SOME THEOREMS ON THE CROSSED PRODUCTS OF FINITE FACTORS

Teishirô Saitô

(Received July 27, 1962)

1. Let \mathbf{M} be a finite factor with the invariant $C=1$ and G a group of automorphisms ${ }^{1)}$ of \mathbf{M}. If G is outer, that is all member of G except the unit element are outer automorphisms, the crossed product (\mathbf{M}, G) is a finite factor (see [1]). The purpose of this note is to prove the following two theorems.

THEOREM 1. Let \mathbf{M} be a finite factor with the invariant $C=1$ and G a group of outer automorphisms of \mathbf{M}. Then any subfactor \mathbf{N} of the crossed product (\mathbf{M}, G) containing $\widetilde{\mathbf{M}}^{2)}$ is isomorphic to the crossed product $\left(\mathbf{M}, G_{0}\right)$ of M by a subgroup G_{0} of G.

When G is finite, this theorem is contained in [2:Lemma 9].
THEOREM 2. Let \mathbf{M} be a finite factor with the invariant $C=1$, and both G and H be groups of outer automorphisms of \mathbf{M}. Then there exists an isomorphism between the crossed product (\mathbf{M}, G) and (\mathbf{M}, H) which leaves $\widetilde{\mathbf{M}}$ invariant if and only if the following conditions are true.
(1) There is an automorphism η of \mathbf{M} such that the correspondence $\alpha(\in G) \rightarrow \sigma(\in H)$ defined by the relation $\eta^{-1} \alpha \eta \equiv \sigma(\bmod \mathbf{I})$, where \mathbf{I} is the set of all inner automorphisms of \mathbf{M}, gives an isomorphism of G onto H.
(2) There exists a family $\left\{W_{\alpha}\right\}_{\alpha \in \epsilon}$ of unitary operators of \mathbf{M} such that each W_{∞} induces the automorphism $\eta^{-1} \alpha \eta \sigma^{-1}$ of \mathbf{M} and for each $\alpha, \beta \in G, W_{\alpha_{\beta}}^{\sigma}$ $=W_{\alpha}^{\sigma} W_{\beta}$.
2. Firstly we shall give a short explanation on the construction and a basic property of the crossed product of a finite factor.

Let \mathbf{M} be a finite factor with the invariant $C=1$ on a Hilbert space \mathbf{H} and G a group of automorphisms of \mathbf{M}. Let $\alpha \rightarrow U_{\alpha}$ be a faithful unitary representation of G such that $U_{\alpha}^{*} A U_{\alpha}=A^{\alpha}$ for all $A \in \mathbf{M}$. For each $A \in \mathbf{M}, \beta \in G$ we define the operators $\widetilde{A}, \widetilde{U}_{\beta}$ on $\mathbf{H} \otimes l_{2}(G)$ by

$$
\begin{aligned}
& \widetilde{A}\left(\sum_{\alpha \in G} \varphi_{\alpha} \otimes \varepsilon_{\alpha}\right)=\sum_{\alpha \in G} A \varphi_{\alpha} \otimes \varepsilon_{\alpha} \\
& \widetilde{U}_{\beta}\left(\sum_{\alpha \in G} \varphi_{\alpha} \otimes \varepsilon_{\alpha}\right)=\sum_{\alpha \in G} U_{\beta} \varphi_{\alpha} \otimes \varepsilon_{\beta \alpha}
\end{aligned}
$$

