alpha \in G}' \widetilde{B}_{\alpha} \widetilde{U}_{\alpha} \Big) \Big). \end{split}$$

Finally,

$$\begin{split} \left[\left[\Phi \left(\sum_{\alpha \in G} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha} \right) \right] \right]^2 &= \left[\left[\sum_{\sigma \in H} \widetilde{B}_{\sigma} \widetilde{V}_{\sigma} \right] \right]^2 = \sum_{\alpha \in G} \left[[A_{\alpha}^{\eta} W_{\alpha}] \right]^2 \\ &= \sum_{\alpha \in G} \left[[A_{\alpha}] \right]^2 = \left[\left[\sum_{\alpha \in G} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha} \right] \right]^2, \end{split}$$

where $\sigma \equiv \eta^{-1} \alpha \eta \pmod{\mathbf{I}}$ and $\widetilde{B}_{\sigma} = \widetilde{A}_{\alpha}^{\eta} \widetilde{W}_{\alpha}$, and the proof of sufficiency is completed.

References

- N. SUZUKI, Crossed products of rings of operators, Tôhoku Math. Journ., 11(1959), 113-124.
- [2] ____, Extensions of rings of operators on Hilbert spaces. Tôhoku Math. Journ., 14(1962), 217-232.
- [3] H. UMEGAKI, Conditional expectation in an operator algebra, Tôhoku Math. Journ., 6(1954), 177-181.

MATHEMATICAL INSTITUTE, TÔHOKU UNIVERSITY.

316