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1. Let M be a finite factor with the invariant C=1 and G a group of
automorphisms® of M. If G is outer, that is all member of G except the unit
element are outer automorphisms, the crossed product (M, G) is a finite factor
(see [1]). The purpose of this note is to prove the following two theorems.

THEOREM 1. Let M be a finite factor with the invariant C=1 and G
a group of outer automorphisms of M. Then any subfactor N of the crossed
product M, G) containing M? is isomorphic to the crossed product (M, G,) of
M by a subgroup G, of G.

When G is finite, this theorem is contained in [2:Lemma 9].

THEOREM 2. Let M be a finite factor with the invariant C =1, and
both G and H be groups of outer automorphisms of M. Then there exists
an isomorphism between the crossed product M, G) and (M, H) which leaves
M invariant if and only if the following conditions are true.

(1) There is an automorphism =n of M such that the correspondence
a(e G)—>a (e H) defined by the relation n'an = o(mod 1), where 1 is the
set of all inner automorphisms of M, gives an isomorphism of G onto H.

(2) There exists a family {Walae of unitary operators of M such that
each W induces the automorphism n~'ane™ of M and for each a,8 € G, W

= WZWB-

2. Firstly we shall give a short explanation on the construction and a basic
property of the crossed product of a finite factor.
Let M be a finite factor with the invariant C = 1 on a Hilbert space H and

G a group of automorphisms of M. Let a —» U, be a faithful unitary repre-
sentation of G such that U} AU, =A“for all A € M. Foreach A e M, 8 € G we

define the operators Z, U s on HR/,(G) by
AX,  7®e)=2, Ap.Qk
[‘7'3 (Zae(r’¢u ® 8“) = Zue@ UB¢D( ® Eﬂa

1) An automorphism of a factor means a «-automorphism,
2) The definition of M will be given in §2,
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for all S 9a®&, € H®L(G). The set {A; A € M} will be denoted by M.

Then, a— U, is a faithful unitary representation of G on H Q) [,(G) such as
U% AU,=A" for A « M. The W*-algebra on HR/,(G) generated by (M, Usa < G}
is the crossed product of M by G in the sense of [1], and is denoted by (M, G).
Each element A € (M, G) is uniquely expressed in the form A = Z’“G A;ﬁa,

where A, € M and Z is taken in the sense of the metrical convergence.

3. To prove Theorem 1 we shall provide two lemmas. The proof of Lem-
ma 1 is seen in the proof of [1; Theorem 3], and so we omit the proof.

LEMMA 1. Let M be a finite factor and a an outer automorphism of M.
If A €M possesses the property that BA = AB* for all B e M, then
A=0.

Throughout the remainder of § 3 we shall use the symbols M,N and G
with the meaning attributed to them in the statement of Theorem 1 in §1.
Then each element A € N can be uniquely expressed in the form A = Z/

aeG
Eaﬁa where As € M for each a € G. We denote the set of a-components® A,
of A € N by N, for each a € G. Then it is easily seen that each N, is a two-
sided ideal of M. Since M is topologically, and so algebraically simple, either
N. =(0) or N. = M for each @ € G.Let G, = {a& € G; N, =(0)}. Then G, is
a subgroup of G and we have the following

LEMMA 2. For each a < G,, U. € N.

PROOF. Let & be the conditional expectation of (M, G) relative to N in

the sense of [3]. Fix an arbitrary a, € G,. Since Ua,0 e N, U,,o is uniquely exp-
ressed in the form

550,0 = Z;EG>;2[“(7“, (*)
where A, € M for every a € G,. As §(7;0 = ﬁaog"" for any B € M, we have

Eﬁio _ ~Ui., B* for all B ¢ M. Hence by (*) and the uniqueness of the expression
BA, = A B** ' forall Be M and a € G,. ()

Lemma 1 and (**) imply that A, = 0 for all @ € G,, a == a, and U:, = A,,,,U,,o.
Further BA,, = A,, B for all B e M by (**), and so A., = A, Uf,o = XU,,Q
where A\ is a scalar. Thus (1 — h)Uf,,, =0, and either A =1 or UZ,, = 0. This
shows that either Uio =U,,a ¢ Nor Us=0. Suppose that U = 0. Since N, =M,

3) For A = Z A,, Uw € (M, G), Ag € M is called the a-component of A.
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there exists an element B = Z;EG Eaﬁ,, € N such as Bs,==0. Then

;’EG Eaﬁw - B = Bs = Z;EG, Eui\ju

where G, is a subset of G, which does not contain «,. This contradicts the uni-

queness of the expression of each element of N. Hence U. e N for all @ € G.

PROOF OF THEOREM 1. By Lemma 2, R(IVI, 5.,; a € G)= N. On the
other hand, it is obvious that R(l\~'.[, ﬁa;a € Gy) 2N by the definition of G,.
Thus N = R(I\~’[, 17“; a € G,). By Corollary of Theorem 5 in [1], (M, G,) is
isomorphic to R(IV[, (7,,; a € G,) and the theorem is proved.