[^0]for all $\sum_{\alpha \in G} \phi_{\alpha} \otimes \varepsilon_{\alpha} \in \mathbf{H} \otimes l_{2}(G)$. The set $\{\widetilde{A} ; A \in \mathbf{M}\}$ will be denoted by $\widetilde{\mathbf{M}}$. Then, $\alpha \rightarrow \widetilde{U}_{\alpha}$ is a faithful unitary representation of G on $\mathbf{H} \otimes l_{2}(G)$ such as $\widetilde{U}_{\alpha}^{*} \widetilde{A} \widetilde{U}_{\alpha}=\widetilde{A}^{\alpha}$ for $A \in \mathbf{M}$. The W^{*}-algebra on $\mathbf{H} \otimes l_{2}(G)$ generated by $\left\{\widetilde{\mathbf{M}}, \widetilde{U}_{\alpha} ; \alpha \in G\right\}$ is the crossed product of \mathbf{M} by G in the sense of [1], and is denoted by (\mathbf{M}, G). Each element $A \in(\mathbf{M}, G)$ is uniquely expressed in the form $A=\sum_{\alpha \in G}^{\prime} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha}$, where $A_{\alpha} \in \mathbf{M}$ and \sum^{\prime} is taken in the sense of the metrical convergence.
3. To prove Theorem 1 we shall provide two lemmas. The proof of Lemma 1 is seen in the proof of [1; Theorem 3], and so we omit the proof.

Lemma 1. Let \mathbf{M} be a finite factor and α an outer automorphism of \mathbf{M}. If $A \in \mathbf{M}$ possesses the property that $B A=A B^{\alpha}$ for all $B \in \mathbf{M}$, then $A=0$.

Throughout the remainder of $\S 3$ we shall use the symbols \mathbf{M}, \mathbf{N} and G with the meaning attributed to them in the statement of Theorem 1 in $\S 1$. Then each element $A \in \mathbf{N}$ can be uniquely expressed in the form $A=\sum_{\alpha \in G}^{\prime}$ $\widetilde{A}_{\alpha} \widetilde{U}_{\alpha}$ where $A_{\alpha} \in \mathbf{M}$ for each $\alpha \in G$. We denote the set of α-components ${ }^{3)} A_{\alpha}$ of $A \in \mathbf{N}$ by \mathbf{N}_{α} for each $\alpha \in G$. Then it is easily seen that each \mathbf{N}_{α} is a twosided ideal of \mathbf{M}. Since \mathbf{M} is topologically, and so algebraically simple, either $\mathbf{N}_{\alpha}=(0)$ or $\mathbf{N}_{\alpha}=\mathbf{M}$ for each $\alpha \in G$. Let $G_{0}=\left\{\alpha \in G ; \mathbf{N}_{\alpha} \neq(0)\right\}$. Then G_{0} is a subgroup of G and we have the following

Lemma 2. For each $\alpha \in G_{0}, \quad \widetilde{U}_{\alpha} \in \mathbf{N}$.
Proof. Let ε be the conditional expectation of (\mathbf{M}, G) relative to \mathbf{N} in the sense of [3]. Fix an arbitrary $\alpha_{0} \in G_{0}$. Since $\widetilde{U}_{\alpha_{0}}^{s} \in \mathbf{N}, \widetilde{U}_{\alpha_{0}}^{s}$ is uniquely expressed in the form

$$
\begin{equation*}
\widetilde{U}_{\alpha_{0}}^{\varepsilon}=\sum_{a \in G_{0}}^{\prime} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha} \tag{*}
\end{equation*}
$$

where $A_{\alpha} \in \mathbf{M}$ for every $\alpha \in G_{0}$. As $\widetilde{B U_{\alpha_{0}}}=\widetilde{U}_{\alpha_{0}} \widetilde{B}^{\alpha_{0}}$ for any $B \in \mathbf{M}$, we have $\widetilde{B} \widetilde{U}_{\alpha_{0}}^{\varepsilon}=\widetilde{U}_{\alpha_{0}}^{\varepsilon} \widetilde{B}^{\alpha_{0}}$ for all $B \in \mathbf{M}$. Hence by (${ }^{*}$) and the uniqueness of the expression

$$
B A_{\alpha}=A_{\alpha} B^{\alpha_{0}-1} \quad \text { for all } B \in \mathbf{M} \text { and } \alpha \in G_{0}
$$