4. In this section we shall prove Theorem 2 and use the notations M, G, H
and I with the same meaning as those in the statement of Theorem 2.

Let @ — U, (resp. o = V,) be the unitary representation of G (resp. H) which
appears in the construction of the crossed product (M, G) (resp. (M, H)).

PROOF OF NECESSITY. Let @ be an isomorphism between (M, G) and
(M, H) which leaves M invariant. Then @ induces an automorphism 7 of M
defined by A = ®(A) for all A € M. For each @ € G and A € M, we have

ST ANT) = AT%) (A7) D () = ATEAT™ Ts) = Aren

and so <I>(l~]a) induces an automorphism 7 'an of M. Putting (D(ﬁa) = Z:;”A(,V(r
e (M, H), we have

&, AV A= AT AT
for all A € M. Thus we have for each ¢ ¢ H
Az A7 = AA, for all A « M.

Hence, by Lemma 1, except for o € H such as 5 'ap = ¢ (mod I) A, =0. On
the other hand, if there exist o, o, such as 5 'an = o, (mod 1), " 'an = o,(modl),
'= (3 'agey™) '(p'age,”') € H is inner, and so o, = o, by our assumption
on H. If all y~'ane~! are outer, A, =0 for all ¢ € H and &U,) = 0, which is
a contradiction. Therefore, for each a € G there exists a unique ¢ € H and a
unique unitary operator W, € M such that 5~'an = o (mod I), CIJ(U';) = WiV,
and W, induces and inner automorphism % 'ans~! of M. Next we shall prove
that the mapping @ — o defined above gives an isomorphism of G onto H. To

prove that the mapping @ — o is onto, let ‘7:, =d (Za GZfJ,,), then we have

g0,
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V. — e (S AT - oS A A0
=V, A7 = @ (¥ AJ.) oA
- o (£, AAr )

for all A € M, and for each a ¢ G, AA? = A3 A » ™™ for all A € M. By the

same reason as before, there is a unique & ¢ G such as y™'an = o (mod I). Thus
the mapping is onto. Since <Il(l7,,) = ﬁ’/.,ﬁ,, <I>((7;,) = 117,9‘77 for each paira,8 € G.
q)(ﬁﬂﬂ) = ¢(ﬁd)q)((~jﬂ) = (Wavaxwﬂ i\/-‘-r) = ﬁ‘[au"}g_‘var

= WV, where 77 'Bn = v(mod 1), n~'aBn = w(mod I),

and ﬁZﬁW~¢W‘§" = V,V% ¢ M. Thus © = or and 76 = W3 W for each a,
B € G. Hence the necessity of (1), (2) is proved.

PROOF OF SUFFICIENCY. Suppose that the conditions (1), (2) are satisfied.
We define a mapping ® of (M, G) into (M, H) by

q> (Z;EG Zwﬁa) = Z(’TEH ED‘ Va for eaCh Z;e@ Z“ﬁa € (M’ G),
where o = ™ 'an (mod I) and E, = ZZ ﬁ}u for a < G.
I o (Z;ea Zuﬁa) =0, we have A1W., =0 for each a < G, and A, =0

for all @ € G. Thus the mapping ® is one-to-one. Further, for any Z’_H 4,7V,
€ (M, H)
(I) (ZNEG BZ_ W:n—an) = ZUEIIAVVU,

where n7'an=o(mod I) and B, = A, for all @ € G, and thus the mapping
® is onto.

To complete the proof we need only to prove that

(X AL.)) = (2(Z, A0.)

o((X A0) X BO.)) =@ (T, Ads) @ (X, BO.),
and [[®@ (Z;EG Z,ﬂa)]]= X AUa]|
for any Z;eg AU, Z;Egg“ﬁm e (M, G). Since we have W% = W, by condition
(2),

@ (X

ae

AT = (5, Al) = 5, B
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where o = 7 'an(mod 1) and B, = A" W,—, and so
B, V=V (A Weey™ =V, (Wg Agere ey
=V, WEA¥,

Ths, (2, 2.0.)7) = (+(Z,A.0)"
Moreover,
oz Adye(s BO) -5 CDr..

where o = 5 'ag(mod 1), T=%""'8n(mod 1), ﬁyzﬁgﬁc and 5,=§f§ ﬁ}s, and so

6;5{;_“7’07 - (Zzﬁfa)@gwﬁ)d—ri}”" = Zzﬁg—ln,ﬁfawg—‘vor

== AZB::_[" aﬂV oTe

Hence,
o, Ao (5, BOL)
= o ’,MKNB;;“UW)
= o (2 AT B:0.))
Finally,

[[o (X AT = [[X_ BV = &, lAwaIr
= ZGEG [AIP = [[Z;e(;z“ﬁ“]f,

where ¢ = n~'an(mod I) and E, = ZZW,,, and the proof of sufficiency is

completed.
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