Lemma 1 and $\left({ }^{* *}\right)$ imply that $A_{\alpha}=0$ for all $\alpha \in G_{0}, \alpha \neq \alpha_{0}$ and $\widetilde{U}_{\alpha_{0}}^{\varepsilon}=\widetilde{A}_{\alpha_{0}} \widetilde{U}_{\alpha_{0}}$. Further $B A_{\alpha_{0}}=A_{\alpha 0} B$ for all $B \in \mathbf{M}$ by (**), and so $A_{\alpha_{0}}=\lambda I, \widetilde{U}_{\alpha_{0}}^{\varepsilon}=\lambda \widetilde{U}_{\alpha_{0}}$ where λ is a scalar. Thus $(1-\lambda) \widetilde{U}_{\alpha_{0}}^{\varepsilon}=0$, and either $\lambda=1$ or $\widetilde{U}_{\alpha_{0}}^{\varepsilon}=0$. This shows that either $\widetilde{U}_{\alpha_{0}}^{\varepsilon}=\widetilde{U}_{\alpha_{0}} \in \mathbf{N}$ or $\widetilde{U}_{\alpha_{0}}^{\varepsilon}=0$. Suppose that $\widetilde{U}_{\alpha_{0}}^{\varepsilon}=0$. Since $\mathbf{N}_{\alpha_{0}}=\mathbf{M}$,

[^1]there exists an element $B=\sum_{\alpha \in G_{0}}^{\prime} \widetilde{B}_{\alpha} \widetilde{U}_{\alpha} \in \mathbf{N}$ such as $B_{\alpha_{0}} \neq 0$. Then
$$
\sum_{\alpha \in \epsilon_{0}}^{\prime} \widetilde{B}_{\alpha} \widetilde{U}_{\alpha}=B=B^{\varepsilon}=\sum_{\alpha \in G_{0}^{\prime}}^{\prime} \widetilde{B}_{\alpha} \widetilde{U}_{\alpha}
$$
where G_{0}^{\prime} is a subset of G_{0} which does not contain α_{0}. This contradicts the uniqueness of the expression of each element of \mathbf{N}. Hence $\widetilde{U}_{\alpha} \in \mathbf{N}$ for all $\alpha \in G$.

Proof of Theorem 1. By Lemma 2, $R\left(\widetilde{\mathbf{M}}, \widetilde{U}_{\boldsymbol{\alpha}} ; \alpha \in G_{0}\right) \subseteq \mathbf{N}$. On the other hand, it is obvious that $R\left(\widetilde{\mathbf{M}}, \widetilde{U}_{\alpha} ; \alpha \in G_{0}\right) \supseteq \mathbf{N}$ by the definition of G_{0}. Thus $\mathbf{N}=R\left(\widetilde{\mathbf{M}}, \widetilde{U}_{\alpha} ; \alpha \in G_{0}\right)$. By Corollary of Theorem 5 in [1], $\left(\mathbf{M}, G_{0}\right)$ is isomorphic to $R\left(\widetilde{\mathbf{M}}, \widetilde{U}_{\boldsymbol{a}} ; \alpha \in G_{0}\right)$ and the theorem is proved.
4. In this section we shall prove Theorem 2 and use the notations \mathbf{M}, G, H and \mathbf{I} with the same meaning as those in the statement of Theorem 2.

Let $\alpha \rightarrow U_{\alpha}$ (resp. $\sigma \rightarrow V_{\sigma}$) be the unitary representation of G (resp. H) which appears in the construction of the crossed product (\mathbf{M}, G) (resp. (\mathbf{M}, H)).

Proof of Necessity. Let Φ be an isomorphism between (\mathbf{M}, G) and (\mathbf{M}, H) which leaves $\widetilde{\mathbf{M}}$ invariant. Then Φ induces an automorphism η of $\widetilde{\mathbf{M}}$ defined by $\widetilde{A}^{\eta}=\Phi(\widetilde{A})$ for all $A \in \mathbf{M}$. For each $\alpha \in G$ and $A \in \mathbf{M}$, we have

$$
\Phi\left(\widetilde{U}_{\alpha}\right)^{*} \widetilde{A} \Phi\left(\widetilde{U}_{\alpha}\right)=\Phi\left(\widetilde{U}_{\alpha}^{*}\right) \Phi\left(\widetilde{A}^{\eta^{-1}}\right) \Phi\left(\widetilde{U}_{\alpha}\right)=\Phi\left(\widetilde{U}_{\alpha}^{*} \widetilde{A}^{\eta^{-1}} \widetilde{U}_{\alpha}\right)=\widetilde{A}^{\eta^{-1 \alpha \eta}}
$$

and so $\Phi\left(\widetilde{U}_{\alpha}\right)$ induces an automorphism $\eta^{-1} \alpha \eta$ of $\widetilde{\mathbf{M}}$. Putting $\Phi\left(\widetilde{U}_{\alpha}\right)=\sum_{\sigma \epsilon I I}^{\prime} \widetilde{A}_{\sigma} \widetilde{V}_{\sigma}$ $\epsilon(\mathbf{M}, H)$, we have

$$
\left(\sum_{\sigma \in H}^{\prime} \widetilde{A}_{\sigma} \widetilde{V}_{\sigma}\right) \widetilde{A}^{\eta^{-1} \alpha \eta}=\widetilde{A}\left(\sum_{\sigma \epsilon H}^{\prime} \widetilde{A}_{\sigma} \widetilde{V}_{\sigma}\right)
$$

for all $A \in \mathbf{M}$. Thus we have for each $\sigma \in H$

$$
A_{\sigma} A^{\eta^{-1 \alpha \eta \sigma-1}}=A A_{\sigma} \quad \text { for all } A \in \mathbf{M} .
$$

Hence, by Lemma 1 , except for $\sigma \in H$ such as $\eta^{-1} \alpha \eta \equiv \sigma(\bmod \mathbf{I}) A_{\sigma}=0$. On the other hand, if there exist σ_{1}, σ_{2} such as $\eta^{-1} \alpha \eta \equiv \sigma_{1}(\bmod \mathbf{I}), \eta^{-1} \alpha \eta \equiv \sigma_{2}(\bmod \mathbf{I})$, $\sigma_{1} \sigma_{2}{ }^{-1}=\left(\eta{ }^{1} \alpha \eta \sigma_{1}{ }^{-1}\right)^{1}\left(\eta^{-1} \alpha \eta \sigma_{2}{ }^{-1}\right) \in H$ is inner, and so $\sigma_{1}=\sigma_{2}$ by our assumption on H. If all $\eta^{-1} \alpha \eta \sigma^{-1}$ are outer, $A_{\sigma}=0$ for all $\sigma \in H$ and $\Phi\left(\widetilde{U}_{\alpha}\right)=0$, which is a contradiction. Therefore, for each $\alpha \in G$ there exists a unique $\sigma \in H$ and a unique unitary operator $W_{\alpha} \in \mathbf{M}$ such that $\eta^{-1} \alpha \eta \equiv \sigma(\bmod \mathbf{I}), \Phi\left(\widetilde{U}_{\alpha}\right)=\widetilde{W}_{\alpha} \widetilde{V}_{\sigma}$ and W_{α} induces and inner automorphism $\eta^{-1} \alpha \eta \sigma^{-1}$ of \mathbf{M}. Next we shall prove that the mapping $\alpha \rightarrow \sigma$ defined above gives an isomorphism of G onto H. To prove that the mapping $\alpha \rightarrow \sigma$ is onto, let $\widetilde{V}_{\sigma}=\Phi\left(\sum_{\alpha \in G}^{\prime} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha}\right)$, then we have

$$
\begin{aligned}
\widetilde{A} \widetilde{V}_{\sigma} & =\Phi\left(\widetilde{A}^{\eta-1}\right) \Phi\left(\sum_{\alpha \in G}^{\prime} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha}\right)=\Phi\left(\sum_{\alpha \in G}^{\prime} \widetilde{A}^{\eta-1} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha}\right) \\
& =\widetilde{V}_{\sigma} \widetilde{A}^{\sigma}=\Phi\left(\sum_{\alpha \epsilon G}^{\prime} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha}\right) \Phi\left(\widetilde{A}^{\sigma-1}\right) \\
& =\Phi\left(\sum_{\alpha \in G}^{\prime} \widetilde{A}_{\alpha} \widetilde{A}^{\eta-1} \alpha_{\alpha}^{-1} \widetilde{U}_{\alpha}\right),
\end{aligned}
$$

for all $A \in \mathbf{M}$, and for each $\alpha \in G, A A_{\alpha}^{\eta}=A_{\alpha}^{\eta} A^{\sigma_{\eta}^{-1} \alpha^{-1} \eta}$ for all $A \in \mathbf{M}$. By the same reason as before, there is a unique $\alpha \in G$ such as $\eta^{-1} \alpha \eta \equiv \sigma(\bmod \mathbf{I})$. Thus the mapping is onto. Since $\Phi\left(\widetilde{U}_{\alpha}\right)=\widetilde{W}_{\alpha} \widetilde{V}_{\sigma}, \Phi\left(\widetilde{U}_{B}\right)=\widetilde{W}_{\beta} \widetilde{V}_{\tau}$ for each pair $\alpha, \beta \in G$.

$$
\begin{aligned}
\Phi\left(\widetilde{U}_{\alpha \beta}\right) & =\Phi\left(\widetilde{U}_{\alpha}\right) \Phi\left(\widetilde{U}_{\beta}\right)=\left(\widetilde{W}_{\alpha} \widetilde{V}_{\sigma}\right)\left(\widetilde{W}_{\beta} \widetilde{V}_{\tau}\right)=\widetilde{W}_{\alpha} \widetilde{W}_{\beta}^{\sigma^{-1}} \widetilde{V}_{\sigma \tau} \\
& =\widetilde{W}_{\alpha \beta} \widetilde{V}_{\omega}, \text { where } \eta^{-1} \beta \eta \equiv \tau(\bmod \mathbf{I}), \eta^{-1} \alpha \beta \eta \equiv \omega(\bmod \mathbf{I}),
\end{aligned}
$$

and $\widetilde{W}_{\alpha \beta}^{*} \widetilde{W}_{\alpha} \widetilde{W}_{\beta}^{\sigma^{-1}}=\widetilde{V}_{\omega} \widetilde{V}_{\sigma \tau}^{*} \in \mathbf{M}$. Thus $\omega=\sigma \tau$ and $W_{\alpha \beta}^{\sigma}=W_{\alpha}^{\sigma} W_{\beta}$ for each α, $\beta \in G$. Hence the necessity of (1), (2) is proved.

Proof of Sufficiency. Suppose that the conditions (1), (2) are satisfied. We define a mapping Φ of (\mathbf{M}, G) into (\mathbf{M}, H) by

$$
\Phi\left(\sum_{\alpha \in G}^{\prime} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha}\right)=\sum_{\sigma \in H}^{\prime} \widetilde{B}_{\sigma} \widetilde{V}_{\sigma} \text { for each } \sum_{\alpha \in G}^{\prime} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha} \in(\mathbf{M}, G)
$$

where $\sigma \equiv \eta^{-1} \alpha \eta(\bmod \mathbf{I})$ and $\widetilde{B}_{\sigma}=\widetilde{A}_{\alpha}^{\eta} \widetilde{W}_{\alpha}$ for $\alpha \in G$.
If $\Phi\left(\sum_{\alpha \in G}^{\prime} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha}\right)=0$, we have $A_{\alpha}^{\eta} W_{\alpha}=0$ for each $\alpha \in G$, and $A_{\alpha}=0$ for all $\alpha \in G$. Thus the mapping Φ is one-to-one. Further, for any $\sum_{\sigma \in H}^{\prime} \widetilde{A}_{\sigma} \widetilde{V}_{\sigma}$ $\epsilon(\mathbf{M}, H)$

$$
\Phi\left(\sum_{\alpha \in G}^{\prime} \widetilde{B}_{\alpha}^{n-1} \widetilde{W}_{\alpha}^{* n}-\widetilde{U}_{\alpha}\right)=\sum_{\sigma \in H}^{\prime} \widetilde{A}_{\sigma} \widetilde{V}_{\sigma}
$$

where $\eta^{-1} \alpha \eta \equiv \sigma(\bmod \mathbf{I})$ and $B_{\alpha}=A_{\sigma}$ for all $\alpha \in G$, and thus the mapping Φ is onto.

To complete the proof we need only to prove that

$$
\begin{gathered}
\Phi\left(\left(\sum_{\alpha \in G}^{\prime} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha}\right)^{*}\right)=\left(\Phi\left(\sum_{\alpha \in G}^{\prime} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha}\right)\right)^{*} \\
\Phi\left(\left(\sum_{\alpha \in G}^{\prime} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha}\right)\left(\sum_{\alpha \in G}^{\prime} \widetilde{B}_{\alpha} \widetilde{U}_{\alpha}\right)\right)=\Phi\left(\sum_{\alpha \in G}^{\prime} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha}\right) \Phi\left(\sum_{\alpha \in G}^{\prime} \widetilde{B}_{\alpha} \widetilde{U}_{\alpha}\right),
\end{gathered}
$$

and $\left[\left[\Phi\left(\sum_{\alpha \in G}^{\prime} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha}\right)\right]\right]=\left[\left[\sum_{a \in G}^{\prime} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha}\right]\right]$
for any $\sum_{\alpha \in G}^{\prime} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha}, \sum_{\alpha \in G}^{\prime} \widetilde{B}_{\alpha} \widetilde{U}_{\alpha} \in(\mathbf{M}, G)$. Since we have $W_{\alpha}^{*}=W_{\alpha^{-1}}$ by condition (2),

$$
\Phi\left(\left(\sum_{\alpha \in G}^{\prime} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha}\right)^{*}\right)=\Phi\left(\sum_{\alpha \in G}^{\prime} \widetilde{A}_{\alpha}^{* \alpha} \widetilde{U}_{\alpha-1}\right)=\sum_{\sigma \in I I}^{\prime} \widetilde{B}_{\sigma-1} \widetilde{V}_{\sigma-1},
$$

where $\sigma \equiv \eta^{-1} \alpha \eta(\bmod \mathbf{I})$ and $\widetilde{B_{\sigma-1}}=\widetilde{A}_{\alpha}^{* a \eta} \widetilde{W}_{\alpha-1}$, and so

$$
\begin{aligned}
\widetilde{B}_{\sigma^{-1}} \widetilde{V}_{\sigma^{-1}} & \left.=\widetilde{V}_{\sigma^{-1}} \widetilde{A}_{\alpha}^{* \alpha \eta} \widetilde{W}_{\alpha}^{* \sigma}\right)^{\sigma-1}=\widetilde{V}_{\sigma-1}\left(\widetilde{W}_{\alpha}^{\sigma} \widetilde{A}_{\alpha}^{* \alpha \eta \eta \eta^{-1 \alpha-1} \eta \sigma}\right)^{\sigma-1} \\
& =\widetilde{V}_{\sigma-1} \widetilde{W}_{\alpha}^{*} \widetilde{A}_{\alpha}^{* \eta} .
\end{aligned}
$$

Thus, $\Phi\left(\left(\sum_{\alpha \in G}^{\prime} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha}\right)^{*}\right)=\left(\Phi\left(\sum_{\alpha \in G}^{\prime} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha}\right)\right)^{*}$.
Moreover,

$$
\Phi\left(\sum_{a \in G}^{\prime} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha}\right) \Phi\left(\sum_{\alpha \in G}^{\prime} \widetilde{B}_{\alpha} \widetilde{U}_{a}\right)=\sum_{\sigma, \tau \epsilon H}^{\prime} \widetilde{C}_{\sigma} \widetilde{D}_{\tau}^{\sigma-\widetilde{V}_{\sigma \tau}}
$$

where $\sigma \equiv \eta^{-1} \alpha \eta(\bmod \mathbf{I}), \tau \equiv \eta^{-1} \beta \eta(\bmod \mathbf{I}), \widetilde{C}_{\sigma}={\widetilde{A_{\alpha}^{\eta}}}_{\alpha} \widetilde{W}_{\alpha}$ and $\widetilde{D}_{\tau}={\widetilde{B_{\beta}^{k}}}^{W_{\beta}}$, and so

$$
\begin{aligned}
{\widetilde{C_{\sigma}}}^{\widetilde{D}_{\tau}^{\sigma}}{ }^{-1} \widetilde{V}_{\sigma \tau} & \left.=\left(\widetilde{A}_{\alpha}^{n} \widetilde{W}_{\alpha}\right) \widetilde{(}_{\beta}^{n} \widetilde{W}_{\beta}\right)^{\sigma-1} \widetilde{V}_{\sigma \tau}=\widetilde{A}_{\alpha}^{\eta} \widetilde{B}_{\beta}^{\sigma-1 \eta} \widetilde{W}_{\alpha} \widetilde{W}_{\beta}^{\sigma-1} \widetilde{V}_{\sigma \tau} \\
& =\widetilde{A}_{\alpha}^{\eta} \widetilde{B}_{\beta}^{\alpha-1} \eta \widetilde{W}_{\alpha \beta} \widetilde{V}_{\sigma \tau} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\Phi\left(\sum_{\alpha \in G}^{\prime}\right. & \left.\widetilde{A}_{\alpha} \widetilde{U}_{\alpha}\right) \Phi\left(\sum_{\alpha \in G}^{\prime} \widetilde{B}_{\alpha} \widetilde{U}_{\alpha}\right) \\
& =\Phi\left(\sum_{\alpha, \beta \epsilon G}^{\prime} \widetilde{A}_{\alpha} \widetilde{B}_{\beta}^{\alpha-1} \widetilde{U}_{\alpha \beta}\right) \\
& =\Phi\left(\left(\sum_{\alpha \in G}^{\prime} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha}\right)\left(\sum_{\alpha \in G}^{\prime} \widetilde{B}_{\alpha} \widetilde{U}_{\alpha}\right)\right) .
\end{aligned}
$$

Finally,

$$
\begin{gathered}
{\left[\left[\Phi\left(\sum_{\alpha \in G}^{\prime} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha}\right)\right]\right]^{2}=\left[\left[\sum_{\sigma \in H}^{\prime} \widetilde{B}_{\sigma} \widetilde{V}_{\sigma}\right]\right]^{2}=\sum_{\alpha \in G}\left[\left[A_{\alpha}^{n} W_{\alpha}\right]\right]^{2}} \\
=\sum_{\alpha \in G}\left[\left[A_{\alpha}\right]\right]^{2}=\left[\left[\sum_{\alpha \in G}^{\prime} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha}\right]\right]^{2},
\end{gathered}
$$

where $\sigma \equiv \eta^{-1} \alpha \eta(\bmod \mathbf{I})$ and $\widetilde{B}_{\sigma}=\widetilde{A}_{\alpha}^{\eta} \widetilde{W}_{\alpha}$, and the proof of sufficiency is completed.

References

[1] N. SUZUKI, Crossed products of rings of operators, Tôhoku Math. Journ., 11(1959), 113-124.
[2] , Extensions of rings of operators on Hilbert spaces. Tôhoku Math. Journ., 14(1962), 217-232.
[3] H. UMEGAKI, Conditional expectation in an operator algebra, Tôhoku Math. Journ., 6(1954), 177-181.
Mathematical Institute, Tôhoku University.

[^0]: 1) An automorphism of a factor means a *-automorphism.
 2) The definition of $\widetilde{\mathbf{M}}$ will be given in $\S 2$.
[^1]: 3) For $A=\sum_{\alpha \in G}^{\prime} \widetilde{A}_{\alpha} \widetilde{U}_{\alpha} \in(\mathbf{M}, G), A_{\alpha} \in \mathbf{M}$ is called the α-component of A.
